国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

開關(guān)磁阻系統(tǒng)魯棒性控制方法研究

2020-04-22 06:00劉勇智李杰戴聰周政
電機與控制學(xué)報 2020年3期
關(guān)鍵詞:魯棒性PID控制

劉勇智 李杰 戴聰 周政

摘 要:在航空起動/發(fā)電系統(tǒng)中,開關(guān)磁阻電機(switched reluctance motor ,SRM)的雙凸極結(jié)構(gòu)和高轉(zhuǎn)矩脈動使航空起動/發(fā)電系統(tǒng)模型表現(xiàn)出高度的非線性和不確定性。為了解決SRM的非線性問題,提高系統(tǒng)的響應(yīng)速度,降低轉(zhuǎn)矩轉(zhuǎn)速脈動,同時提高系統(tǒng)的抗干擾能力,本文基于協(xié)同控制和自適應(yīng)模糊邏輯的基本原理,提出了一種自適應(yīng)模糊終端協(xié)同控制方法(adaptive fuzzy terminal synergetic control, AFTSC)。針對開關(guān)磁阻系統(tǒng)模型的高度非線性和不確定性,協(xié)同控制確保了系統(tǒng)的魯棒性,模糊邏輯估計了控制律的非線性方程,提高了控制器的有效性,同時降低了系統(tǒng)的計算體量。仿真和實驗結(jié)果表明,在自適應(yīng)模糊終端協(xié)同控制方法下,開關(guān)磁阻電機系統(tǒng)表現(xiàn)出更好的響應(yīng)特性,該控制器對于開關(guān)磁阻電機轉(zhuǎn)速和轉(zhuǎn)矩的變化表現(xiàn)出更強的魯棒性,相比于常規(guī)基于遺傳算法的PID控制器具有更好的性能。

關(guān)鍵詞:開關(guān)磁阻電機;協(xié)同控制;自適應(yīng)模糊邏輯;魯棒性;PID控制

DOI:10.15938/j.emc.2020.03.011

中圖分類號:TM 352文獻(xiàn)標(biāo)志碼:A文章編號:1007-449X(2020)03-0088-09

Abstract:In the air start / power generation system,the doubly salient structure and high torque ripple of switched reluctance motor (SRM) make the air start / power generation system model highly nonlinear and uncertain. In order to solve the nonlinear problem of SRM, improve the response speed of the system, reduce the torque and speed ripple, and improve the antiinterference ability of the system at the same time, based on the basic principles of cooperative control and adaptive fuzzy logic, an adaptive fuzzy terminal cooperative control method is proposed in this paper. Considering the high uncertainty and nonlinearity of the SRM model, robustness was verified by synergetic controller; the nonlinear function of the control law was estimated and the calculation was simplified by adaptive fuzzy logic and therefore the effectiveness was improved. Simulation and experimental results show that the controller has good response performance and robustness to speed and load changes. Compared with GAPID, the proposed method has better performance.

Keywords:switched reluctance motor; synergetic control; adaptive fuzzy logic; robustness; PID control

0 引 言

開關(guān)磁阻電機近年來由于其簡單的結(jié)構(gòu)、高度的容錯能力、較低的損耗,受到越來越多的關(guān)注,尤其是在F-35戰(zhàn)斗機上的應(yīng)用,使它的使用價值得到進(jìn)一步拓寬,開關(guān)磁阻起動/發(fā)電系統(tǒng)逐漸成為航空市場的主流。然而,其特殊的雙凸極結(jié)構(gòu)和高轉(zhuǎn)矩脈動所帶來的模型的高度非線性和不確定性,對電機的實際控制提出了很高的要求。如何對電機實行有效的控制,以降低轉(zhuǎn)矩脈動,提高電機的快速響應(yīng)和抗干擾能力成為當(dāng)下研究的熱點。

為了提高轉(zhuǎn)速性能,降低轉(zhuǎn)矩脈動,提高系統(tǒng)魯棒性,多種方法被應(yīng)用于SRM,如神經(jīng)網(wǎng)絡(luò)[1-2],模糊邏輯控制[3-4],但是這些控制方式計算體量大,對控制器要求較高,工業(yè)上不易推廣。新型控制方式,如預(yù)測控制[5-6],滑??刂芠7-8]在SRM上也有所延伸。文獻(xiàn)[5]將預(yù)測控制應(yīng)用于SRM的轉(zhuǎn)矩控制,將電感表面學(xué)習(xí)機制應(yīng)用于電流預(yù)測,提高了電機的控制精度;文獻(xiàn)[6]將無約束模型預(yù)測控制器應(yīng)用于電機的電流控制,有效降低了電機的電流和轉(zhuǎn)矩脈動,但是預(yù)測控制對于計算速度要求較高;文獻(xiàn)[7]設(shè)計了轉(zhuǎn)矩觀測器獲取實際轉(zhuǎn)矩,設(shè)計滑??刂破髡{(diào)節(jié)轉(zhuǎn)矩誤差,有效抑制了轉(zhuǎn)矩脈動;文獻(xiàn)[8]將滑模應(yīng)用于汽車充電電抗器中SRM控制,有效提高了電能質(zhì)量,但是變結(jié)構(gòu)滑膜控制器需要高帶寬,同時易引入噪聲。

協(xié)同控制理論(SCT)是由俄羅斯研究員科列斯尼科夫提出的一種新型控制方法[9],其優(yōu)勢在于便于數(shù)字化實現(xiàn),同時可以工作于連續(xù)恒定的開關(guān)頻率,降低電機震顫,目前在電力系統(tǒng)[10],DCDC升壓轉(zhuǎn)換器[11]等方面有著廣泛的應(yīng)用。在電機控制方面,文獻(xiàn)[12]將協(xié)同控制運用于永磁同步電機,實現(xiàn)了在不變流形上對二階系統(tǒng)的自然線性化和降階;文獻(xiàn)[13-14]將協(xié)同控制引入感應(yīng)電機的轉(zhuǎn)速控制,提高了電機在外部干擾下,轉(zhuǎn)速的穩(wěn)定性;Louri等人將協(xié)同控制和滑??刂圃诜蔷€性系統(tǒng)中的抗干擾能力進(jìn)行比較,發(fā)現(xiàn)協(xié)同控制具有更強的魯棒性和響應(yīng)速度[15],這也進(jìn)一步驗證了協(xié)同控制在SRM這種高度非線性系統(tǒng)中有很廣闊的應(yīng)用前景。為了解決SRM的非線性問題,提高系統(tǒng)的響應(yīng)速度,降低轉(zhuǎn)矩轉(zhuǎn)速脈動,同時提高抗干擾能力,本文將協(xié)同控制引入SRM,將輸入電壓u作為控制量,實現(xiàn)對SRM的控制。然而,就像其他基于模型的控制技術(shù),協(xié)同控制技術(shù)也高度依賴于模型的精確性,針對此問題,本文引入終端自適應(yīng)模糊邏輯對非線性模型進(jìn)行估計,設(shè)計了自適應(yīng)模糊終端協(xié)同控制器實現(xiàn)了對SRM的精確控制。

7 結(jié) 論

本文基于協(xié)同控制和模糊邏輯的基本原理,針對開關(guān)磁阻起動系統(tǒng)這一控制對象,設(shè)計了自適應(yīng)模糊終端協(xié)同控制器。首先提出了一般協(xié)同控制方法,并給出了協(xié)同控制器的一般方程。這一控制器控制律連續(xù),能夠較小系統(tǒng)的震顫,同時確保了系統(tǒng)的魯棒性。其次設(shè)計了終端協(xié)同控制器確保了系統(tǒng)誤差能夠在有限時間內(nèi)收斂,確保了控制器的有效性。再將自適應(yīng)模糊邏輯應(yīng)用于所設(shè)計的控制器,實現(xiàn)了對控制律中的所出現(xiàn)的非線性函數(shù)H(x)和G(x)的有效估計,在提高控制器準(zhǔn)確性的同時,也減小了系統(tǒng)控制律的計算體量。最后設(shè)計相應(yīng)的李雅普諾夫函數(shù),證明了所提出的控制器的穩(wěn)定性。仿真和實驗結(jié)果證明了,在該控制方法下,系統(tǒng)具有優(yōu)良的動靜態(tài)性能和較好的魯棒性,相比于遺傳PID方法,其控制效果更加優(yōu)越,在實際應(yīng)用中具有廣泛的前景。

參 考 文 獻(xiàn):

[1] 高宇,戴躍洪,宋林.基于BP神經(jīng)網(wǎng)絡(luò)的開關(guān)磁阻電機建模[J].電力電子技術(shù),2017,51(2):72.

GAO Yu, DAI Yuehong, SONG Lin.Modeling of switched motor based on BP neural network[J]. Power Electronics, 2017,51(2):72.

[2] 夏長亮,陳自然,李斌.基于RBF神經(jīng)網(wǎng)絡(luò)的開關(guān)磁阻電機瞬時轉(zhuǎn)矩控制[J].中國電機工程學(xué)報,2006,26(19):127.

XIA Changliang, CHEN Ziran, LI Bin. Instantaneous torque control of switched reluctance motors based on RBF neural network[J].Proceedings of the CSEE: 2006,26(19):127.

[3] 修杰,夏長亮.基于遺傳算法的開關(guān)磁阻電機自適應(yīng)模糊控制[J].電工技術(shù)學(xué)報,2007,22(11):69.

XIU Jie,XIA Changliang. GAbased adaptive fuzzy logic controller for switched reluctance motor[J]. Transactions of China Electrotechnical Society, 2007,22(11):69.

[4] 鄭國,鄭萬新.基于開關(guān)磁阻電機光伏水泵系統(tǒng)模糊控制研究[J].中國電力,2017,50(1):146.

ZHENG Guo, ZHENG Wanxin. Research on fuzzy control of PV pumping system based on switched reluctance motor[J]. Electric Power,2017,50(1):146.

[5] XIN Li, POURYA SHAMSI. Inductance surface learning for model predictive current control of switched reluctance motors[J].IEEE Transactions On Transportation Electrification,2015,1(3):287.

[6] XIN Li, POURYA SHAMSI.Model predictive current control of switched reluctance motors with inductance autocalibration[J]. IEEE Transactions On Industrial Electronics, 2016,63(6):3934.

[7] ZAN Xiaoshu. Switched reluctance motor speed performance simulation study based on torque ripple suppresslon[C] // Luoyang: International Conference on Advanced Mechatronic Systems, 2013: 253-257.

[8] RASHIDI A,NAMAZI M M.Zero torque control of switched reluctance motors for charging reactor of electric vehicles[C]//Busan: IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2015: 990-995.

[9] KOLESNKOV A,VESELOV G,KOLESNIKOV A, et al.Synergetic synthesis of DCDC boost converter controllers: theory and experimental analysis[C] // Dallas: 7th Annual IEEE Applied Power Electronics Conference and Exposition, 2002: 409-415.

[10] BOUCHAMA Z,HARMAS M.Optimal robust adaptive fuzzy synergetic power system stabilizer design[J]. Electr. Power Syst. Res, 2012, 83(1):170.

[11] HARMAS M,HAMZAOUI A,HARMAS K.Adaptive fuzzy synergetic converter control[C]//Taibah: International Conference on Computing and Information Technology(ICCIT)2012:734-738.

[12] BASTOS J,MONTI A,SANTI E. Design and implementation of a nonlinear speed control for a PM synchronous motor using the synergetic approach to control theory[C]//Aachen: 35th Annual IEEE Power Electronics Specialists Conference, 2004:3397-3402.

[13] YOUNG DAE SON,TAE WONHEO,ENRICO SANTI.Synergetic control approach for induction motor speed control[C]//Busan:The 30th Annual Conference of theIEEE Industrial Electronics Society, 2004: 883-887.

[14] ABOLFAZL RANJBAR NOEI,HEDYEH AGHEH KHOLERDI.Robust speed control of induction machine using synergetic controller[C]//Tehran: 2nd International Conference on KnowledgeBased Engineering and Innovation (KBEI),2015: 880-885.

[15] LOURI M,AMRANE A,BARAZANE L.Comparison between theperformances of variables structures control and the theory of synergetic on applied to the squirrel motor drives[C]//Algiers: 3rd International Conference on Systems and Control(ICSC), 2013: 293-298.

[16] 霍麗華,楊建忠.基于目標(biāo)狀態(tài)方程的SRM非線性預(yù)測控制[J].中國民航大學(xué)學(xué)報,2009,27(02):31.

HUO Lihua, YANG Jianzhong. Nonlinear predictive control for SRM based on TSEs[J].Journal of Civil Aviation University of China, 2009,27(02):31.

[17] SUGENO M,KANG G T.Structure identification of fuzzy model[J].Fuzzy Sets and Systems, 1988,28(2):15.

(編輯:賈志超)

猜你喜歡
魯棒性PID控制
火電廠煙氣脫硝控制系統(tǒng)中的噴氨量優(yōu)化建模與仿真
武漢軌道交通重點車站識別及網(wǎng)絡(luò)魯棒性研究
內(nèi)模控制在火電廠主汽溫系統(tǒng)中的應(yīng)用
一種基于三維小波變換的魯棒視頻水印方案
常規(guī)PID控制和常規(guī)模糊控制的比較
電子節(jié)氣門非線性控制策略
一種基于SPWM的逆變電源并聯(lián)運行參數(shù)設(shè)計及控制策略仿真
一種基于奇異值分解的魯棒水印算法
關(guān)于多旋翼式飛行器系統(tǒng)的研究
基于魯棒性改進(jìn)理論的大面積航班延誤治理分析