林府標(biāo) 張千宏
摘要:探求一類群體平衡方程的顯式精確解.首先將群體平衡方程轉(zhuǎn)化成偏微分方程,利用經(jīng)典李群分析法獲得了偏微分方程的對(duì)稱,進(jìn)而得到了群體平衡方程的對(duì)稱、最優(yōu)化子李代數(shù)系統(tǒng)、約化的常微分一積分方程、群不變解及精確解.其次采用試探函數(shù)法找到了約化的常微分一積分方程的部分精確解,最后得到了群體平衡方程的部分顯式精確解.
關(guān)鍵詞:群體平衡方程;李群分析法;試探函數(shù)法;群不變解;精確解
中圖分類號(hào):0175.5; 0175.6
文獻(xiàn)標(biāo)志碼:A
DOI: 10.3969/j.issn.1000-5641.201911008
0 引言
群體平衡方程可用于描述許多實(shí)際的自然實(shí)體或化學(xué)過程,如礦石或固體的粉碎,高分子的聚合,云的形成,細(xì)胞動(dòng)力學(xué)行為等[1-6].固體材料的破碎、粉碎、尺寸減縮就是微粒系統(tǒng)中粒子的破損過程.細(xì)胞的二等分裂方式就是細(xì)菌種群的繁殖生長(zhǎng)和破損過程.研究微生物種群動(dòng)力學(xué)行為過程的群體平衡方程[1]可以寫成
在實(shí)際工業(yè)應(yīng)用領(lǐng)域中最主要的困難不是如何建立一個(gè)實(shí)體破損過程模型,而常常是沒有精確求解這些實(shí)體模型的技術(shù)和方法,除非采用數(shù)值解法[1-7].為了精確描述、解釋、理解和應(yīng)用某些實(shí)體模型,探求偏微分方程、積分一偏微分方程的精確解以及研究精確求解技術(shù)是有實(shí)際研究?jī)r(jià)值和應(yīng)用意義的[8-9].
群體平衡方程[1]是既含偏微分項(xiàng)又含多種類型的強(qiáng)非線性積分項(xiàng)以及代數(shù)方程項(xiàng)的積分一偏微分方程,要找到精確解一般都比較困難.極少數(shù)的群體平衡方程能通過某些變換轉(zhuǎn)化為常微分方程求解[10].為了豐富和發(fā)展精確求解群體平衡方程的理論和方法,探究更多的精確解和解析求解的新方法是有必要和具有實(shí)際研究意義的.雖然經(jīng)典李群分析法[11-16]不能直接用于群體平衡方程,但近年來改進(jìn)了的李群分析法[17-181已被用于精確求解積分一偏微分方程、時(shí)滯微分方程和隨機(jī)微分方程[19-25].
經(jīng)典李群分析法[11-16]不能直接被用于探求積分一偏微分方程(1)和(2)的精確解.從微分代數(shù)的觀點(diǎn)來看,其主要障礙是變限積分項(xiàng)在可微函數(shù)向量空間沒有直接定義[14,15].因此,當(dāng)把方程(1)和(2)的決定方程分解成超決定方程時(shí),經(jīng)典李群分析法失效了.采用改進(jìn)了的李群分析法[17-18]尋找積分一偏微分方程(1)和(2)的精確解的最大困難是寫出其決定方程和求解其決定方程,如何處理變限積分項(xiàng)是一個(gè)棘手的問題.
本文主要利用量綱分析法、試探函數(shù)法和經(jīng)典李群分析法[11-16]間接探求群體平衡方程(2)的顯式精確解,特別是滿足實(shí)際問題的顯式精確解,分析顯式精確解所滿足的邊界條件、柯西問題的初始條件以及細(xì)胞種群密度分布的動(dòng)力學(xué)行為特性.希望找到的顯式精確解一方面可用于檢驗(yàn)數(shù)值解的正確性和精確度,另一方面可為實(shí)體模型提供理論依據(jù)和參考.
1 因次分析和矩
許多具有實(shí)際應(yīng)用背景的微分方程中往往帶有常數(shù)因子,這些常數(shù)因子在精確求解過程中有時(shí)非常繁瑣,既增加了計(jì)算量又不簡(jiǎn)潔.為了精確求解的方便,可以利用量綱分析法[26-27]把這些常數(shù)因子歸一化,量綱分析法在科學(xué)和工程領(lǐng)域中有廣泛的應(yīng)用.假設(shè)f=f(x,t)滿足方程(2),定義如下尺
2 方程(5)所接受的李群
經(jīng)典李群分析法[11-16]不能直接應(yīng)用于積分一偏微分方程(5).而利用改進(jìn)了的李群分析法[17-18]研究方程(5)的對(duì)稱、群不變解和精確解,最主要的困難是寫出其決定方程和求解決定方程.積分一偏微分方程的決定方程仍然是積分一偏微分方程,其求解技術(shù)沒有普遍相對(duì)有效的規(guī)律可尋,而是依賴于原積分一偏微分方程的結(jié)構(gòu)、特征和性質(zhì)等,例如文獻(xiàn)[28-30]中群體平衡方程的決定方程的求解方法.文獻(xiàn)[28-30]中群體平衡方程的積分項(xiàng)的類型是正常積分和非正常積分,與方程(5)的變限積分項(xiàng)相比較,當(dāng)用算子作用方程(5)時(shí),變限積分項(xiàng)是最大的障礙,而要寫出其決定方程就是一個(gè)棘手的問題,更不要說求解決定方程.因此需要先把積分一偏微分方程(5)轉(zhuǎn)化為偏微分方程,于是可對(duì)方程(5)兩邊同時(shí)關(guān)于x求導(dǎo),并令
5 結(jié) 論
量綱分析法對(duì)積分一偏微分方程中的常數(shù)歸一化的應(yīng)用具有廣泛性.試探函數(shù)法和李群分析法都是精確求解非線性偏微分方程的行之有效方法,應(yīng)用都具有普遍性.本文利用量綱分析法把一類群體平衡方程中的常數(shù)歸一化,然后把群體平衡方程轉(zhuǎn)化為非線性偏微分方程,應(yīng)用經(jīng)典李群分析法獲得了非線性偏微分方程的完全對(duì)稱.進(jìn)而找到了群體平衡方程的對(duì)稱、最優(yōu)化子李代數(shù)系統(tǒng)、約化方程以及群不變解.采用試探函數(shù)法求解約化方程,得到了群體平衡方程的部分顯式精確解,并分析了部分顯式精確解的動(dòng)力學(xué)特性.
[參考文獻(xiàn)]
[1]
RAMKRISHNA D Population Balances: Theory and Applications to Particulate Systems in Engineering[M] San Diego: AcademicPress. 2000
[2] HUIBURT H M,KATZ S Some problems in particle technology:A statistical mechanical formulation [J]. Chemical EngineeringScience. 1964, 19(8): 555-574. DOI: 10.1016/0009-2509(64)85047-8
[3]
RANDOIPH A D A population balance for countable entities [J] Canadian Journal of Chemical Engineering, 1964, 42(6): 280-281 DOI: 10.1002/cjce.5450420612
[4]
RANDOIPH A D,LARSON M A Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization[M] 2nded San Diego: Academic Press, 1988
[5]
MUIIIN J W Crystallization[M]4th ed Oxford: Butterworth-Heinemann. 2001
[6] CAMERON I T,WANG F Y,IMMANUEL C D,et al_Process systems modelling and applications in granulation:A review[J]Chemical Engineering Science. 2005, 60(14): 3723-3750 DOI: 10.1016/j.ces.2005.02.004
[7]
FIIBET F,LAURENCOT P Numerical simulation of the Smoluchowski coagulation equation[J] Society for Industrial& Applied Mathematics, 2003, 25(6): 2004-2028
[8]
ZHANG N,XIA T C A new negative discrete hierarchy and its N-fold Darboux transformation[J] Communications in TheoreticalPhysics, 2017,68:687-692. DOI: 10.1088/0253-6102/68/6/687.
[9]
LI Q,XIA T C,YUE C Algebro-geometric solutions for the generalized nonlinear Schrodinger hierarchy[J] Journal of NonlinearScience& Applications, 2016,9 661-676
[10]
SCHUMANN T E W Theoretical aspects of the size distribution of fog particles[J] Quarterly Journal of the Royal MeteorologicalSociety, 1940, 66(285): 195-208
[11] 田疇.李群及其在微分方程中的應(yīng)用[M].北京:科學(xué)出版社,2001
[12]
BLUMAN G W, KUMEI S. Symmetries and Differential Equations [M]. Berlin: Springer, 1989.
[13]
OLVER J P. Applications of Lie Group to Differential Equation [M] . 2nd ed. New York: Springer, 1993.
[14]
OVSIANNIKOV L V. Group Analysis of Differential Equations [M]. New York: Academic Press, 1982.
[15]
IBRAGIMOV N H. Elementary Lie Group Analysis and Ordinary Differential Equations [M]. Chichester: John Wiley & Sons, 1999.
[16]
IBRAGIMOV N H. Transformation Groups and Lie Algebra [Ml. Beijing: Higher Education Press, 2013.
[17] MELESHKO S V. Methods for Constructing Exact Solutions of Partial Differential Equations: Mathematical and AnalyticalTechniques with Applications to Engineering [Ml. New York: Springer, 2005.
[18]
GRIGORIEV Y N, IBRAGIMOV N H. KOVALEV V F, et al. Symmetries of Integro-differential Equations: with Applications inMechanics and Plasma Physics [M]. New York: Springer, 2010.
[19]
ZHOU L Q, MELESHKO S V. Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensionalviscoelastic materials [J]. International Journal of Non-Linear Mechanics, 2015. 77: 223-231. DOI: 10.1016/j .ijnonlinmec.2015.08.008.
[20]
ZHOU L Q, MELESHKO S V. Invariant and partially invariant solutions of integro-differential equations for linear thermoviscoelasticaging materials with memory [J]. Continuum Mechanics & Thermodynamics, 2017, 29(1): 207-224.
[21]
ZHOU L Q, MELESHKO S V. Syrumetry groups of integro-differential equations for linear thermoviscoelastic materials with memory[J] . Journal of Applied Mechanics & Technical Physics, 2017, 58(4): 587-609.
[22] SURIYAWICHITSERANEE A. GRIGORIEV Y N, MELESHKO S V. Group analysis of the Fourier transform of the spatiallyhomogeneous and isotropic Boltzmann equation with a source term [J]. Communications in Nonlinear Science & NumericalSimulation. 2015, 20(3): 719-730.
[23]
GRIGOREV Y N, MELESHKO S V, SURIYAWICHITSERANEE A. Exact solutions of the Boltzmann equations with a source [J] .Journal of Applied Mechanics & Technical Physics, 2018, 59(2): 189-196.
[24]
MKHIZE T G, GOVINDER K. MOYO S. et al. Linearization criteria for systems of two second-order stochastic ordinary differential equations [J]. Applied Mathematics & Computation, 2017, 301: 25-35.
[25] LONG F S, KARNBANJONG A, SURIYAWICHITSERANEE A. et al. Application of a Lie group admitted by a homogeneousequation for group classification of a corresponding inhomogeneous equation EJl . Communications in Nonlinear Science & NumericalSimulation. 2017, 48: 350-360.
[26]
BARENBLATT G I. Scaling, Self-similarity, and Intermediate Asymptotics [M]. Cambridge: Cambridge University Press, 1996.
[27]
LANGHAAR H L. Dimensional Analysis and Theory of Models [M]. New York: John Wiley and Sons. 1951.
[28]
LIN F B, FLOOD A E. MELESHKO S V. Exact solutions of population balance equation EJl . Communications in Nonlinear Science &eNumerical Simulation. 2016, 36: 378-390.
[29] LIN F B, MELESHKO S V, FLOOD A E. Symmetries of population balance equations for aggregation. breakage and growthprocesses EJl. Applied Mathematics and Computation, 2017, 307: 193-203. DOI: 10.1016/j.amc.2017.02.048.
[30]
LIN F B. MELESHKO S V. FLOOD A E. Exact solutions of the population balance equation including particle transport, using groupanalysis EJl. Communications in Nonlinear Science & Numerical Simulation, 2018, 59: 255-271.