劉芬 屈成 王悅 陳光輝
摘要:【目的】研究抽穗期干旱復(fù)水對(duì)機(jī)插水稻品種抗氧化酶活性及根系活力的影響,探討不同水稻品種間抗旱性的差異,以期為抗旱品種篩選及水稻高產(chǎn)機(jī)制研究提供理論參考?!痉椒ā恳阅戏降緟^(qū)常用的11份水稻品種為試驗(yàn)材料,抽穗期采用開溝放水、自然落干方式進(jìn)行干旱處理,待土壤水含量降至土壤飽和水含量的50%~60%時(shí)開溝灌入2~3 cm水層進(jìn)行復(fù)水處理,復(fù)水后3 d取樣測(cè)定葉片的葉綠素含量、抗氧化酶活性、丙二醛(MDA)含量及根系活力等指標(biāo),對(duì)比品種間的生理特性差異并進(jìn)行相關(guān)性分析和聚類分析?!窘Y(jié)果】不同品種抽穗期葉片的葉綠素含量存在差異,主要以葉綠素a的差異最明顯,其中兩優(yōu)早17的葉綠素a含量(4.59 mg/g)最高,其次為中佳糯(4.30 mg/g)。中佳早18和湘早秈32號(hào)的超氧化歧化酶(SOD)和過氧化物酶(POD)活性較強(qiáng),但其MDA含量也較高,可能受環(huán)境脅迫的影響較大。抽穗期干旱后復(fù)水條件下11份水稻品種根系活力排序?yàn)閮蓛?yōu)早17>24d61>陸兩優(yōu)996>中佳糯>湘早秈32號(hào)>珍桂矮1號(hào)>24d44>湘早秈24號(hào)>中佳早18>株兩優(yōu)819>中早39。葉片各生理指標(biāo)的相關(guān)性分析結(jié)果表明,根系活力與葉片總?cè)~綠素含量呈顯著正相關(guān)(P<0.05),與抗氧化酶活性呈負(fù)相關(guān)。聚類分析結(jié)果表明,11份水稻品種可分為三大類,第Ⅰ類為干旱敏感型,分別為24d44、株兩優(yōu)819、中早39、湘早秈24號(hào)、24d61和湘早秈32號(hào),該類型的根系活力和葉綠素含量較低;第Ⅱ類為中度抗旱型,包含珍桂矮1號(hào)、陸兩優(yōu)996和中佳早18,該類型總?cè)~綠素含量較低但根系活力較強(qiáng);第Ⅲ類為抗旱基因型,包括中佳糯和兩優(yōu)早17,該類型具有較高的光合色素含量和根系活力。【結(jié)論】根系活力和葉綠素含量是抗旱品種篩選的重要指標(biāo),其中兩優(yōu)早17和中佳糯是抗旱基因型品種,適合在我國(guó)南方丘陵缺水地區(qū)推廣種植。
關(guān)鍵詞: 水稻;干旱復(fù)水;抗氧化酶活性;抽穗期;聚類分析
中圖分類號(hào): S511.01? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)01-0065-07
Abstract:【Objective】To study the effects of drought rewatering at heading stage on antioxidant enzyme activities and root activity of rice varieties, and to explore the physiological mechanisms of the differences in drought resistance among different rice varieties, with a view to providing theoretical references for the selection of drought-resistant varieties and the study of high-yield rice. 【Method】Eleven rice varieties commonly used in southern rice areas were used as test materials. Trenching was used to release water at the heading stage, and it was naturally dried for drought treatment. When the soil water content reached 50%-60% of the saturated water content, the ditch was filled with 2-3 cm water after rehydration treatment, samples were taken 3 d after to determine chlorophyll content, antioxidant enzyme activity, malondialdehyde(MDA) content and root vitality. The differences in physiological characteristics among varieties were compared, and correlation analysis and clustering were performed. 【Result】The chlorophyll content of leaves of different varieties at heading stage was different, and the difference of chlorophyll a was the most obvious. The chlorophyll a content? of the variety Liangyouzao 17(4.59 mg/g) was the highest, followed by Zhongjianuo(4.30 mg/g). The cultivars Zhongjiazao 18 and Xiangzaoxian No.32 had strong activities of superoxide dismutase(SOD) and peroxidase(POD), but their MDA content was also high, which may be affected by environmental stress. The order of root activity of 11 rice cultivars under drought rewatering at the heading stage was Liangyouzao 17>24d61>Luliangyou 996>Zhongjianuo>Xiangzaoxian No.32>Zhenguiai No.1>24d44>Xiangzaoxian No.24>Zhongjiazao 18>Zhuliangyou 819>zhongzao 39. Correlation analysis results of various physiological indexes of leaves showed that root vigor was significantly positively correlated with total chlorophyll content of leaves(P<0.05), and negatively correlated with antioxidant enzyme activity. The results of cluster analysis showed that the 11 rice varieties could be divided into three major categories. The first type was drought-sensitive and included six varieties with low root vigor and chlorophyll content, which were 24d44, Zhuliangyou 819, Zhongzao 39, Xiangzaoxian No.24, 24d61 and Xiangzaoxian No.32, respectively. Type II was moderate drought resistance type including Zhenguiai No.1, Luliangyou 996 and Zhongjiazao 18. Type III was drought resistance type including Zhongjia-nuo and Liangyouzao 17, which had high photosynthetic pigment content and root vigor. 【Conclusion】Root vigor and chlorophyll content are important indicators for selection of drought-resistant varieties. Liangyouzao 17 and Zhongjianuo are drought-resistant genotypes, which are suitable for promotion in the hilly and water-scarce areas of southern China.
Key words: rice; rewatering after drought; antioxidant enzyme activity; heading stage; cluster analysis
Foundation item:National Key Research and Development Project of China(2018YFD0301005); Hunan Natural Science Foundation(2017JJ3113);? Hunan Education Department Excellent Youth Project (16B127)
0 引言
【研究意義】隨著全球氣候變化,水資源短缺加劇,干旱脅迫已成為制約水稻產(chǎn)量提高的重要因素之一(付堅(jiān)等,2013)。干旱脅迫可打破水稻葉片活性氧的平衡,使植株體內(nèi)產(chǎn)生大量活性氧,降低細(xì)胞膜的穩(wěn)定性并加劇膜脂的過氧化,并可引起氣孔關(guān)閉,減少蒸騰作用,降低葉綠素含量和光合速率,最終影響水稻產(chǎn)量(戴高興,2004;劉照等,2011)。抽穗開花期是水稻對(duì)干旱最敏感的時(shí)期,此時(shí)遭遇干旱將會(huì)降低結(jié)實(shí)率和千粒重,進(jìn)而降低水稻產(chǎn)量(Matsui et al.,2001;Belder et al.,2004)。研究表明,干旱結(jié)束后復(fù)水可影響植株的抗氧化酶活性和丙二醛(MDA)含量,使植株生長(zhǎng)產(chǎn)生補(bǔ)償效應(yīng),但不同品種間的反應(yīng)及恢復(fù)速度存在差異(蔡昆爭(zhēng)等,2008;郭貴華等,2014;劉晶等,2017)。因此,研究水稻葉片抽穗期遭遇干旱后復(fù)水的生理響應(yīng)機(jī)理,對(duì)培育和篩選抗旱水稻品種具有重要意義?!厩叭搜芯窟M(jìn)展】目前生產(chǎn)上所用的水稻品種耐旱性差異較大。陳小榮等(2013)研究表明,干旱處理后水稻劍葉可溶性糖、游離脯氨酸、MDA含量和抗氧化酶活性均顯著高于對(duì)照,但復(fù)水后均下降。蔡昆爭(zhēng)等(2008)研究發(fā)現(xiàn),干旱脅迫后水稻葉綠素含量下降,根系活力增強(qiáng),復(fù)水后葉綠素含量和根系活力仍受到一定影響。陳亮等(2016)通過研究水稻孕穗期干旱處理復(fù)水后的生理特性,發(fā)現(xiàn)抗旱性強(qiáng)的水稻品種抗氧化酶活性能恢復(fù)至正常水平,但抗旱性弱的品種其抗氧化酶活性無(wú)法恢復(fù),且干旱處理會(huì)導(dǎo)致產(chǎn)量降低。謝華英等(2016)研究認(rèn)為,抽穗期干旱脅迫會(huì)對(duì)雜交稻岡優(yōu)725的每穗粒數(shù)、千粒重和產(chǎn)量造成影響,隨著脅迫時(shí)間延長(zhǎng)和程度加重,水稻產(chǎn)量下降更明顯。于美芳等(2017)研究發(fā)現(xiàn),分蘗期遭遇干旱脅迫會(huì)降低水稻葉片光合效率,有效分蘗數(shù)和穗粒數(shù)也顯著下降。楊安中等(2017)研究表明,孕穗期干旱脅迫會(huì)降低水稻葉片的MDA含量和過氧化物酶活性,減少其有效穗數(shù)和每穗實(shí)粒數(shù)?!颈狙芯壳腥朦c(diǎn)】關(guān)于干旱脅迫對(duì)水稻生理影響的研究甚多,但主要集中在分蘗期和孕穗期干旱對(duì)水稻葉片細(xì)胞的傷害及產(chǎn)量的影響,尚未見有關(guān)抽穗期干旱復(fù)水對(duì)水稻抗氧化酶活性及根系活力影響的研究。【擬解決的關(guān)鍵問題】以南方稻區(qū)常用的11份水稻品種為試驗(yàn)材料,在抽穗期采用開溝放水、自然落干方式進(jìn)行干旱處理,待土壤水含量降至土壤飽和水含量的50%~60%時(shí),開溝灌入2~3 cm水層進(jìn)行復(fù)水處理,復(fù)水后3 d取樣測(cè)定水稻葉片的葉綠素含量、抗氧化酶活性、MDA含量及根系活力,探討不同水稻品種抗旱性差異的生理機(jī)制,以期為抗旱品種篩選及水稻高產(chǎn)機(jī)制研究提供理論參考。
1 材料與方法
1. 1 試驗(yàn)材料
試驗(yàn)選取的11份水稻材料均為南方稻區(qū)大面積推廣的品種,其詳細(xì)信息見表1。
1. 2 試驗(yàn)方法
試驗(yàn)在湖南省瀏陽(yáng)市沿溪鎮(zhèn)花園村河?xùn)|農(nóng)場(chǎng)進(jìn)行,基地大田由水泥田埂隔成若干小區(qū),能有效控制田間水分排放。供試土壤養(yǎng)分狀況:堿解氮、有效磷和速效鉀含量分別為46.29、12.79和150.14 mg/kg,pH 5.7。于2017年3月23日播種,濕潤(rùn)育秧,4月15日機(jī)插,所有品種同一天插完,機(jī)插株行距25 cm×14 cm,缺蔸率超過5%適當(dāng)補(bǔ)蔸。試驗(yàn)所有磷肥做基肥一次性施入,氮肥、鉀肥分別做基肥和蘗肥,按3∶2比例施入,其中,氮肥按照施純N 120 kg/ha、磷肥按照施P2O5 60 kg/ha、鉀肥按照施K2O 96 kg/ha施用。在6月27日50%的水稻開始抽穗時(shí)進(jìn)行干旱處理,開溝放水、自然落干。用手持式ProCheck多功能土壤水分監(jiān)測(cè)儀(美國(guó)Decagon Devices公司)進(jìn)行追蹤測(cè)定,7月4日待土壤水含量降至土壤飽和水含量的50%~60%時(shí),開溝灌入2~3 cm水層進(jìn)行復(fù)水處理,此時(shí)水稻正處于灌漿期。復(fù)水處理后3 d每處理取水稻劍葉3 g,重復(fù)4次,液氮速凍后放入-80 ℃冰箱保存?zhèn)溆茫郎y(cè)定各項(xiàng)生理生化指標(biāo)。其他田間管理均按照當(dāng)?shù)卮胧?shí)施。
1. 3 測(cè)定項(xiàng)目及方法
在抽穗期干旱復(fù)水后選取無(wú)病蟲害的劍葉和根系,分別測(cè)定葉綠素含量、抗氧化酶活性、MDA含量和根系活力等生理生化指標(biāo),每項(xiàng)指標(biāo)測(cè)定4次重復(fù)。葉片葉綠素含量采用乙醇提取法測(cè)定(明華等,2007);超氧化物歧化酶(SOD)活性采用氮藍(lán)四唑(NBT)光還原法測(cè)定(王成章等,2007);過氧化物酶(POD)活性采用愈創(chuàng)木酚比色法測(cè)定(黃智等,2010);MDA含量采用硫代巴比妥酸(TCA-TBA)顯色法測(cè)定(Xiong et al.,2013);根系活力采用α-萘胺法測(cè)定(Tang et al.,2005)。
1. 4 統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用Excel 2007進(jìn)行統(tǒng)計(jì)與制圖,并以DPS 7.05進(jìn)行方差分析,SPSS 12.0進(jìn)行聚類分析,采用Duncans新復(fù)極差法分析處理間的差異顯著性。
2 結(jié)果與分析
2. 1 抽穗期干旱復(fù)水對(duì)機(jī)插水稻光合色素的影響
葉綠素是植物光合作用中傳遞和捕獲能量最重要的色素,能反映植物光合速率的強(qiáng)弱、氮利用效率、生理脅迫和生長(zhǎng)發(fā)育狀況等(Tang et al.,2005)。由表2可知,不同機(jī)插水稻品種中,葉綠素a含量以A9品種最高,達(dá)4.59 mg/g,除與A1品種葉綠素a含量(4.30 mg/g)差異不顯著(P>0.05,下同)外,顯著高于其他品種(P<0.05,下同),其中較葉綠素a含量最低的A5品種(3.12 mg/g)高47.12%;葉綠素b含量在不同水稻品種間均差異不顯著;總?cè)~綠素含量以A1品種最高(7.27 mg/g),A5品種最低(4.76 mg/g),二者差異達(dá)顯著水平。類胡蘿卜素含量以A9品種最高(1.38 mg/g),A1品種次之(1.29 mg/g),A9品種類胡蘿卜素含量顯著高于除A1和A10外的其他品種。品種間葉綠素a/b無(wú)顯著差異,其中以A2、A4、A6和A8品種的葉綠素a/b值相對(duì)較小,可能是葉綠素a/b與品種抗旱性有關(guān)。由此可知,不同水稻品種在抽穗期干旱復(fù)水后的光合色素含量存在差異,且主要以葉綠素a的差異最明顯。
2. 2 抽穗期干旱復(fù)水對(duì)機(jī)插水稻SOD和POD活性的影響
SOD是植物體內(nèi)重要的抗氧化酶,能消除植物新陳代謝中產(chǎn)生的有毒物質(zhì),延緩葉片衰老(李樹杏等,2014)。由圖1可看出,11份機(jī)插水稻品種中,以A8品種的SOD活性最高,達(dá)688.37 μmol/gFW,顯著高于其他品種;其次是品種A5和A11,分別為648.48和608.92 μmol/gFW;SOD活性最低的為品種A10,僅219.61 μmol/gFW。
POD是以過氧化氫(H2O2)為催化底物的主要氧化酶之一,其活性與植物的生長(zhǎng)發(fā)育、呼吸作用和光合作用有關(guān)(Shah et al.,2001)。由圖2可看出,A5品種的POD活性最強(qiáng),達(dá)222.12 μmol/gFW;其次是品種A4和A8,分別為208.19和198.42 μmol/gFW;POD活性最低的是A10品種,僅70.68 μmol/gFW。
2. 3 抽穗期干旱復(fù)水對(duì)機(jī)插水稻MDA含量的影響
MDA是膜脂過氧化的最終產(chǎn)物,能反映植物細(xì)胞遭受逆境破壞的程度和品種的抗旱能力(梁麗娜等,2018)。由圖3可看出,A8品種的MDA含量最高,達(dá)12.89 μmol/gFW,顯著高于其他品種;其次是品種A7和A5,MDA含量分別為10.44和9.55 μmol/gFW;A4品種的MDA含量最低,僅5.28 μmol/gFW。
2. 4 抽穗期干旱復(fù)水對(duì)機(jī)插水稻根系活力的影響
根系活力可衡量根系的吸收、合成、氧化和還原能力(卞金龍等,2017)。由圖4可看出,抽穗期干旱后復(fù)水條件下11份機(jī)插水稻品種中根系活力排序?yàn)锳9>A2>A10>A1>A8>A3>A6>A4>A5>A11>A7。A9品種的根系活力最強(qiáng),達(dá)26.06 mg/g,除與A2品種差異不顯著外,顯著高于其他品種。A7品種的根系活力最弱,僅2.43 mg/g,顯著低于A1、A2、A3、A8、A9和A10品種。
2. 5 機(jī)插水稻葉片生理生化指標(biāo)的相關(guān)性分析結(jié)果
由表3可知,機(jī)插水稻葉片總?cè)~綠素含量與根系活力的相關(guān)系數(shù)為0.66,相關(guān)性達(dá)顯著水平,但與SOD和POD活性及MDA含量均呈負(fù)相關(guān),相關(guān)性不顯著;SOD活性與POD活性呈顯著正相關(guān);其他指標(biāo)間的相關(guān)性未達(dá)顯著水平。由此可見,葉片的總?cè)~綠素含量可反映植株地下部分的生長(zhǎng)情況,提高葉綠素含量可增強(qiáng)根系活力,促進(jìn)根系生長(zhǎng)。
2. 6 不同機(jī)插水稻品種的聚類分析結(jié)果
根據(jù)抽穗期干旱復(fù)水處理后水稻葉片的葉綠素含量、SOD活性、POD活性、MDA含量及根系活力結(jié)果,采用歐式距離離差平方和法對(duì)11份水稻品種的耐旱性進(jìn)行聚類分析,結(jié)果(圖5)表明,11份水稻品種可分為三大類。第Ⅰ類為干旱敏感型,分別為24d 44、株兩優(yōu)819、中早39、湘早秈24號(hào)、26d61和湘早秈32號(hào)共6個(gè)品種,占比54.55%,該類品種的根系活力和葉綠素含量較低;第Ⅱ類為中度抗旱型,包含珍桂矮1號(hào)、陸兩優(yōu)996和中佳早18共3個(gè)品種,占比27.27%,該類品種總?cè)~綠素含量較低但根系活力較強(qiáng);第Ⅲ類為抗旱基因型,包括中佳糯和兩優(yōu)早17,占比18.18%,該類品種具有較高的光合色素含量和根系活力。
3 討論
葉綠素是與光合作用緊密相關(guān)的、最重要的色素物質(zhì),可反映植物自身的光合強(qiáng)度和生長(zhǎng)發(fā)育(Golldack et al.,2011)。本研究結(jié)果表明,不同水稻品種抽穗期葉綠素含量差異明顯,主要是以葉綠素a的影響較明顯,且雜交稻品種的葉綠素含量相對(duì)高于常規(guī)稻品種,與王英(2007)研究的雜交稻品種的葉綠素含量高于常規(guī)稻品種的結(jié)論基本一致,可能是雜交稻較常規(guī)稻有更大的生物量,從而通過改變碳水化合物分配與積累來(lái)調(diào)節(jié)光合作用的能力更強(qiáng)。
抗氧化酶廣泛存在于植物組織內(nèi),可清除植物體內(nèi)的活性氧自由基(ROS),減少細(xì)胞膜結(jié)構(gòu)和功能的破壞,在延緩葉片衰老、延長(zhǎng)光合作用和抵御逆境脅迫方面發(fā)揮重要作用(侯立剛等,2012;郭麗麗等,2015)。魏煒等(2003)研究發(fā)現(xiàn),不同基因型品種間的酶活性存在明顯差異,抗旱性強(qiáng)的品種酶活性上升幅度越大,抵抗逆境能力越強(qiáng)。姜慧芳和任小平(2004)研究認(rèn)為,在干旱脅迫下,品種的抗旱性與抗氧化酶活性和抗衰老能力呈正相關(guān)。本研究結(jié)果表明,不同水稻品種在抽穗期干旱復(fù)水后,其葉片SOD和POD活性存在明顯差異,以湘早秈24號(hào)、中佳早18和湘早秈32號(hào)的SOD和POD活性較高,說明這3個(gè)品種的抗逆能力較強(qiáng),能防止膜系統(tǒng)受到損傷。付光璽等(2009)、張文英等(2011)研究認(rèn)為,品種間的MDA含量變化存在一定差異,與抗旱性較弱的品種相比,抗旱性較強(qiáng)的品種MDA含量通常增加幅度較小。郭貴華等(2014)研究表明,抗旱性強(qiáng)的品種有較高的活性氧來(lái)消除多余的MDA,并使MDA含量處于較低狀態(tài)。本研究中,中佳早18和湘早秈32號(hào)的MDA含量較高,但SOD和POD活性也相對(duì)較高,可能是較高的MDA含量使細(xì)胞膜受到的傷害程度較嚴(yán)重,復(fù)水后為減緩活性氧對(duì)植株的傷害,植株會(huì)通過提高其抗氧化酶活性來(lái)修復(fù)損傷。
根系活力與植物的生命活動(dòng)緊密相關(guān),對(duì)地上部分生長(zhǎng)起重要的調(diào)控作用,與葉片衰老程度密切相關(guān)(張巍巍等,2009)。本研究結(jié)果表明,兩優(yōu)早17的根系活力較強(qiáng),且葉綠素a含量也較高;同時(shí),相關(guān)性分析結(jié)果發(fā)現(xiàn),總?cè)~綠素含量與根系活力呈顯著正相關(guān),與其他指標(biāo)均呈負(fù)相關(guān);聚類分析結(jié)果也證實(shí)兩優(yōu)早17屬于抗旱基因型品種,與郭士偉等(2012)研究發(fā)現(xiàn)植株根系活力下降會(huì)導(dǎo)致植株衰老的結(jié)果基本一致。
本研究探討了抽穗期干旱復(fù)水對(duì)不同水稻品種抗氧化酶活性及根系活力的影響,但干旱復(fù)水后,植株的整個(gè)生理應(yīng)答機(jī)制是一個(gè)復(fù)雜的過程,因此,今后應(yīng)進(jìn)一步研究抗旱基因型品種兩優(yōu)早17和中佳糯在不同生育期干旱后復(fù)水的修復(fù)補(bǔ)償效應(yīng)及其內(nèi)在機(jī)制,為節(jié)水栽培和抗旱育種提供更深入的理論依據(jù)。
4 結(jié)論
機(jī)插水稻抽穗期干旱復(fù)水后,不同品種間生理特性表現(xiàn)差異明顯,根系活力和葉綠素含量是抗旱品種篩選的重要指標(biāo)。11個(gè)供試品種,中兩優(yōu)早17和中佳糯的葉綠素含量較高,根系活力較強(qiáng),屬抗旱基因型品種,適合在我國(guó)南方丘陵缺水地區(qū)推廣種植。
參考文獻(xiàn):
卞金龍,蔣玉蘭,劉艷陽(yáng),馮詠芳,劉賀,夏仕明,劉立軍. 2017. 干濕交替灌溉對(duì)抗旱性不同水稻品種產(chǎn)量的影響及其生理原因分析[J]. 中國(guó)水稻科學(xué),31(4):379-390.[Bian J L,Jiang Y L,Liu Y Y,F(xiàn)eng Y F,Liu H,Xia S M,Liu L J. 2017. Effects of alternate wetting and drying irrigation on grain yield in rice cultivars with different drought resistance and its physiological mechanism[J].Chinese Journal of Rice Science,31(4):379-390.]
蔡昆爭(zhēng),吳學(xué)祝,駱世明. 2008. 不同生育時(shí)期土壤干旱后復(fù)水對(duì)水稻生長(zhǎng)發(fā)育的補(bǔ)償效應(yīng)[J]. 灌溉排水學(xué)報(bào),27(5):34-36. [Cai K Z,Wu X Z,Luo S M. 2008. Compensatory effects of re-watering after soil drying on rice growth and development[J]. Journal of Irrigation and Drainage,27(5):34-36.]
陳亮,汪本福,江元元,曹湊貴,李萍. 2016. 孕穗期干旱及復(fù)水對(duì)水稻葉片生理生化和產(chǎn)量的影響[J]. 中國(guó)稻米,22(1):59-64.[Chen L,Wang B F,Jiang Y Y,Cao C G,Li P. 2016. Effects of drought and re-watering on rice physio-logical and biochemical indexes of leaves and grain yield at booting stage[J]. China Rice,22(1):59-64.]
陳小榮,劉靈燕,嚴(yán)崇虎,鐘蕾,朱昌蘭,彭小松,賀曉鵬,傅軍如,歐陽(yáng)林娟,賀浩華. 2013. 抽穗期干旱復(fù)水對(duì)不同產(chǎn)量早稻品種結(jié)實(shí)及一些生理指標(biāo)的影響[J]. 中國(guó)水稻科學(xué),27(1):77-83. [Chen X R,Liu L Y,Yan C H,Zhong L,Zhu C L,Peng X S,He X P,F(xiàn)u J R,Ouyang L J,He H H. 2013. Effects of rewatering after drought at heading date on seed setting and some physiological indexes in early rice varieties with different yield[J]. Chinese Journal of Rice Science,27(1):77-83.]
戴高興. 2004. 模擬干旱下耐低鉀水稻幼苗的抗旱生理研究[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué). [Dai G X. 2004. Study on the physiological characteristics of K-tolerant rice seedlings under simulated drought[D]. Changsha:Hunan Agricultural University.]
付光璽,朱偉,楊露露,周毅,汪建飛,肖新. 2009. 節(jié)水灌溉對(duì)水稻抗逆生理性狀的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),25(2):105-108. [Fu G X,Zhu W,Yang L L,Zhuo Y,Wang J F,Xiao X. 2009. Water-saving irrigation on stress-resistance physiological factors of rice[J]. Chinese Agricultural Scien-ce Bulletin,25(2):105-108.]
付堅(jiān),Linkun GU,郭怡卿,Liyuan ZHANG,王玲仙,李定琴,王波,Jeff Qingxi SHEN,程在全. 2013. 干旱脅迫的水稻根高效酵母雙雜交體系建立[J]. 中國(guó)水稻科學(xué),27(2):198-202. [Fu J,Gu L K,Guo Y Q, Zhang L Y,Wang L X,Li D Q,Wang B,Shen J Q X,Cheng Z Q. 2013. Construction and high-efficient screenings of a yeast two-hybrid cDNA library from the drought-stressed roots of rice[J]. Chinese Journal Rice Science,27(2):198-202.]
郭貴華,劉海艷,李剛?cè)A,劉明,李巖,王紹華,劉正輝,唐設(shè),丁艷鋒. 2014. ABA緩解水稻孕穗期干旱脅迫生理特性的分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),47(22):4380-4391. [Guo G H,Liu H Y,Li G H,Liu M,Li Y,Wang S H,Liu Z H,Tang S,Ding Y F. 2014. Analysis of physiological cha-racteristics about ABA alleviating rice booting stage drought stress[J]. Scientia Agricultura Sinica,47(22):4380-4391.]
郭麗麗,劉改秀,郭琪,李昱瑩,宋程威,侯小改. 2015. LED復(fù)合光質(zhì)對(duì)洛陽(yáng)紅形態(tài)和生理特性的影響[J]. 核農(nóng)學(xué)報(bào),29(5):995-1000. [Guo L L,Liu G X,Guo Q,Li Y Y,Song C W,Hou X G. 2015. Effects of LED polychromatic light on morphological and physiological characteristics of ‘Luoyang Hong[J]. Journal of Nuclear Agricultural Sciences,29(5):995-1000.]
郭士偉,夏士健,朱虹霞,張?jiān)迫A,施衛(wèi)明. 2012. 水稻根系活力測(cè)定方法及超級(jí)稻兩優(yōu)培九生育后期根系活力研究[J]. 土壤,44(2):308-311. [Guo S W,Xia S J,Zhu H X,Zhang Y H,Shi W M. 2012. Factors influencing collec-ting amount of rice roots bleeding and investigation on roots vigor after heading[J]. Soils,44(2):308-311.]
侯立剛,陳溫福,馬巍,趙國(guó)臣,齊春艷,劉亮,孫洪嬌. 2012. 低溫脅迫下不同磷營(yíng)養(yǎng)對(duì)水稻葉片質(zhì)膜透性及抗氧化酶活性的影響[J]. 華北農(nóng)學(xué)報(bào),27(1):118-123. [Hou L G,Chen W F,Ma W,Zhao G C,Qi C Y,Liu L,Sun H J. 2012. Effects of different phosphate fertilizer application on permeability of membrane and antioxidative enzymes in rice under low temperature stress[J]. Acta Agriculturae Boreali-Sinica,27(1):118-123.]
黃智,戴思慧,馬凌珂,孫小武. 2010. 西瓜種子萌發(fā)過氧化物酶活性變化的研究[J]. 湖南農(nóng)業(yè)科學(xué),(9):43-45. [Huang Z,Dai S H,Ma L K,Sun X W. 2010. Changes of peroxidase activity in the seed germination of watermelon[J]. Hunan Agricultural Sciences,(9):43-45.]
姜慧芳,任小平. 2004. 干旱脅迫對(duì)花生葉片SOD活性和蛋白質(zhì)的影響[J]. 作物學(xué)報(bào),30(2):169-174. [Jiang H F,Ren X P. 2004. The effect on SOD activity and protein content in groundnut leaves by drought stress[J]. Acta Agronomica Sinica,30(2):169-174.]
李樹杏,郭慧,李敏,涂敏,王麗麗,馬均,王明田. 2014. 水稻對(duì)幼穗形成期水分脅迫后復(fù)水的響應(yīng)[J]. 華北農(nóng)學(xué)報(bào),29(S1):206-212. [Li S X,Guo H,Li M,Tu M,Wang L L,Ma J,Wang M T. 2014. The responding of rice after water stress in young panicle formation stage[J]. Acta Agriculturae Boreali-Sinica,29(S1):206-212.]
梁麗娜,劉雪,唐勛,文義凱,司懷軍,張寧. 2018. 干旱脅迫對(duì)馬鈴薯葉片生理生化指標(biāo)的影響[J]. 基因組學(xué)與應(yīng)用生物學(xué),37(3):1343-1348. [Liang L N,Liu X,Tang X,Wen Y K,Si H J,Zhang N. 2018. Effect of drought stress on physiological and biochemical indexes of potato leaves[J]. Genomics and Applied Biology,37(3):1343-1348.]
劉晶,張鶴婷,殷悅,陳惠萍. 2017. 外源硫化氫對(duì)干旱脅迫下萌發(fā)水稻種子抗氧化代謝的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),48(1):31-37. [Liu J,Zhang H T,Yin Y,Chen H P. 2017. Effects of exogenous hydrogen sulfide on antioxidant metabolism of rice seed germinated under drought stress[J]. Journal of Southern Agriculture,48(1):31-37.]
劉照,高煥燁,王三根. 2011. 高溫干旱雙重脅迫對(duì)水稻劍葉光合特性的影響[J]. 西南師范大學(xué)學(xué)報(bào),36(3):161-165. [Liu Z,Gao H Y,Wang S G. 2011. Effect of high temperature and drought stress on the photosynthesis characteristics in rice[J]. Journal of Northwest Normal University,36(3):161-165.]
明華,胡春勝,張玉銘,程一松. 2007. 浸提法測(cè)定玉米葉綠素含量的改進(jìn)[J]. 玉米科學(xué),15(4):93-95. [Ming H,Hu C S,Zhang Y M,Cheng Y S. 2007. Improved extraction methods of chlorophyll from maize[J]. Journal of Maize Sciences,15(4):93-95.]
王成章,李建華,郭玉霞,方麗云,高永革. 2007. 光周期對(duì)不同秋眠型苜蓿SOD、POD活性的影響[J]. 草地學(xué)報(bào),15(5):407-411. [Wang C Z,Li J H,Guo Y X,F(xiàn)ang L Y,Gao Y G. 2007. Effect of photoperiod on SOD and POD activities in alfalfa varieties with different fall dormancy[J]. Acta Agrestia Sinica,15(5):407-411.]
王英. 2007. 土壤—水稻系統(tǒng)鎘生物有效性的動(dòng)態(tài)特征[D]. 南寧:廣西大學(xué). [Wang Y. 2007. Dynamic characteristic of biological validity of Cd in soil-rice system[D]. Nanning:Guangxi University.]
魏煒,趙欣平,呂輝,劉克武,喻東. 2003. 三種抗氧化酶在小麥抗干旱逆境中的作用初探[J]. 四川大學(xué)學(xué)報(bào),40(6):1172-1175. [Wei W,Zhao X P,Lü H,Liu K W,Yu D. 2003. The study of the function of three antioxidant enzymes in wheat leaf under drought stress[J]. Journal of Sichuan University,40(6):1172-1175.]
謝華英,馬均,代鄒,李玥,孫加威,趙建紅,徐徽,孫永健. 2016. 抽穗期高溫干旱脅迫對(duì)雜交水稻產(chǎn)量及生理特性的影響[J]. 雜交水稻,31(1):62-69. [Xie H Y,Ma J,Dai Z,Li Y,Sun J W,Zhao J H,Xu H,Sun Y J. 2016. Effects of high temperature and drought stress in heading stage on grain yield and physiological characteristics of hybrid rice[J]. Hybrid Rice,31(1):62-69.]
楊安中,段素梅,吳文革,陳剛. 2017. 孕穗期干旱脅迫對(duì)超級(jí)稻劍葉部分生理指標(biāo)及產(chǎn)量的影響[J]. 分子植物育種,15(2):685-690. [Yang A Z,Duan S M,Wu W G,Chen G. 2017. Effects of drought stress at booting stage on physio-logical index and yield of super rice[J]. Molecular Plant Breeding,15(2):685-690.]
于美芳,王新鵬,段云軒,田雪飛,賈琰,趙宏偉. 2017. 分蘗期干旱脅迫對(duì)寒地粳稻光合特性及產(chǎn)量形成的影響[J]. 核農(nóng)學(xué)報(bào),31(9):1794-1802. [Yu M F,Wang X P,Duan Y X,Tian X F,Jia Y,Zhao H W. 2017. Effect of drought stress at tillering stage on photosynthetic characteristics and yield formation of cold-region rice[J]. Journal of Nuclear Agricultural Sciences,31(9):1794-1802.]
張巍巍,鄭飛翔,王效科,馮兆忠,歐陽(yáng)志云. 2009. 臭氧對(duì)水稻根系活力、可溶性蛋白含量與抗氧化系統(tǒng)的影響[J]. 植物生態(tài)學(xué)報(bào),33(3):425-432. [Zhang W W,Zheng F X,Wang X K,F(xiàn)eng Z Z,Ouyang Z Y. 2009. Effects of ozone on root activity,soluble protein content and antioxi-dant system in oryza sativa roots[J]. Chinese Journal of Plant Ecology,33(3):425-432.]
張文英,智慧,柳斌輝,李偉,王永芳,李海權(quán),賈冠清,栗雨勤,刁現(xiàn)民. 2011. 谷子孕穗期一些生理性狀與品種抗旱性的關(guān)系[J]. 華北農(nóng)學(xué)報(bào),26(3):128-133. [Zhang W Y,Zhi H,Liu B H,Li W,Wang Y F,Li H Q,Jia G Q,Li Y Q,Diao X M. 2011. Relationship between drought tole-rance ability and some physiologicalcharacteristicsof foxtail millet at booting stage[J]. Acta Agriculturae Borea-li-Sinica,26(3):128-133.]
Belder P,Bouman B A M,Cabangon R, Lu G A,Quilang E J P,Li Y H,Spiertz J H J,Tuong T P. 2004. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia[J]. Agricultural Water Ma-nagement,65(3):193-210.
Golldack D,Lüking I,Yang O. 2011. Plant tolerance to drought and salinity:Stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Reports,30(8):1383-1391.
Matsui T,Omasa K,Horie T. 2001. The Difference in sterility due to high temperatures during the flowering period among japonica-rice varieties[J]. Plant Production Scien-ce,4(2):90-93.
Tang Y L,Wen X G,Lu C M. 2005. Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice[J]. Plant Physiology and Biochemistry,43(2):193-201.
Shah K,Kumar R G,Verma S,Dubey R S. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings[J]. Plant Science,161(6):1135-1144.
Xiong Z Q,Tu X R,Wei S J,Huang L,Li X H,Lu H,Tu G Q. 2013. The mechanism of antifungal action of a new polyene macrolide antibiotic antifungalmycin 702 from streptomyces padanus JAU4234 on the rice sheath blight pathogen Rhizoctonia solani[J]. PLoS One,8(8):e73884.
(責(zé)任編輯 王 暉)