徐海 宋波 顧宗福 畢研飛 魏斌
摘要:氣候因素導(dǎo)致的熱脅迫嚴(yán)重影響農(nóng)作物的產(chǎn)量和質(zhì)量,引起了廣泛關(guān)注。植物通過積累不同的代謝產(chǎn)物,并激活一系列信號途徑來應(yīng)對熱脅迫,這些變化凸顯了植物熱脅迫響應(yīng)生理和分子機制的復(fù)雜性。本文詳細(xì)綜述了生物膜、活性氧解毒機制、熱激蛋白和各類保護劑在植物耐熱性形成中的作用,并對未來如何深入研究植物熱脅迫響應(yīng)及耐熱性機制機理提出展望,以期為植物耐熱性育種提供指導(dǎo)。
關(guān)鍵詞:植物;耐熱性;活性氧;熱激蛋白
中圖分類號:S184;Q945文獻標(biāo)識碼:A文章編號:1000-4440(2020)01-0243-08
Abstract:Heat stress caused by climate factors seriously affects crop yield and quality, which has attracted wide attention. In response to heat stress, different metabolites were accumulated in plants and a series of signaling pathways were activated. These changes highlighted the complexity of physiological and molecular mechanisms of plant response to heat stress. In this paper, the role of biomembrane, active oxygen detoxification mechanism, heat shock protein and various protectants in the formation of plant heat tolerance was reviewed in detail, and the further study for the response of plant heat stress and the mechanism of heat tolerance was prospected in order to provide guidance for plant heat tolerance breeding.
Key words:plant;heat tolerance;reactive oxygen species;heat shock proteins
受人為因素和自然因素的共同影響,預(yù)計到21世紀(jì)末,地表氣溫將提高 2~4 ℃[1]。高溫引起的熱脅迫影響植物生長發(fā)育的各個生理過程,導(dǎo)致植株形態(tài)和生理變化,阻礙植物的發(fā)育過程,最終導(dǎo)致巨大的產(chǎn)量損失。在高溫條件下,植物細(xì)胞膜脂雙層結(jié)構(gòu)的流動性明顯增強,可引起電解質(zhì)泄漏、活性氧生成和氧化損傷。植物則通過不同途徑積累抗氧化劑、滲透保護劑和熱激蛋白(Hsps)等代謝產(chǎn)物應(yīng)對熱脅迫損傷[2],葉綠體和線粒體中的保護酶及抗氧化劑對減少氧化損傷也非常重要[3]。熱激蛋白在脅迫信號轉(zhuǎn)導(dǎo),保護并修復(fù)受損蛋白質(zhì),以及在調(diào)節(jié)細(xì)胞氧化還原狀態(tài)中均發(fā)揮作用。其他一些主要的脅迫響應(yīng)因子,包括離子轉(zhuǎn)運體、滲透保護劑、自由基清除劑、各種脅迫響應(yīng)蛋白質(zhì)以及參與信號級聯(lián)和轉(zhuǎn)錄控制的因子等,對抵消熱脅迫的影響也至關(guān)重要[4]。
植物的耐熱機制與光合系統(tǒng)的耐受性有關(guān)[5]。熱脅迫引起光系統(tǒng)II(PSII)失效,降低了電子傳輸效率,增加了活性氧的產(chǎn)生。在熱脅迫下,植物的葉綠體和線粒體都會積累更多的活性氧(ROS),從而嚴(yán)重破壞DNA,引起細(xì)胞膜脂質(zhì)過氧化。有研究結(jié)果表明,活性氧解毒機制在保護植物免受高溫脅迫方面發(fā)揮著重要作用[6-7]。因此,植物的耐熱性與其自身對活性氧的清除和解毒能力密切相關(guān)。耐熱性的誘導(dǎo)可歸因于通過提高抗氧化能力來維持更好的膜熱穩(wěn)定性和較低的活性氧積累量[8-10]。但是,現(xiàn)階段關(guān)于不同細(xì)胞器中活性氧如何生成和消耗的了解有限。植物耐熱性的遺傳差異與不同脅迫響應(yīng)基因表達、Hsps合成以及抗氧化防御系統(tǒng)等因素有關(guān)[11-12]。本文擬通過總結(jié)生物膜、活性氧解毒機制、熱激蛋白和各類保護劑在植物耐熱性形成中的作用,以期為植物耐熱性育種的深入研究奠定基礎(chǔ)。
1生物膜在植物耐熱性中的作用
脂質(zhì)過氧化(LPO)對生物具有非常大的破壞性。熱脅迫會導(dǎo)致植物細(xì)胞膜自由基損傷,從而導(dǎo)致LPO增強。人們已經(jīng)認(rèn)識到,LPO產(chǎn)物是由多元不飽和前體形成的,這些前體包括小的碳?xì)浠衔锼槠?,如酮、丙二醛(MDA)以及與之相關(guān)的化合物[13]。MDA含量被廣泛用作LPO的指標(biāo)[14]。細(xì)胞膜和細(xì)胞器膜中的LPO都是在活性氧水平高于閾值時發(fā)生,從而影響正常的細(xì)胞功能[15]。產(chǎn)生的烷氧基和過氧基能夠通過與其他脂質(zhì)分子相互作用來誘導(dǎo)新的自由基鏈。由此產(chǎn)生的脂質(zhì)過氧化氫很容易分解成多種活性物質(zhì),包括脂質(zhì)烷氧基、醛類、烷烴、脂質(zhì)環(huán)氧化物和醇類。因此,單個引發(fā)事件有可能通過鏈?zhǔn)椒磻?yīng)生成多個過氧化物分子。LPO的總體作用是降低膜的流動性,這使得在雙層膜結(jié)構(gòu)的兩部分之間交換磷脂更容易,并增加了膜對正常情況下不穿過它的物質(zhì)的泄漏,從而損害膜蛋白、受體、酶和離子通道。
熱脅迫會改變膜蛋白的三級和四級結(jié)構(gòu),所以生物膜的完整性和功能對高溫非常敏感。細(xì)胞膜是由蛋白質(zhì)和脂質(zhì)組成的移動鑲嵌結(jié)構(gòu),內(nèi)、外兩層由蛋白質(zhì)分子組成,中間一層由雙層脂類分子組成[5]。許多熱脅迫響應(yīng)都是通過蛋白質(zhì)折疊的展開變性來實現(xiàn)的。蛋白質(zhì)構(gòu)象隨溫度變化,溫度的降低和升高都會導(dǎo)致蛋白質(zhì)變性[16]。膜脂中一些不飽和脂肪酸的不飽和鍵對溫度比較敏感,容易斷裂,膜脂中飽和脂肪酸含量越高,植物的耐熱性越強。有研究結(jié)果表明,缺乏不飽和脂肪酸的大豆突變體對高溫表現(xiàn)出很強的耐受性[16]。在高溫處理下,2個缺乏不飽和脂肪酸的擬南芥突變體(fad5和fad6)類囊體膜的穩(wěn)定性更強[17]。通過抑制ω-3脫氫酶基因,增加脂類飽和度,也能使煙草表現(xiàn)出更強的耐熱性[18]。
膜熱穩(wěn)定性(MTS)是耐熱性的一個重要指標(biāo),它是通過測量電導(dǎo)率來確定的。在植物生長后期,膜穩(wěn)定性參數(shù)通常會降低?;蛐烷g的MTS遺傳變異可用于小麥耐熱性育種。如果灌漿時遇到高溫,MTS高的小麥品種產(chǎn)量往往高于MTS低的品種[19]。植物細(xì)胞暴露于高溫下會引起細(xì)胞膜破裂,這與膜脂雙層結(jié)構(gòu)的溫度特異性相變(凝膠到液體或反之)有關(guān)。熱脅迫可導(dǎo)致線粒體膜功能受損并產(chǎn)生氧化損傷[6-7,20]。植物細(xì)胞的光合系統(tǒng)不耐熱,在植株出現(xiàn)明顯的熱害癥狀之前就會受到破壞,熱脅迫通過改變吸收光能的數(shù)量和利用率來影響類囊體膜反應(yīng),進而改變?nèi)~綠素?zé)晒饽J健?/p>
2活性氧解毒機制在植物耐熱性中的作用
活性氧包括超氧陰離子(O2·-)、羥基(·OH)和過氧化氫(H2O2)等,是細(xì)胞代謝的天然產(chǎn)物(圖1)。光合過程中能量耗散不足可導(dǎo)致葉綠素形成三重態(tài)。三重態(tài)的葉綠素可以與三重態(tài)的氧發(fā)生反應(yīng),釋放出一種非?;顫姷膯螒B(tài)氧,對光系統(tǒng)I(PSI)、PSII以及整個光合機制都有破壞作用。熱脅迫可促進活性氧的快速生成和積累[21-23]?;钚匝醯倪^度生產(chǎn)可能對所有細(xì)胞組分都有害,并對細(xì)胞代謝產(chǎn)生負(fù)面影響[24-25]。因此,這些活性氧的解毒機制對于植物的耐熱性至關(guān)重要。
植物應(yīng)對活性氧的防御系統(tǒng)包括酶抗氧化劑和非酶抗氧化劑(圖1)[26]。主要的酶抗氧化劑是過氧化氫酶(CAT)、超氧化物歧化酶(SOD)、谷胱甘肽過氧化物酶(GPX)、抗壞血酸過氧化物酶(APX)、脫氫抗壞血酸還原酶(DHAR)、谷胱甘肽還原酶(GR)和谷胱甘肽S-轉(zhuǎn)移酶(GST)[27]。SOD將O2·-轉(zhuǎn)化為H2O2,而CAT則將H2O2解離為H2O和O2。GPX需要一種酚類化合物鄰甲氧基苯酚作為電子供體來分解H2O2,而APX則使用一種還原形式的抗壞血酸(AsA)來保護細(xì)胞免受H2O2的破壞[28]。APX反應(yīng)產(chǎn)生的氧化形式AsA通過抗壞血酸-谷胱甘肽循環(huán)或單脫氫抗壞血酸還原酶(MDHAR)和DHAR的Halliwell-Asada通路再生,最終利用還原型煙酰胺腺嘌呤二核苷酸磷酸(NADPH)的還原能力,通過GR將氧化型谷胱甘肽(GSSG)轉(zhuǎn)變?yōu)檫€原型谷胱甘肽(GSH)(圖1)。
GST是一種多功能蛋白質(zhì)的集合,基本上存在于所有生物體中。除了參與天然次生化合物的代謝[29]和有害外源物質(zhì)的解毒[30],植物GST還可以將H2O2催化還原為危害較小的乙醇[30]。通過將轉(zhuǎn)基因煙草的GST/GPX活性加倍,幼苗和成株的生長速度明顯快于野生型,從而提供了更好的抗氧化保護作用[31]。
抗氧化酶的活性對溫度敏感,在不同的溫度范圍內(nèi)發(fā)生活化。在兵豆中觀察到,隨著溫度的升高,CAT、APX和SOD活性逐漸增加,超過50 ℃后活性開始降低,而過氧化物酶(POX)和GR在20~50 ℃條件下隨溫度升高活性都會降低[8]。鷹嘴豆耐熱品種的最高抗氧化活性溫度為35~40 ℃,熱敏品種為30 ℃[32]??寡趸傅幕钚砸惨虿煌魑?、不同品種的耐熱性、生長階段和生長季節(jié)的差異而有所不同[23]。Goyal等[33]研究發(fā)現(xiàn),GST、APX和CAT活性強的小麥品種表現(xiàn)出更強的耐熱性,由此推測小麥品種的耐熱性與其細(xì)胞抗氧化能力有關(guān)。
AsA、GSH和α-生育酚是在活性氧解毒中起關(guān)鍵作用的主要非酶抗氧化劑[10]。AsA幾乎分布在植物的所有部位,在線粒體中合成,然后運輸?shù)街参锏钠渌课弧PX以AsA為底物,在抗壞血酸-谷胱甘肽循環(huán)中將H2O2還原為H2O,生成單脫氫抗壞血酸(MDHA),MDHA進一步與AsA和脫氫抗壞血酸(DHA)解離(圖1)。
α-生育酚主要存在于葉綠體中,尤其是在類囊體膜和質(zhì)體小球中,可以使光合作用衍生的活性氧(主要是單線態(tài)氧和羥基)失活,并與其他抗氧化劑一起清除脂質(zhì)過氧自由基。它作為親脂性抗氧化劑,與多元不飽和脂?;嗷プ饔?,從而穩(wěn)定膜脂結(jié)構(gòu)[28],還可作為調(diào)節(jié)信號轉(zhuǎn)導(dǎo)的物質(zhì)。α-生育酚的數(shù)量隨著環(huán)境限制、脅迫強度和物種敏感性的變化而變化。α-生育酚的變化源于與其生物合成途徑相關(guān)的基因表達的改變[34]。Kanwischer等[35]發(fā)現(xiàn),在缺少α-生育酚的情況下,存在一個為細(xì)胞光合系統(tǒng)提供充分保護的補償機制,這也進一步證明α-生育酚不是一種單一的抗氧化劑[36]。
GSH是一種非蛋白硫醇,在H2O2解毒中起著關(guān)鍵作用。據(jù)報道,在H2O2解毒過程中,GSH轉(zhuǎn)變?yōu)槠溲趸问紾SSG的轉(zhuǎn)化率是細(xì)胞氧化還原平衡的指標(biāo)[33]。GSH和AsA被認(rèn)為是植物氧化還原信號的重要組成部分[37]。
3熱激蛋白在植物耐熱性中的作用
熱脅迫能夠觸發(fā)防御基因的表達,而這些基因在正常條件下是不表達的[38]。所有的逆境脅迫都會誘導(dǎo)細(xì)胞中相關(guān)脅迫響應(yīng)基因的表達和蛋白質(zhì)的合成[38-39]。然而,在脅迫發(fā)生后到細(xì)胞開始恢復(fù)之前,脅迫響應(yīng)因子會立即阻斷重要的代謝過程,包括DNA復(fù)制、轉(zhuǎn)錄、mRNA輸出和翻譯[40]。
熱激蛋白根據(jù)分子量分為5個家族:Hsp100、Hsp90、Hsp70、Hsp60和小分子量Hsps(sHsps)。Hsps能夠在一定程度上解決蛋白質(zhì)錯誤折疊和聚集等問題,同時也起到伴侶蛋白的作用。Hsps的多樣性和豐富性反映了植物對熱脅迫的適應(yīng)性。一般來說,植物的sHsps多樣性最高。這些sHsps基因的表達受限于植物的某些發(fā)育階段,如種子萌發(fā)、胚胎發(fā)生、胚胎發(fā)育或果實成熟等[41]。
Hsps基因的轉(zhuǎn)錄主要由胞質(zhì)內(nèi)處于非活性狀態(tài)的調(diào)節(jié)蛋白質(zhì)——熱激轉(zhuǎn)錄因子(Hsfs)控制。每個Hsfs具有1個羧基末端(C末端)和3個氨基末端(N末端),并含有亮氨酸[42]。每個Hsfs都有調(diào)節(jié)作用,并且在觸發(fā)、維持和恢復(fù)等熱脅迫響應(yīng)的所有階段都相互合作。因此,這些因子被認(rèn)為是熱脅迫響應(yīng)的轉(zhuǎn)錄激活因子[43-44]。在番茄中,HsfA1a是主要的轉(zhuǎn)錄調(diào)節(jié)因子,負(fù)責(zé)誘導(dǎo)基因表達,包括合成HsfA2(圖2)[45]。這些調(diào)節(jié)因子根據(jù)其聚集成三聯(lián)體的結(jié)構(gòu)差異被分為3類:HsfA、HsfB和HsfC,所有這些Hsfs對植物耐熱性的獲得都很重要[44]。對擬南芥的研究發(fā)現(xiàn),HsfAs是熱誘導(dǎo)熱激基因活化的主要因素[46]。HsfBs雖然具有正常的DNA結(jié)合功能,但缺乏熱誘導(dǎo)的轉(zhuǎn)錄激活功能,與HsfAs共同轉(zhuǎn)錄激活。盡管對Hsfs進行了廣泛的研究,但尚未發(fā)現(xiàn)Hsfs在熱信號轉(zhuǎn)導(dǎo)中的直接上游因子。無論是對Hsfs本身還是其他新的轉(zhuǎn)錄因子都有待進一步研究。
任何蛋白質(zhì)的功能都是由其構(gòu)型和折疊成的三維結(jié)構(gòu)決定的[47]。Hsps的一般作用是作為分子伴侶,調(diào)控蛋白質(zhì)的折疊、積累、定位和降解[39,44,48-50]。Timperio等[51]明確指出,在熱脅迫條件下,Hsps作為分子伴侶可以維持正確的蛋白質(zhì)結(jié)構(gòu),以保護蛋白質(zhì)免受損害。這些蛋白質(zhì)作為伴侶蛋白,在熱脅迫過程中阻止其他蛋白質(zhì)的不可逆聚集,并參與蛋白質(zhì)的再折疊[47,52]。來源于擬南芥的Hsp101,在水稻植株中過表達可顯著改善熱脅迫恢復(fù)過程中的生長性能[53]。有研究結(jié)果表明,發(fā)育中的小麥籽粒含有Hsp100,熱脅迫下耐熱品種的Hsp100含量更高[54]。Hsp70在熱脅迫下的積累量與開放的PSⅡ反應(yīng)中心捕獲激發(fā)能的效率呈線性正相關(guān),并通過提高電子傳遞鏈的速率增加對高溫的耐受性[55]。
sHsps是一組15 000~30 000的同源蛋白質(zhì)[5,56]。在脅迫條件下,sHsps占細(xì)胞中蛋白質(zhì)的1%。植物sHsps分為6類,3類定位于細(xì)胞質(zhì)或細(xì)胞核,另外3類定位于質(zhì)粒、內(nèi)質(zhì)網(wǎng)和線粒體[57]。Hsps在耐熱性中的意義主要表現(xiàn)在其與細(xì)胞代謝活性的相關(guān)性上[58-59]。已有的研究結(jié)果表明,位于線粒體和葉綠體中的sHsps可以保護線粒體中的呼吸電子傳遞和葉綠體中的PSII電子傳遞[60]。在藜的研究結(jié)果中發(fā)現(xiàn),大小為22 000的葉綠體sHsp定位于類囊體腔內(nèi),與PSII中不耐熱的放氧復(fù)合體特異性互作,保護其免受熱脅迫損傷[41,61]。sHsps在體外和體內(nèi)均可作為分子伴侶。一個大小為18 000的sHsp被證明可以阻止蛋白質(zhì)聚集,并通過其他伴侶保持其活躍的再折疊形式[41]。谷物中的淀粉合成是在淀粉體中進行的,根據(jù)已報道的sHsps在質(zhì)粒中的定位,Hsp18在為小麥籽粒生長提供耐熱性方面的作用可能是通過保護可溶性淀粉合成酶來實現(xiàn)的,這種酶對高溫極為敏感[62]。
4各類保護劑在植物耐熱性中的作用
近幾十年來,滲透保護劑、植物激素、信號分子、微量元素等的外源應(yīng)用對高溫脅迫下植物生長產(chǎn)生有益的影響,這些保護劑通常具有促進生長和抗氧化能力[63]。脯氨酸、甘氨酸、甜菜堿和海藻糖等滲透物質(zhì)的積累是植物抵抗包括熱在內(nèi)的非生物脅迫的一種眾所周知的適應(yīng)性機制。由于熱敏性植物明顯缺乏積累這些物質(zhì)的能力,外源應(yīng)用滲透保護劑可以提高其耐熱性[64-65]。應(yīng)用脯氨酸或甘氨酸甜菜堿可顯著減少H2O2的產(chǎn)生,改善可溶性糖的積累,并保護發(fā)育中的組織免受熱應(yīng)激的影響,而脯氨酸通常比甜菜堿更有效。外源性脯氨酸和甘氨酸甜菜堿還能提高K+和Ca2+含量,增加內(nèi)源性脯氨酸或甘氨酸甜菜堿和可溶性糖的含量,提高植物對熱脅迫的耐受性[65]。細(xì)胞質(zhì)中的Ca2+與植物對溫度脅迫的耐受性有關(guān),溫和的熱脅迫處理可使熱脅迫后細(xì)胞內(nèi)Ca2+濃度升高,促進擬南芥耐熱性的獲得[6],10 mmol/L CaCl2處理能提高濱梅幼苗對高溫的耐受性[66]。
植物激素在減輕植物熱脅迫方面也是有效的。經(jīng)脫落酸預(yù)處理,玉米、擬南芥的耐熱性都有所提高[67-68]。在致死熱處理前,經(jīng)水楊酸、氨基環(huán)烷羧酸(植物激素乙烯的前體)和脫落酸預(yù)處理的擬南芥幼苗存活率分別比對照提高了約5倍、3倍和2倍,并且減少了熱脅迫誘導(dǎo)的氧化損傷[68]。
另外,一些主要的脅迫響應(yīng)機制包括離子轉(zhuǎn)運體、胚胎晚期豐富蛋白、抗氧化防御以及信號轉(zhuǎn)導(dǎo)級聯(lián)和轉(zhuǎn)錄控制相關(guān)的因子,有助于保護和修復(fù)受損的蛋白質(zhì)和生物膜,重新建立穩(wěn)態(tài),在抵消脅迫效應(yīng)方面具有重要意義[4,69-70]。
5展望
植物在熱脅迫下的耐熱性反應(yīng)是通過一系列信號途徑完成的,復(fù)雜而有序,這些信號機制中包括離子運輸者、滲透保護劑、自由基清除劑、信號級聯(lián)反應(yīng)和轉(zhuǎn)錄控制中的一系列蛋白質(zhì)和元素,這些物質(zhì)的協(xié)同運作對抵制脅迫效應(yīng)都是必需的。在植物耐熱信號傳導(dǎo)過程中,轉(zhuǎn)錄因子是一個關(guān)鍵因素,在脅迫反應(yīng)中它們不斷合成并將信號傳遞和放大,調(diào)控下游基因的表達,從而引起植物的一系列抗逆反應(yīng)。在植物中有20多種Hsfs,番茄HsfA1a和擬南芥HsfA2是誘導(dǎo)產(chǎn)生耐熱性的主要轉(zhuǎn)錄因子[71]。轉(zhuǎn)錄因子MBF1c在擬南芥耐熱過程中是必需的,它可以通過控制熱激反應(yīng)中36種不同轉(zhuǎn)錄本的表達來介導(dǎo)植物對高溫的耐性。細(xì)胞質(zhì)抗壞血酸過氧化物酶1(APX1)和鋅指蛋白(Zats)在植物耐熱反應(yīng)ROS信號傳導(dǎo)中發(fā)揮著必不可少的作用[72-73]。DREB2A/DREB2C通過激活HsfA3來正調(diào)控植物的耐熱性[74-75]。此外,MYB類、bZIP類、NAC類和AP2/EREBP類轉(zhuǎn)錄因子在植物防衛(wèi)反應(yīng)和逆境脅迫應(yīng)答過程中具有重要功能[76]。在后續(xù)的研究中,還可能發(fā)現(xiàn)更多的信號機制參與植物的耐熱性反應(yīng),有助于對植物耐熱機理的進一步理解。
熱脅迫對植物生長發(fā)育的影響很大,是世界范圍內(nèi)影響作物生產(chǎn)的一個主要問題。對于各類重要作物,需要更好地了解其熱脅迫響應(yīng)及耐熱性機制機理。植物對熱脅迫的響應(yīng)在不同物種、不同發(fā)育階段之間也有所不同。在熱脅迫條件下,植物積累不同的代謝產(chǎn)物(如抗氧化劑、滲透保護劑、熱激蛋白等),并激活不同的代謝途徑和過程,這些復(fù)雜的變化體現(xiàn)了研究熱脅迫響應(yīng)的生理和分子機制對于了解植物耐熱機理的重要性。全面了解熱激信號和熱脅迫響應(yīng)表達相關(guān)基因,對培育耐熱植物具有重要意義。
總體看來,植物耐熱性的具體機理仍不完全清楚,需要繼續(xù)進行相關(guān)研究,并且應(yīng)該在不干擾植物其他重要代謝過程的前提下,通過改變傳感、信號或調(diào)控等途徑提高其耐熱性。今后,植物代謝工程可能是開展作物耐熱性研究的另一種途徑。
參考文獻:
[1]EITZINGER J, ORLANDINI S, STEFANSKI R, et al. Climate change and agriculture: introductory editorial[J]. The Journal of Agricultural Science, 2010, 148(5): 499-500.
[2]BOKSZCZANIN K L, FRAGKOSTEFANAKIS S, BOSTAN H, et al. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance[J]. Frontiers in Plant Science, 2013, 4: 315.
[3]BOHNERT H J, GONG Q Q, LI P H, et al. Unraveling abiotic stress tolerance mechanisms-getting genomics going [J]. Current Opinion in Plant Biology, 2006, 9(2): 180-188.
[4]WANG W, VINOCUR B, SHOSEYOV O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response [J]. Trends in Plant Science, 2004, 9(5): 244-252.
[5]HEMANTARANJAN A, NISHANT BHANU A, SINGH M N, et al. Heat stress responses and thermotolerance [J]. Advances in Plants & Agriculture Research, 2014, 1(3): 1-10.
[6]LARKINDALE J, KNIGHT M R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid [J]. Plant Physiology, 2002, 128(2): 682-695.
[7]SUZUKI N, MITTLER R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction [J]. Plant Physiology, 2006, 126(1): 45-51.
[8]CHAKRABORTY U, PRADHAN D. High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments [J]. Journal of Plant Interaction, 2011, 6(1): 43-52.
[9]XU S, LI J, ZHANG X, et al. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress[J]. Environmental and Experimental Botany, 2006, 56(3): 274-285.
[10]HAMEED A, GOHER M, IQBAL N. Heat stress-induced cell death, changes in antioxidants, lipid peroxidation, and protease activity in wheat leaves[J]. Journal of Plant Growth Regulation, 2012, 31(3): 283-291.
[11]SENTHIL-KUMAR M, KUMAR G, SRIKANTHBABU V, et al. Assessment of variability in acquired thermotolerance: potential option to study genotypic response and the relevance of stress genes[J]. Journal of Plant Physiology, 2007, 164(2): 111-125.
[12] MAESTRI E, KLUEVA N, PERROTTA C, et al. Molecular genetics of heat tolerance and heat shock proteins in cereals[J]. Plant Molecular Biology, 2002, 48(5/6): 667-681.
[13]GARG N, MANCHANDA G. ROS generation in plants: boon or bane? [J]. Plant Biosystem, 2009, 143(1): 81-96.
[14]WAGNER D, PRZYBYLA D, OP DEN CAMP R, et al. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana[J]. Science, 2004, 306(5699): 1183-1185.
[15]MONTILLET J L, CHAMNONGPOL S, RUSTERUCCI C, et al. Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves [J]. Plant Physiology, 2005, 138(3): 1516-1526.
[16]PASTORE A, MARTIN S R, POLITOU A, et al. Unbiased cold denaturation: low- and high-temperature unfolding of yeast frataxin under physiological conditions [J]. Journal of the American Chemical Society, 2007, 129(17): 5374-5375.
[17]YAMADA K, FUKAO Y, HAYASHI M, et al. Cytosolic HSP90 regulated the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana [J]. Journal of Biological Chemistry, 2007, 282(52): 37794-37804.
[18]VON KOSKULL-DORING P, SCHARF K D, NOVER L. The diversity of plant heat stress transcription factors [J]. Trends in Plant Science, 2007, 12(10): 452-457.
[19]GUPTA N K, AGARWAL S, AGARWAL V P, et al. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings[J]. Acta Physiologiae Plantarum, 2013, 35(6): 1837-1842.
[20] SAIRAM R K, DESHMUKH P S, SAXENA D C. Role of antioxidant systems in wheat genotypes tolerance to water stress[J]. Biologia Plantarum, 1998, 41(3): 387-394.
[21] SAIRAM R K, SRIVASTAVA G C, SAXENA D C. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes[J]. Biologia Plantarum, 2000, 43(2): 245-251.
[22] MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410.
[23] ALMESELMANI M, DESHMUKH P S, SAIRAM R K, et al. Protective role of antioxidant enzymes under high temperature stress[J]. Plant Science, 2006, 171(3): 382-388.
[24] VAN BREUSEGEM F, VRANOV E, DAT J F, et al. The role of active oxygen species in plant signal transduction[J]. Plant Science, 2001, 161(3): 405-414.
[25]ESFANDIARI E, SHEKARI F, ESFANDIAR M. The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedlings [J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2007, 35(1): 48-56.
[26]WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants: an overview[J]. Environmental and Experimental Botany, 2007, 61(3): 199-223.
[27] NOCTOR G, FOYER C H. Ascorbate and glutathione: keeping active oxygen under control[J]. Annual Review of Plant Biology, 1998, 49(1): 249-279.
[28] TRIPATHY B C, OELMLLER R. Reactive oxygen species generation and signaling in plants[J]. Plant Signaling & Behavior, 2012, 7(12): 1621-1633.
[29]DIXON D P, COLE D J, EDWARD R. Cloning and characterization of plant theta and zeta class GSTs: implication for plant GST classification [J]. Chemico-biological Interactions, 2001, 133: 33-36.
[30]DIXON D P, CUMMINIS I, COLE D J, et al. Glutathione mediated detoxification system in plants [J]. Current Opinion in Plant Biology, 1998, 1(3): 258-266.
[31] ROXAS V P, LODHI S A, GARRETT D K, et al. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase[J]. Plant and Cell Physiology, 2000, 41(11): 1229-1234.
[32]KAUSHAL N, GUPTA K, BHANDHARI K, et al. Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism [J]. Physiology and Molecular Biology of Plants, 2011, 17(3): 203-213.
[33]GOYAL M, ASTHIR B. Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress[J]. Plant Growth Regulation, 2010, 60(1): 13-25.
[34]SANDORF I, HOLLANDER-CZYTKO H. Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana [J]. Planta, 2002, 216(1): 173-179.
[35]KANWISCHER M, PORFIROVA S, BERGMULLER E, et al. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress [J]. Plant Physiology, 2005, 137(2): 713-723.
[36]MUNN-BOSCH S. The role of α-tocopherol in plant stress tolerance[J]. Journal of Plant Physiology, 2005, 162(7): 743-748.
[37]SUZUKI N, KOUSSEVITZKY S, MITTLER R, et al. ROS and redox signalling in the response of plants to abiotic stress [J]. Plant, Cell and Environment, 2012, 35(2): 259-270.
[38]MORIMOTO R I. Cells in stress: transcriptional activation of heat shock genes [J]. Science, 1993, 259(5100): 1409-1410.
[39]GUPTA S C, SHARMA A, MISHRA M, et al. Heat shock proteins in toxicology: how close and how far?[J]. Life Sciences, 2010, 86(11/12): 377-384.
[40]BIAMONTI G, CACERES J F. Cellular stress and RNA splicing [J]. Trends in Biochemical Sciences, 2009, 34(3):146-153.
[41] SUN W, VAN MONTAGU M, VERBRUGGEN N. Small heat shock proteins and stress tolerance in plants[J]. Biochimica et Biophysica Acta, 2002, 1577(1): 1-9.
[42]SCHUETZ T J, GALLO G J, SHELDON L, et al. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans [J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88: 6911-6915.
[43]BANIWAL S K, BHARTI K, CHAN K Y, et al. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors [J]. Journal of Biosciences, 2004,29(4): 471-487.
[44]HU W, HU G, HAN B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice[J]. Plant Science, 2009, 176(4): 583-590.
[45]QU A L, DING Y F, JIANG Q, et al. Molecular mechanisms of the plant heat stress response[J]. Biochemical and Biophysical Research Communications, 2013, 432(2): 203-207.
[46] ?CZARNECKA-VERNER E, YUAN C X, SCHARF K D, et al. Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential[J]. Plant Molecular Biology, 2000, 43(4): 459-471.
[47]LEVITT M, GERSTEIN M, HUANG E, et al. Protein folding: the endgame[J]. Annual Review of Biochemistry, 1997, 66(1): 549-579.
[48]FEDER M E, HOFMANN G E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology[J]. Annual Review of Physiology, 1999, 61(1): 243-282.
[49] SCHULZE-LEFERT P. Plant immunity: the origami of receptor activation[J]. Current Biology, 2004, 14(1): 22-24.
[50]PANARETOU B, ZHAI C. The heat shock proteins: their roles as multi-component machines for protein folding[J]. Fungal Biology Reviews, 2008, 22(3/4): 110-119.
[51]TIMPERIO A M, EGID M G, ZOLLA L. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP) [J]. Journal of Proteomics, 2008, 71: 391-411.
[52]TRIPP J, MISHRA S K, SCHARF K D. Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts[J]. Plant, Cell & Environment, 2009, 32(2): 123-133.
[53]LIU H C, LIAO H Y, CHARNG Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis [J]. Plant, Cell & Environment, 2011, 34(5): 738-751.
[54]SUMESH K V, SHARMA-NATU P, GHILDIYAL M C. Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains [J]. Biologia Plantarum, 2008, 52(4): 749-753.
[55]SULEMAN P, REDHA A, AFZAL M, et al. Temperature-induced changes of malondialdehyde, heat-shock proteins in relation to chlorophyll fluorescence and photosynthesis in Conocarpus lancifolius (Engl.) [J]. Acta Physiologiae Plantarum, 2013, 35(4): 1223-1231.
[56]DEROCHER A E, VIERLING E. Developmental control of small heat shock protein expression during pea seed maturation [J]. Plant Journal, 1994, 5(1): 93-102.
[57]AGARWAL M, SARKAR N, GROVER A. Low molecular weight heat shock proteins in plants [J]. Journal of Plant Biology, 2003, 30: 141-149.
[58]VIERLING E. The roles of heat shock proteins in plants[J]. Annual Review of Plant Biology, 1991, 42(1): 579-620.
[59]MORROW G, TANGUAY R M. Small heat shock protein expression and functions during development [J]. The International Journal of Biochemistry & Cell Biology, 2012, 44(10): 1613-1621.
[60]SHARMA-NATU P, SUMESH K V, GHILDIYAL M C. Heat shock protein in developing grains in relation to thermotolerance for grain growth in wheat [J]. Journal of Agronomy and Crop Science, 2010, 196: 76-80.
[61]HECKATHORN S A, DOWNS C A, SHARKEY T D, et al. The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress[J]. Plant Physiology, 1998, 116: 439-444.
[62]PREISS J, SIVAK M N. Starch synthesis in sinks and sources [M]. New York: Marcel Dekker Inc, 1996:63-96.
[63]HASANUZZAMAN M, HOSSAIN M A, FUJITA M. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings [J]. Plant Biotechnology Reports, 2011, 5(4): 353-365.
[64]SAKAMOTO A, MURATA N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants [J]. Plant Cell and Environment, 2002, 25(2): 163-171.
[65]RASHEED R, WAHID A, FAROOQ M, et al. Role of proline and glycine betaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds [J]. Plant Growth Regulation, 2011, 65(1): 35-45.
[66]宰學(xué)明,夏連全,閆道良,等. 外源Ca2+對高溫強光脅迫下濱梅幼苗的保護效應(yīng)[J]. 西北植物學(xué)報, 2011, 31(3): 558-563.
[67]GONG M, LI Y J, CHEN S Z. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems[J]. Journal of Plant Physiology, 1998, 153(3/4): 488-496.
[68]LARKINDALE J, KNIGHT M R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid[J]. Plant Physiology, 2002, 128(2): 682-695.
[69]RODRIGUEZ M, CANALES E, BORRAS-HIDALGO O. Molecular aspects of abiotic stress in plants [J]. Biotecnologia Aplicada, 2005, 22(1): 1-10.
[70]VINOCUR B, ALTMAN A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations [J]. Current Opinion in Biotechnology, 2005, 16(2): 123-132.
[71]VON KOSKULL-DRING P, SCHARF K D, NOVER L. The diversity of plant heat stress transcription factors[J]. Trends in Plant Science, 2007, 12(10): 452-457.
[72]MILLER G, SUZUKI N, RIZHSKY L, et al. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses[J]. Plant Physiology, 2007, 144: 1777-1785.
[73]MILLER G, SHULAEV V, MITTLER R. Reactive oxygen signaling and abiotic stress [J]. Physiologia Plantarum, 2008, 133: 481-489.
[74]YOSHIDA T, SAKUMA Y, TODAKA D, et al. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system [J]. Biochemical and Biophysical Research Communications, 2008, 368: 515-521.
[75]CHEN H, HWANG J E, LIM C J, et al. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response[J]. Biochemical and Biophysical Research Communications, 2010, 401(2): 238-244.
[76]李緒友,鄭進,李萬德.與植物抗逆性有關(guān)的轉(zhuǎn)錄因子研究概況[J].中國西部科技, 2006(36): 62.
(責(zé)任編輯:王妮)