楊科,薛征,呂湘
綜述
細(xì)胞終末分化過程中三維基因組結(jié)構(gòu)與功能調(diào)控的分子機(jī)制
楊科,薛征,呂湘
中國醫(yī)學(xué)科學(xué)院基礎(chǔ)醫(yī)學(xué)研究所病理生理學(xué)系,醫(yī)學(xué)分子生物學(xué)國家重點實驗室,北京 100730
真核細(xì)胞中的染色質(zhì)DNA高度折疊形成復(fù)雜的三維結(jié)構(gòu),其空間組織方式對精準(zhǔn)調(diào)控基因的表達(dá)和細(xì)胞發(fā)揮正常功能都起著重要的作用。細(xì)胞終末分化成熟過程中形態(tài)及基因表達(dá)譜常發(fā)生顯著改變,同時伴隨著明顯的基因組三維結(jié)構(gòu)變化。本文在簡單介紹三維基因組多層次組織結(jié)構(gòu)(染色質(zhì)領(lǐng)域、A/B區(qū)室、拓?fù)湎嚓P(guān)結(jié)構(gòu)域和成環(huán)構(gòu)象等)基礎(chǔ)上,重點綜述了細(xì)胞終末分化過程中三維基因組結(jié)構(gòu)變化與功能調(diào)控方面的研究進(jìn)展,并探討了當(dāng)前三維基因組研究在解析細(xì)胞分化成熟過程時存在的問題和前景。
三維基因組;A/B區(qū)室;拓?fù)湎嚓P(guān)結(jié)構(gòu)域;成環(huán)構(gòu)象;細(xì)胞終末分化
自遺傳密碼被破解以來,尤其是多個種屬基因組測序完成后,基因組的一維序列信息得到了廣泛研究和闡釋。然而基因組在細(xì)胞核內(nèi)并非以簡單的一維線性排布,而是以復(fù)雜的三維結(jié)構(gòu)存在,基因組的三維結(jié)構(gòu)對基因的表達(dá)調(diào)控和細(xì)胞正常功能的發(fā)揮有著重要影響[1]。染色體構(gòu)象捕獲技術(shù)(chro-mosome conformation capture, 3C)[2]及由其衍生而來的“C”系列技術(shù)[3~8]的發(fā)展,使研究者們得以在DNA分子水平研究染色質(zhì)之間的相互作用。3C技術(shù)主要是通過對交聯(lián)固定后的核內(nèi)基因組DNA進(jìn)行限制性酶切連接,使一維序列上遠(yuǎn)離而空間上鄰近的酶切片段有機(jī)會連接形成嵌合片段,再通過PCR檢測定量連接產(chǎn)物,以校正后的定量結(jié)果來反映染色質(zhì)片段間相互作用的強(qiáng)度。該技術(shù)建立后迅速從檢測兩個特定基因座位點間相互作用的3C方法發(fā)展到檢測單個位點與整個基因組相互作用的(circu-lar chromosome conformation capture/chromosome conformation capture-on-chip) 4C[3,4]、檢測多對基因座位點間相互作用的(chromosome conformation cap-ture carbon copy) 5C[6]、以及適用于全基因組染色質(zhì)相互作用的(high-throughput chromosome conforma-tion capture) Hi-C[5]等。Hi-C技術(shù)在酶切片段末端引入生物素標(biāo)記后再進(jìn)行連接反應(yīng),末端消化去除未連接端的生物素,實現(xiàn)對新形成嵌合片段的特異富集,測序獲得全基因組范圍的染色質(zhì)相互作用信息。對Hi-C數(shù)據(jù)的深入解析使人們可以從染色體領(lǐng)域(chromosome territory, CT)、染色體間相互作用、A/B區(qū)室(compartment)、拓?fù)湎嚓P(guān)結(jié)構(gòu)域(topologically associated domain, TAD)以及成環(huán)構(gòu)象(looping)等不同層次揭示染色質(zhì)的三維結(jié)構(gòu)情況(圖1A)。
細(xì)胞分化和發(fā)育過程中,隨著細(xì)胞功能的改變,染色質(zhì)三維結(jié)構(gòu)也會發(fā)生相應(yīng)變化。有關(guān)早期胚胎發(fā)育和細(xì)胞定向分化的三維基因組研究近期已有Zhang等[9]綜述文章給予了詳細(xì)介紹。細(xì)胞終末分化成熟是干祖細(xì)胞發(fā)生特化、轉(zhuǎn)變成為執(zhí)行特定功能細(xì)胞的生理變化過程,該過程對應(yīng)著基因表達(dá)譜的顯著轉(zhuǎn)變,并常伴隨細(xì)胞核形態(tài)和大小的變化,進(jìn)一步提示染色質(zhì)三維結(jié)構(gòu)可能發(fā)生了劇烈的轉(zhuǎn)變。本文概述了染色質(zhì)三維結(jié)構(gòu)不同層次上的研究進(jìn)展,重點討論了細(xì)胞終末分化成熟過程中染色質(zhì)三維結(jié)構(gòu)功能的動態(tài)調(diào)節(jié)。
圖1 三維基因組的多層次組織結(jié)構(gòu)及其在細(xì)胞分化前后的變化
A:三維基因組的多層次組織結(jié)構(gòu);B:細(xì)胞分化過程中的三維基因組結(jié)構(gòu)變化。
真核生物主要以染色體的形式承載遺傳信息,染色體結(jié)構(gòu)的存在為基因組以一定規(guī)律聚集或離散分布于細(xì)胞核中提供了基礎(chǔ)和限制。在間期細(xì)胞核內(nèi),每條染色體占據(jù)一個相對獨立但穩(wěn)定的細(xì)胞核亞區(qū)域,稱為染色體領(lǐng)域[10]??梢岳脽晒庠浑s交技術(shù)(fluorescenthybridization, FISH),通過源于特定染色體全序列的探針來獲得染色體領(lǐng)域的直觀圖像[11]。Hi-C分析也發(fā)現(xiàn)同一染色體內(nèi)即使相距很遠(yuǎn)的位點間相互作用頻率也明顯高于染色體間的相互作用,提示染色體內(nèi)的DNA呈聚集分布,從分子水平上支持了CT模型[5]。研究表明,CT在細(xì)胞核內(nèi)所處的位置并非隨機(jī),長染色體傾向與長染色體相互接近,而短染色體之間也更為靠近[12]。在同一CT中富含基因或活躍轉(zhuǎn)錄的DNA片段更高頻率定位于CT的外圍, 甚至突出到CT之外[13,14],這樣更有利于接近位于CT之間(interchromatin com-partment, IC)的轉(zhuǎn)錄機(jī)器,并和鄰近染色體上轉(zhuǎn)錄活性類似的基因共轉(zhuǎn)錄[15]。在發(fā)育過程中,基因的激活常伴隨其在CT中的定位由內(nèi)部轉(zhuǎn)移到外圍[16]。CT具有組織和細(xì)胞類型特異性[17],細(xì)胞分裂間期核內(nèi)的各個CT位置相對穩(wěn)定,但最近有研究發(fā)現(xiàn)有絲分裂前后以及兩個子細(xì)胞之間CT的位置會發(fā)生一定程度的變化[18],這可能與細(xì)胞之間的個體差異有關(guān)。
基因密度和轉(zhuǎn)錄活性不僅與其在CT中的定位有關(guān),還與染色質(zhì)在細(xì)胞核內(nèi)的定位密切相關(guān)。基因密度低及不活躍轉(zhuǎn)錄的染色質(zhì)傾向于定位在核周,其中與核纖層相互作用的區(qū)域稱為核纖層蛋白相關(guān)結(jié)構(gòu)域(lamin associated domains, LADs),富含H3K27me3和H3K9me2等非活性組蛋白修飾[19]。基因密度高或活躍表達(dá)的染色質(zhì)則傾向定位于細(xì)胞核內(nèi)部[20]?;蚴ヅc核纖層的相互作用轉(zhuǎn)而定位于核內(nèi)部后,可以重新激活其表達(dá),反之亦然[21]。在紅系細(xì)胞中,復(fù)合物介導(dǎo)β-珠蛋白與其增強(qiáng)子基因座控制區(qū)(locus control region, LCR)間的相互作用,促進(jìn)β-珠蛋白基因表達(dá)并定位于細(xì)胞核內(nèi)部,敲低可抑制β-珠蛋白基因表達(dá),其基因也從細(xì)胞核中部重新定位于核周[22]。此外,細(xì)胞核內(nèi)鄰近的活躍轉(zhuǎn)錄基因可以共定位并共享轉(zhuǎn)錄機(jī)器,形成轉(zhuǎn)錄工廠結(jié)構(gòu)[23]。動態(tài)表達(dá)的基因在轉(zhuǎn)錄激活或抑制時移入或遠(yuǎn)離轉(zhuǎn)錄工廠,相比從頭招募和組裝轉(zhuǎn)錄復(fù)合物,將基因移動到預(yù)先裝配好的轉(zhuǎn)錄工廠可能是更經(jīng)濟(jì)及常見的基因轉(zhuǎn)錄激活方式[23]。一個細(xì)胞核中通常存在多個不同類型的轉(zhuǎn)錄工廠[24],例如紅系α-珠蛋白基因簇內(nèi)的珠蛋白基因與其上游持家基因在空間上靠近并共同轉(zhuǎn)錄,是最早被鑒定的轉(zhuǎn)錄工廠之一[25]。類似的結(jié)構(gòu)還有由不同染色體上的多個rRNA基因共定位,在核仁處形成的RNA聚合酶Ⅰ轉(zhuǎn)錄工廠[26]。轉(zhuǎn)錄工廠結(jié)構(gòu)使細(xì)胞更有效的組織和調(diào)節(jié)自身基因的轉(zhuǎn)錄,協(xié)調(diào)細(xì)胞功能。
Hi-C分析提供了另一種核內(nèi)染色質(zhì)分區(qū)定位的方法。其結(jié)果提示具有轉(zhuǎn)錄活性的片段之間有著更高的相互作用頻率,包括松散的染色質(zhì)、具有活性組蛋白修飾、高基因密度和高表達(dá)水平的DNA片段等。同樣基因組的非活性區(qū)段更傾向于和非活性區(qū)段相互作用[5]。通過主成分分析(principal component analysis, PCA)將這種Hi-C揭示的相互作用傾向性量化,可將基因組區(qū)分為相對分隔的A/B 兩個區(qū)室。其中A區(qū)室基因密度較高,更富集DNaseⅠ高敏位點和H3K4me3等表觀遺傳修飾標(biāo)志,與活性常染色質(zhì)相對應(yīng),而B區(qū)室多處于基因荒漠區(qū)或為異染色質(zhì)。染色質(zhì)間相互作用更多發(fā)生在同一個區(qū)室內(nèi)的位點之間。最近有研究通過分子模擬提出A/B區(qū)室是經(jīng)由染色質(zhì)片段相分離過程形成的:當(dāng)一段染色質(zhì)結(jié)合在核纖層或其它核內(nèi)小體上時,其他與之相同狀態(tài)的染色質(zhì)也會隨之結(jié)合進(jìn)而引發(fā)相分離,形成A/B區(qū)室[27]。
提高Hi-C分析的測序深度和分辨率可以發(fā)現(xiàn)每條染色體均由多個結(jié)構(gòu)單元組成,稱為拓?fù)湎嚓P(guān)結(jié)構(gòu)域(TAD)[28,29]。早期在果蠅胚胎中的Hi-C分析即發(fā)現(xiàn)TAD結(jié)構(gòu),表現(xiàn)為多個和染色質(zhì)表觀修飾標(biāo)志高度相關(guān)的結(jié)構(gòu)域,其內(nèi)部染色質(zhì)相互作用明顯高于相鄰結(jié)構(gòu)域之間的互作等特點[30]。哺乳動物90%的基因組被約2000個TADs覆蓋,其長度范圍從數(shù)百kb到數(shù)Mb不等[28]。同一TAD內(nèi)的基因往往處于相似的活性或者非活性狀態(tài)。基因組活性與非活性區(qū)段的轉(zhuǎn)變頻繁發(fā)生在TAD邊界附近,提示TAD間的邊界序列具有隔離功能[31]。在不同細(xì)胞類型中,TAD活性狀態(tài)常作為一個整體發(fā)生轉(zhuǎn)變,呈協(xié)同表達(dá)模式。支持TAD作為相對獨立的調(diào)控單元協(xié)調(diào)鄰近基因的表達(dá)。分裂期細(xì)胞中未能檢測到TAD結(jié)構(gòu),推測TAD主要在細(xì)胞分裂間期起作用,參與協(xié)調(diào)轉(zhuǎn)錄等過程[32]。
TAD位置及其邊界序列在不同細(xì)胞類型間以及人和小鼠間均高度保守,進(jìn)一步支持TAD邊界及其隔離功能在哺乳動物細(xì)胞中具有重要意義。邊界的存在使染色質(zhì)片段間的相互作用限制在TAD內(nèi),從而將增強(qiáng)子等遠(yuǎn)距離調(diào)節(jié)元件功能局限于特定的靶基因[33]。TAD邊界序列富含CTCF結(jié)合位點、轉(zhuǎn)錄起始位點和SINE元件[34]等序列。已知的TAD邊界結(jié)合蛋白主要包括CTCF和黏連蛋白(cohesin)[35],CTCF可以起轉(zhuǎn)錄隔離的作用[36],阻斷啟動子和增強(qiáng)子的相互作用或表觀遺傳修飾標(biāo)志向外延伸。黏連蛋白復(fù)合物形成環(huán)狀結(jié)構(gòu),和CTCF共同參與TAD的形成。擾動CTCF/cohesin或其結(jié)合位點可增加鄰近TAD間的相互作用,同時TAD內(nèi)相互作用強(qiáng)度相對減弱,但并不完全破壞TAD邊界,表明CTCF和cohesin在TAD的形成和維持中起一定作用[35,37~39],但不足以創(chuàng)建或消除TAD結(jié)構(gòu)。
目前,TAD的鑒定主要建立在細(xì)胞群體Hi-C分析基礎(chǔ)之上。單細(xì)胞Hi-C分析提示,TAD在單個細(xì)胞中可能不是固定的結(jié)構(gòu),而是群體細(xì)胞的染色質(zhì)互作傾向性在總體上的反映[18,40]。最近,Bintu等[41]和Szabo等[42]基于高分辨成像的研究顯示,即便在單細(xì)胞水平,類似TAD的結(jié)構(gòu)也是存在的,這種差異也許與經(jīng)典的分析流程對過于分散的單細(xì)胞Hi-C數(shù)據(jù)不太適用有關(guān)。
細(xì)胞核內(nèi)一維距離較遠(yuǎn)的DNA元件可以在空間上相互靠近,元件間的DNA片段環(huán)出,形成成環(huán)構(gòu)象。Hi-C分析發(fā)現(xiàn)同一TAD中常存在多個染色質(zhì)環(huán),參與基因表達(dá)調(diào)節(jié),其中尤以增強(qiáng)子和啟動子間的成環(huán)構(gòu)象在基因表達(dá)調(diào)控中的作用最為明確。β-珠蛋白基因簇是研究時空特異基因表達(dá)調(diào)控的理想模型[43]。其結(jié)構(gòu)基因上游數(shù)十kb外的LCR作為超級增強(qiáng)子可顯著增強(qiáng)簇內(nèi)各類β-珠蛋白基因的表達(dá)。早前研究對遠(yuǎn)距離的LCR如何增強(qiáng)β-珠蛋白基因表達(dá)提出了成環(huán)模型(looping model),蛋白質(zhì)聯(lián)接介導(dǎo)模型(linking model)等多種假說[44]。3C技術(shù)從分子水平上證實了LCR和β-珠蛋白啟動子在空間上靠近,支持增強(qiáng)子作用的成環(huán)模型[45]。啟動子和增強(qiáng)子的相互作用常具有組織和發(fā)育階段特異性,而非簡單的一對一方式[46~49]。以LCR為例,在胚胎、胎兒和成年期分別與ε-、γ-和β-珠蛋白基因啟動子空間靠近并激活其表達(dá)。反之,一個啟動子也可與多個增強(qiáng)子互作。這種復(fù)雜的成環(huán)構(gòu)象模式為基因選擇性表達(dá)和精細(xì)調(diào)節(jié)提供了基礎(chǔ)。
TAD內(nèi)部常有多個CTCF結(jié)合位點,可招募CTCF/cohesin等分子介導(dǎo)其相互作用,為基因組 成環(huán)構(gòu)象的形成和維持提供基礎(chǔ)[50]。敲除CTCF或cohesin抑制這些位點間成環(huán)構(gòu)象的形成[51]。在CTCF參與的成環(huán)模型中,環(huán)狀的cohesin復(fù)合物結(jié)合在染色體上,形成染色質(zhì)小環(huán),cohesin順著小環(huán)兩端向外延伸移動,擠壓導(dǎo)致染色質(zhì)環(huán)增大,直至遭遇兩個匯聚的(即方向朝環(huán)內(nèi)的)CTCF結(jié)合位點,并和CTCF共同穩(wěn)定該環(huán)狀結(jié)構(gòu)[52]。轉(zhuǎn)錄事件本身及cohesin釋放因子共同參與cohesin在CTCF位點的募集[53]。在此基礎(chǔ)上,轉(zhuǎn)錄因子招募互作蛋白或RNA聚合酶類形成復(fù)雜的轉(zhuǎn)錄復(fù)合物,介導(dǎo)增強(qiáng)子和啟動子的相互作用及增強(qiáng)子轉(zhuǎn)錄調(diào)控功能,并通常將增強(qiáng)子的作用限制在CTCF/cohesin介導(dǎo)的成環(huán)構(gòu)象及TAD邊界以內(nèi)。
核內(nèi)染色質(zhì)組織方式與基因轉(zhuǎn)錄活性密切相關(guān),但其因果關(guān)系值得探討。用DRB處理小鼠胎肝細(xì)胞抑制轉(zhuǎn)錄延伸對遠(yuǎn)距離基因共享轉(zhuǎn)錄工廠以及β-珠蛋白基因簇增強(qiáng)子與啟動子的長距離相互作用均沒有影響[54,55]。對轉(zhuǎn)錄起始的抑制因處理方法不同而效果有所差異,通過熱激反應(yīng)抑制轉(zhuǎn)錄起始顯著影響轉(zhuǎn)錄工廠的形成并部分抑制β-珠蛋白啟動子與LCR核心增強(qiáng)子HS2/3間的相互作用[55],而α-鵝膏蕈堿處理對β-珠蛋白啟動子與LCR的相互作用沒有影響[54]。這種差異可能和α-鵝膏蕈堿與熱激具體抑制轉(zhuǎn)錄起始的方式不同有關(guān)。但兩種轉(zhuǎn)錄起始抑制在總體上均對β-珠蛋白啟動子與LCR相互作用形成的活性染色質(zhì)結(jié)構(gòu)域影響不大,表明染色質(zhì)之間的相互作用并不是僅僅是基因轉(zhuǎn)錄的伴隨現(xiàn)象。之后Deng等[56]在敲除的G1E細(xì)胞系中表達(dá)可識別基序的鋅指結(jié)構(gòu)與融合蛋白,人為把LCR和β-珠蛋白基因啟動子聯(lián)系在一起,促進(jìn)了RNA聚合酶Pol II在β-珠蛋白基因啟動子的募集,支持染色質(zhì)成環(huán)構(gòu)象可促進(jìn)基因活躍轉(zhuǎn)錄。最近Ray等[57]的工作也發(fā)現(xiàn)熱激不影響細(xì)胞的A/B分區(qū)和TAD結(jié)構(gòu),此時激活的基因多數(shù)在非熱激狀態(tài)已經(jīng)建立增強(qiáng)子與啟動子間相互作用,僅少部分與增強(qiáng)子啟動子間的相互作用增強(qiáng)有關(guān)。綜上提示,染色質(zhì)三維結(jié)構(gòu)是獨立于轉(zhuǎn)錄事件的基因組特征,但又與基因轉(zhuǎn)錄密切相關(guān)并相互影響。
干祖細(xì)胞經(jīng)由終末分化過程最終成為執(zhí)行特定生理功能的成熟細(xì)胞,其細(xì)胞類型多樣,對應(yīng)復(fù)雜獨特的細(xì)胞功能,并經(jīng)常伴隨細(xì)胞及細(xì)胞核形態(tài)大小上的不同變化,提示各種不同類型的終末分化過程中可能具有不同特色的三維基因組組織方式。對其三維基因組結(jié)構(gòu)的詳細(xì)解析將有助于了解終末分化階段發(fā)揮重要功能基因(簡稱終末功能基因)的表達(dá)維持和相關(guān)疾病發(fā)生的分子機(jī)制。另外,細(xì)胞進(jìn)入終末分化后許多終末功能基因的表達(dá)即已開啟,細(xì)分的終末成熟各階段細(xì)胞在三維基因組結(jié)構(gòu)上是否仍存在顯著變化,還是在原構(gòu)架基礎(chǔ)上微調(diào)值得關(guān)注。近年來,研究人員對T-細(xì)胞[58,59]、B-細(xì)胞[60,61]、巨噬細(xì)胞[62]、(骨骼/平滑)肌細(xì)胞[63]、神經(jīng)細(xì)胞[64,65]、表皮角質(zhì)細(xì)胞[66]和胰島β-細(xì)胞[67]等多種細(xì)胞終末分化成熟過程中的染色質(zhì)三維結(jié)構(gòu)進(jìn)行研究,在不同層次上展示了基因組三維結(jié)構(gòu)伴隨終末分化中重要基因表達(dá)呈現(xiàn)的各自特異的變化模式(圖1B)。
基因組的A/B分區(qū)與染色質(zhì)活性和抑制狀態(tài)相對應(yīng),具有明顯的組織特異性。細(xì)胞分化成熟過程往往伴隨部分染色質(zhì)區(qū)段的A/B分區(qū)轉(zhuǎn)變。T細(xì)胞分化成熟過程經(jīng)歷造血干祖細(xì)胞(hematopoietic stem and progenitor cell, HSPC)、多潛能祖細(xì)胞(multipo-tent progenitor, MPP)、共同淋系祖細(xì)胞(common lym-phoid progenitor, CLP)、早期T祖細(xì)胞(early T precur-sor, ETP)、CD4/CD8雙陰T細(xì)胞2 (CD4 and CD8 double-negative 2, DN2)、DN3、DN4和CD4/CD8雙陽T細(xì)胞(CD4 and CD8 double-positive, DP)等多個階段。這個過程的基因組A/B分區(qū)持續(xù)發(fā)生轉(zhuǎn)變,其中57.6%由B區(qū)室轉(zhuǎn)變?yōu)锳區(qū)室,37.4%由A區(qū)室轉(zhuǎn)變?yōu)锽區(qū)室,僅4.9%的區(qū)域在A/B分區(qū)上的存在反復(fù)。A/B區(qū)室的轉(zhuǎn)變主要集中在DN2-DN3和DN4-DP階段,提示這兩個時間段可能是T細(xì)胞終末分化的關(guān)鍵。這與前期研究提出的DN2-DN3轉(zhuǎn)變與T細(xì)胞命運(yùn)決定相關(guān),而DN4-DP轉(zhuǎn)變是T細(xì)胞β選擇關(guān)鍵步驟的觀點相一致[68]。作為典型代表,T細(xì)胞分化和存活的關(guān)鍵轉(zhuǎn)錄因子基因由造血干細(xì)胞中的B區(qū)室向CD4/CD8雙陽性細(xì)胞中活性的A區(qū)室轉(zhuǎn)變,同時基因定位由核周轉(zhuǎn)向核內(nèi)部。相反造血干細(xì)胞自我更新的關(guān)鍵因子基因則由活躍的A區(qū)室轉(zhuǎn)變?yōu)橐种茽顟B(tài)的B區(qū)室,基因定位向核周轉(zhuǎn)移。該過程中基因的沉默和開啟均早于其A/B分區(qū)的翻轉(zhuǎn),提示區(qū)室轉(zhuǎn)變并非基因表達(dá)變化的上游因素[59]。
除染色質(zhì)A/B分區(qū)翻轉(zhuǎn)外,同一區(qū)室內(nèi)染色質(zhì)相互作用強(qiáng)度和染色體間相互作用也伴隨終末分化過程發(fā)生改變。小鼠皮質(zhì)神經(jīng)元終末分化時A/B區(qū)室均表現(xiàn)為大小漸增,其中A區(qū)室內(nèi)部相互作用變?nèi)酢⒍鳥區(qū)室內(nèi)部相互作用加強(qiáng)[65],與此前報道的神經(jīng)細(xì)胞分化過程中異染色質(zhì)聚集一致[69]。幼稚T細(xì)胞成熟分化為T輔Ⅰ、T輔Ⅱ細(xì)胞的過程中,11號染色體上調(diào)節(jié)元件和10號染色體γ干擾素基因啟動子間的相互作用在分化后被染色體內(nèi)相互作用所代替。在T輔Ⅰ細(xì)胞中,γ干擾素與其上游調(diào)控元件互作,產(chǎn)生更多的γ干擾素;在T輔Ⅱ細(xì)胞中,11號染色體上的調(diào)控元件與鄰近的白介素基因相互作用并激活其表達(dá)[70,71]。
研究表明TAD結(jié)構(gòu)在不同細(xì)胞類型和物種間相對保守,但細(xì)胞分化過程中TAD內(nèi)的局部染色質(zhì)相互作用強(qiáng)度可發(fā)生變化。T細(xì)胞分化成熟過程中,TAD內(nèi)部相互作用的強(qiáng)弱變化也主要發(fā)生在DN2- DN3和DN4-DP兩個階段,其變化與DNaseⅠ高敏位點信號及基因表達(dá)譜改變相吻合,但在時間上先后有別。沉默基因的表達(dá)下調(diào)先于相應(yīng)TAD內(nèi)染色質(zhì)互作信號的減弱;相反激活基因TAD內(nèi)染色質(zhì)互作變強(qiáng)早于其基因表達(dá)上調(diào)[59],支持染色質(zhì)互作只是基因轉(zhuǎn)錄的前提條件,轉(zhuǎn)錄激活還需要更多因素的參與。這種時序關(guān)系在轉(zhuǎn)錄抑制劑處理或熱激引起轉(zhuǎn)錄改變時觀察到的現(xiàn)象基本一致[54,55,57]。
雖然TAD結(jié)構(gòu)相對穩(wěn)定保守,在一些細(xì)胞分化過程中也觀察到相鄰TAD融合和TAD分裂的情況。幼稚B細(xì)胞(na?ve B cells)向GC B細(xì)胞分化過程中TAD數(shù)目(>1500個)和平均大小(1.35 Mb)均無明顯變化,但觀察到其中171個TAD結(jié)構(gòu)域與鄰近TAD間融合形成更大的新型3D基因“城市”(city)結(jié)構(gòu)。對三號染色體上一段6 Mb長的區(qū)域具體分析顯示,該區(qū)段在幼稚B細(xì)胞中分為4個TAD結(jié)構(gòu)域,其中多個基因在細(xì)胞分化為GC B細(xì)胞時跨越TAD邊界建成新的染色質(zhì)間相互作用,從而整段染色質(zhì)融合形成一個大型TAD結(jié)構(gòu)??缃鐓⑴c染色質(zhì)相互作用的基因多在GC B細(xì)胞中特異表達(dá)上調(diào)并在其細(xì)胞特化過程中發(fā)揮重要作用。總體而言,相鄰TAD的融合促進(jìn)了基因的協(xié)同表達(dá)[60]。小鼠皮質(zhì)神經(jīng)元終末分化時也觀察到TAD數(shù)目減少和平均大小增加,但同時一類不含CTCF的TAD邊界明顯增多。這類TAD邊界附近富集終末階段活躍表達(dá)基因的啟動子,支持基因轉(zhuǎn)錄參與TAD邊界形成,然而僅轉(zhuǎn)錄激活并不足以導(dǎo)致新TAD的出現(xiàn)[65]。
與TAD結(jié)構(gòu)域的相對穩(wěn)定保守相反的是,TAD內(nèi)部染色質(zhì)成環(huán)構(gòu)象具有高度的細(xì)胞類型特異性,與不同細(xì)胞獨特的基因表達(dá)譜形成密切相關(guān)。細(xì)胞終末分化過程中成環(huán)構(gòu)象的研究有助于更深刻的理解細(xì)胞分化成熟的調(diào)控網(wǎng)絡(luò),鑒定新的調(diào)控元件和調(diào)節(jié)模式,以及發(fā)現(xiàn)終末分化過程中的關(guān)鍵基因。全基因組水平的成環(huán)構(gòu)象分析對Hi-C數(shù)據(jù)量要求較高,ChIA-PET[7], capture Hi-C[8,72]和原位Hi-C[73]等方法的出現(xiàn)和優(yōu)化以及二代測序效能的提高使在全基因組范圍研究染色質(zhì)成環(huán)構(gòu)象成為可能。
在PMA誘導(dǎo)的THP-1體外巨噬細(xì)胞分化模型中,通過差異loop分析發(fā)現(xiàn)多個分化后新形成的染色質(zhì)環(huán)(獲得型loop),其出現(xiàn)與基因表達(dá)上調(diào)顯著相關(guān)。另外,對大部分未隨分化改變的染色質(zhì)環(huán)而言,啟動子所關(guān)聯(lián)的遠(yuǎn)端錨定位點上H3K27ac信號增強(qiáng)(激活型loop)也與基因表達(dá)上調(diào)顯著相關(guān)?;虮倔w論(Gene Ontology, GO)分析顯示獲得型loop和激活型loop所對應(yīng)的靶基因均富集在巨噬細(xì)胞功能相關(guān)通路上,包含、和等參與巨噬細(xì)胞發(fā)育和功能的重要基因[62]。在人表皮角質(zhì)細(xì)胞終末分化模型中觀察到類似現(xiàn)象,基因表達(dá)上調(diào)與兩種不同的增強(qiáng)子啟動子成環(huán)構(gòu)象有關(guān):其中一類是在終末分化過程中新形成的染色質(zhì)環(huán),即獲得型loop,同時伴隨H3K27ac修飾水平增加;另一類環(huán)則在祖細(xì)胞階段已經(jīng)形成,并在終末分化過程中穩(wěn)定存在(穩(wěn)定型loop),與巨噬細(xì)胞分化有所不同的是,表皮角質(zhì)細(xì)胞中這類染色質(zhì)環(huán)的增強(qiáng)子呈組成型H3K27ac修飾[66]。由此提出成環(huán)構(gòu)象參與分化過程中基因表達(dá)調(diào)節(jié)的兩種模型:在遠(yuǎn)端調(diào)控元件和基因啟動子間建立新的染色質(zhì)相互作用,或者通過已有成環(huán)構(gòu)象的重塑對靶基因進(jìn)行調(diào)控。值得注意的是,前述巨噬細(xì)胞分化時有2070個基因上調(diào),而位于獲得型loop或激活型loop的啟動子只有527個,且其中只有156個在分化過程中顯著上調(diào),提示成環(huán)構(gòu)象只是參與基因轉(zhuǎn)錄調(diào)控的諸多要素之一[62]。
巨噬細(xì)胞分化成熟過程中,存在由多個增強(qiáng)子與同一啟動子共同形成的、含有多個染色質(zhì)環(huán)的3D基因組“社區(qū)”或“中心”(hubs)。類似的活性染色質(zhì)中心在紅系終末分化的關(guān)鍵基因α-珠蛋白和β-珠蛋白基因簇上也觀察到過[74]。此外,在B細(xì)胞分化為GC B細(xì)胞的過程中還觀察到啟動子間成環(huán)構(gòu)象以及啟動子與自身基因3¢-端的相互作用顯著增多,伴隨活躍染色質(zhì)標(biāo)志的富集和基因表達(dá)增加,其中富含GC B細(xì)胞特異表達(dá)基因[60]。3D基因組社區(qū)的組織方式有利于增加細(xì)胞核內(nèi)局部增強(qiáng)子及其募集轉(zhuǎn)錄因子的濃度,共同調(diào)節(jié)分化過程中關(guān)鍵基因的激活。而一些關(guān)鍵調(diào)控元件又可同時調(diào)控與分化過程相關(guān)的多個基因,扮演染色質(zhì)互作網(wǎng)絡(luò)的核心元件。目前關(guān)于分化細(xì)胞中復(fù)雜成環(huán)構(gòu)象形成的證據(jù)基本都來自對細(xì)胞群體的Hi-C分析,組成復(fù)雜成環(huán)構(gòu)象的各種染色質(zhì)相互作用是否同時存在于一個細(xì)胞當(dāng)中尚有待通過新的實驗或計算方法驗證。
CTCF是目前最廣為人知的染色質(zhì)成環(huán)介導(dǎo)因子。哺乳動物基因組上已發(fā)現(xiàn)的CTCF結(jié)合位點數(shù)多達(dá)5~6萬。早期研究中發(fā)現(xiàn)的各種CTCF功能,包括轉(zhuǎn)錄激活、抑制、隔離和增強(qiáng)子阻斷等,在很大程度上可以歸結(jié)為CTCF作為一種結(jié)構(gòu)性因子介導(dǎo)成環(huán)構(gòu)象的形成。CTCF的具體功能取決于特定的輔因子種類和其所介導(dǎo)靠近的DNA序列性質(zhì)[75]。一方面CTCF可與cohesin和等因子一起參與TAD邊界的組建,發(fā)揮異染色質(zhì)隔離和增強(qiáng)子阻斷等功能;另一方面,它又可與cohesin、mediator和等因子共同介導(dǎo)啟動子與增強(qiáng)子的相互作用,調(diào)控諸如神經(jīng)細(xì)胞分化發(fā)育的基因啟動子選擇和胚胎干細(xì)胞到內(nèi)胚層的分化等生物學(xué)過程[76]。細(xì)胞分化前后CTCF靶序列DNA甲基化水平,包括其經(jīng)TET酶催化的各種氧化產(chǎn)物、CTCF自身Sumo-化修飾和多聚ADP化修飾、以及輔因子狀態(tài)等均參與調(diào)節(jié)CTCF介導(dǎo)的成環(huán)構(gòu)象形成[76,77]。近年研究顯示非編碼RNA在CTCF介導(dǎo)的染色質(zhì)相互作用中也發(fā)揮重要作用[78]。最新研究對位于CTCF第11號鋅指C-端的一段長38個氨基酸的RNA結(jié)合結(jié)構(gòu)域進(jìn)行敲除,發(fā)現(xiàn)胚胎干細(xì)胞中約一半的染色質(zhì)環(huán)受到了明顯影響[79]。同期文章還研究了CTCF第1及第10號鋅指的RNA結(jié)合能力,其敲除亦可嚴(yán)重影響CTCF在染色質(zhì)上的結(jié)合、成環(huán)構(gòu)象形成和相應(yīng)基因的表達(dá)[80]。CTCF還可以結(jié)合到基因5'-UTR序列和內(nèi)含子上,調(diào)節(jié)RNA聚合酶Ⅱ的暫停和RNA加工,參與小鼠紅系分化過程中基因的成環(huán)構(gòu)象和轉(zhuǎn)錄延伸控制,并調(diào)節(jié)人淋巴細(xì)胞分化時CD45基因第5外顯子的選擇性剪接[81,82]。
是另一個在多種組織中普遍存在并介導(dǎo)增強(qiáng)子和啟動子染色質(zhì)相互作用的因子。可以結(jié)合在活性的增強(qiáng)子和啟動子上,通過二聚化介導(dǎo)增強(qiáng)子和啟動子間的成環(huán)相互作用,結(jié)合位點或者自身的敲除均會破壞增強(qiáng)子和啟動子之間的成環(huán)構(gòu)象并降低基因表達(dá)[83]。參與染色質(zhì)構(gòu)象組織的結(jié)構(gòu)性因子還包括核基質(zhì)結(jié)合蛋白、和果蠅的、因子等,在紅系珠蛋白基因簇、基因成環(huán)構(gòu)象和介導(dǎo)逆轉(zhuǎn)座子拷貝間互作中發(fā)揮作用。近年還發(fā)現(xiàn)鋅指蛋白可作為CTCF的重要輔因子廣泛參與基因組成環(huán)構(gòu)象的調(diào)節(jié)[84,85]。
組織特異轉(zhuǎn)錄因子在細(xì)胞分化特異的染色質(zhì)高級構(gòu)象形成當(dāng)中發(fā)揮重要的作用。在單核細(xì)胞向巨噬細(xì)胞分化模型中,觀察到巨噬細(xì)胞中Tn5轉(zhuǎn)座酶敏感位點、新增和激活型成環(huán)構(gòu)象錨定位點均富集AP-1家族轉(zhuǎn)錄因子基序,其富集程度甚至高于通常情況下最多見的CTCF基序。AP-1在遠(yuǎn)距離元件上的結(jié)合與染色質(zhì)環(huán)另一端基因的表達(dá)激活正相關(guān)。提示AP-1及其輔因子介導(dǎo)了巨噬細(xì)胞特異成環(huán)構(gòu)象形成并調(diào)節(jié)巨噬細(xì)胞分化[62]。細(xì)胞常利用多種因子分別參與不同類型染色質(zhì)環(huán)的組織,協(xié)同調(diào)控細(xì)胞分化過程的基因表達(dá)。前述人表皮角質(zhì)細(xì)胞終末分化模型中,發(fā)現(xiàn)僅穩(wěn)定型loop上有cohesin的結(jié)合,組織特異的EHF因子也參與穩(wěn)定型loop的形成并激活其基因表達(dá);終末分化過程中新形成的染色質(zhì)環(huán)上則缺乏cohesin結(jié)合,但高度富集C/EBP和KLF家族蛋白的結(jié)合基序,轉(zhuǎn)錄因子及其互作蛋白在這類獲得型loop的組建和基因表達(dá)激活中發(fā)揮關(guān)鍵作用[66]。
越來越多的研究[62,64,67]發(fā)現(xiàn)LIM結(jié)構(gòu)域結(jié)合蛋白1 (LIM domain binding 1, LDB1)在細(xì)胞分化成熟過程的染色質(zhì)高級構(gòu)象動態(tài)組織中發(fā)揮關(guān)鍵作用。與組織特異的轉(zhuǎn)錄因子共同介導(dǎo)不同類型細(xì)胞中特異染色質(zhì)成環(huán)構(gòu)象形成,促進(jìn)分化特異基因表達(dá):胰島β-細(xì)胞中與、、和等轉(zhuǎn)錄因子共同介導(dǎo)了多種終末功能基因啟動子與增強(qiáng)子的相互作用,促進(jìn)人與小鼠胰島β-細(xì)胞終末分化狀態(tài)的維持。的敲除嚴(yán)重影響成熟β-細(xì)胞的胰島素分泌和血糖穩(wěn)態(tài)[67]。在紅系終末分化過程中,//和核心因子分別結(jié)合LCR和β-珠蛋白啟動子,并各自募集因子,通過自身二聚化促使LCR和珠蛋白啟動子成環(huán),增加β-珠蛋白基因表達(dá)[56,86]。在誘導(dǎo)胚胎干細(xì)胞向肌細(xì)胞分化的模型中,以關(guān)鍵轉(zhuǎn)錄因子結(jié)合位點為中心建立染色質(zhì)成環(huán)構(gòu)象。質(zhì)譜分析發(fā)現(xiàn)可與和cohesin復(fù)合物核心成分相互作用,可獨立于募集到部分結(jié)合的增強(qiáng)子元件并介導(dǎo)成環(huán)構(gòu)象形成。敲低表達(dá)可導(dǎo)致結(jié)合位點H3K4me1表觀修飾的降低和成環(huán)構(gòu)象破壞,進(jìn)而抑制驅(qū)動的基因表達(dá)和肌細(xì)胞分化過程[63]。介導(dǎo)的成環(huán)構(gòu)象在小鼠嗅覺受體的選擇型表達(dá)中也發(fā)揮重要作用。小鼠基因組中共有1000多個嗅覺受體基因,分布在18條不同染色體上[87]。每個成熟的嗅感覺神經(jīng)元只表達(dá)一個嗅覺受體基因[88]。在水平基底細(xì)胞(horizontal basal cells)分化最終產(chǎn)生嗅感覺神經(jīng)元的過程中,染色質(zhì)高級構(gòu)象分析顯示,隨機(jī)的某個嗅覺受體基因與63個處于不同染色體上的增強(qiáng)子相互作用,反式激活該嗅覺受體基因的表達(dá)。蛋白結(jié)合在這些稱為“希臘小島”(Greek islands)的嗅覺受體基因增強(qiáng)子上,通過其LIM結(jié)構(gòu)域和輔因子結(jié)合,穩(wěn)定“希臘小島”間的反式染色質(zhì)相互作用并促進(jìn)關(guān)聯(lián)嗅覺受體基因的表達(dá)[64]。另外,還與多種神經(jīng)細(xì)胞以及心肌、乳腺和垂體的分化發(fā)育有關(guān)。介導(dǎo)的成環(huán)構(gòu)象及組織特異轉(zhuǎn)錄因子是否及如何參與調(diào)控在這些組織細(xì)胞分化成熟的過程尚有待進(jìn)一步探究。
目前大部分細(xì)胞分化的染色質(zhì)高級構(gòu)象研究是細(xì)胞群體上平均信號水平的反映,考慮到細(xì)胞的異質(zhì)性,尤其細(xì)胞分化作為一個動態(tài)過程異質(zhì)性更為明顯,在單細(xì)胞水平研究細(xì)胞分化的三維基因組結(jié)構(gòu)變化是未來的發(fā)展方向之一[8,18,40,89]。Hi-C策略需要通過酶切連接的方法檢測位點之間的相互作用,每個酶切片段只有兩個末端可與空間鄰近的片段連接,從而限制了單細(xì)胞Hi-C中復(fù)雜成環(huán)構(gòu)象,如轉(zhuǎn)錄工廠或者活性染色質(zhì)中心等結(jié)構(gòu)的鑒定。開發(fā)和優(yōu)化新的單細(xì)胞染色質(zhì)構(gòu)象檢測技術(shù)和分析方法,利用諸如串聯(lián)體連接分析法(concatemer ligation assay, COLA)[90]、不依賴鄰位連接的SPRITE[91]和阮一駿教授團(tuán)隊新發(fā)展的ChIA-Drop技術(shù)[92]等,在單細(xì)胞全基因組水平實現(xiàn)對多個成環(huán)構(gòu)象共定位情況的同時檢測;結(jié)合高分辨顯微成像和細(xì)胞原位捕獲等技術(shù)研究介導(dǎo)染色質(zhì)構(gòu)象形成的復(fù)合物組成等均有助于極大地促進(jìn)人們對細(xì)胞分化過程中三維基因組組織及其調(diào)控功能的認(rèn)識。
細(xì)胞分化成熟過程伴隨終末功能基因表達(dá)的顯著增加以及干性基因和其他組織細(xì)胞特異基因的表達(dá)抑制等轉(zhuǎn)錄組顯著變化。細(xì)胞基因組三維組織方式的改變?yōu)槠滢D(zhuǎn)錄組變化提供了結(jié)構(gòu)基礎(chǔ)。從基因的染色質(zhì)定位、染色體間的相互作用、A/B區(qū)室、TAD結(jié)構(gòu)和成環(huán)構(gòu)象等不同層次詳細(xì)考察細(xì)胞終末分化過程的染色質(zhì)高級構(gòu)象動態(tài)變化不但能促進(jìn)人們從理論上深入了解三維基因組多層次結(jié)構(gòu)的建立過程和機(jī)制,加深對染色質(zhì)高級構(gòu)象結(jié)構(gòu)和功能的認(rèn)識;也有助于人們對細(xì)胞分化成熟過程的理解,發(fā)現(xiàn)分化成熟過程中的關(guān)鍵時期、新的關(guān)鍵基因或者調(diào)控模式,為體外培養(yǎng)細(xì)胞的高效終末分化和相關(guān)疾病的診療提供基礎(chǔ)。
衷心感謝軍事醫(yī)學(xué)科學(xué)院生物工程研究所趙志虎研究員對本文提供的寶貴建議。
[1] Li GL, Ruan YJ, Gu RS, Du SM. Emergence of 3D geno-mics., 2014, 59(13): 1165–1172.李國亮, 阮一駿, 谷瑞升, 杜生明. 起航三維基因組學(xué)研究. 科學(xué)通報, 2014, 59(13): 1165–1172.
[2] Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation., 2002, 295(5558): 1306–1311.
[3] Zhao Z, Tavoosidana G, Sj?linder M, G?nd?r A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R. Circular chro-mosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra– and interchro-mosomal interactions., 2006, 38(11): 1341– 1347.
[4] Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C)., 2006, 38(11): 1348–1354.
[5] Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive mapping of long- range interactions reveals folding principles of the human genome., 2009, 326(5950): 289–293.
[6] Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J. Chromosome Conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements., 2006, 16(10): 1299–1309.
[7] Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, Chew EG, Huang PY, Welboren WJ, Han Y, Ooi HS, Ariyaratne PN, Vega VB, Luo Y, Tan PY, Choy PY, Wansa KD, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li H, Desai KV, Thomsen JS, Lee YK, Karuturi RK, Herve T, Bourque G, Stunnenberg HG, Ruan X, Cacheux-Rataboul V, Sung WK, Liu ET, Wei CL, Cheung E, Ruan Y. An oestrogen-receptor-alpha-bound human chromatin interactome., 2009, 462(7269): 58–64.
[8] Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, Lynch M, De Gobbi M, Taylor S, Gibbons R, Higgs DR. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment., 2014, 46(2): 205–212.
[9] Zheng H, Xie W. The role of 3D genome organization in development and cell differentiation., 2019, 20(9): 535–550.
[10] Cremer T, Cremer M. Chromosome territories., 2010, 2(3): a003889.
[11] Macville M, Veldman T, Padilla-Nash H, Wangsa D, O'Brien P, Schr?ck E, Ried T. Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements., 1997, 108(4–5): 299–305.
[12] Zhang Y, McCord RP, Ho YJ, Lajoie BR, Hildebrand DG, Simon AC, Becker MS, Alt FW, Dekker J. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations., 2012, 148(5): 908–921.
[13] Boyle S, Rodesch MJ, Halvensleben HA, Jeddeloh JA, Bickmore WA. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis., 2011, 19(7): 901–909.
[14] Heard E, Bickmore W. The ins and outs of gene regulation and chromosome territory organisation., 2007, 19(3): 311–316.
[15] Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS, Eskiw CH, Luo YY, Wei CL, Ruan YJ, Bieker JJ, Fraser P. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells., 2010, 42(1): 53–61.
[16] Morey C, Da Silva NR, Perry P, Bickmore WA. Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation., 2007, 134(5): 909–919.
[17] Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes., 2005, 3(5): e157.
[18] Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure., 2013, 502(7469): 59–64.
[19] Akhtar W, de Jong J, Pindyurin AV, Pagie L, Meuleman W, de Ridder J, Berns A, Wessels LF, van Lohuizen M, van Steensel B. Chromatin position effects assayed by thousands of reporters integrated in parallel., 2013, 154(4): 914–927.
[20] Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T. Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates., 2002, 99(7): 4424–4429.
[21] Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Gr?f S, Flicek P, Kerkhoven RM, van Lohuizen M, Reinders M, Wessels L, van Steensel B. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation., 2010, 38(4): 603–613.
[22] Song SH, Kim A, Ragoczy T, Bender MA, Groudine M, Dean A. Multiple functions of Ldb1 required for beta-globin activation during erythroid differentiation., 2010, 116(13): 2356–2364.
[23] Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P. Active genes dynamically colocalize to shared sites of ongoing transcription., 2004, 36(10): 1065–1071.
[24] Papantonis A, Cook PR. Transcription factories: genome organization and gene regulation., 2013, 113(11): 8683–8705.
[25] Zhou GL, Xin L, Song W, Di LJ, Liu G, Wu XS, Liu DP, Liang CC. Active chromatin hub of the mouse alpha- globin locus forms in a transcription factory of clustered housekeeping genes., 2006, 26(13): 5096– 5105.
[26] Faro-Trindade I, Cook PR. Transcription factories: structures conserved during differentiation and evolution., 2006, 34(Pt 6): 1133–1137.
[27] Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA. Chromatin organization by an interplay of loop extrusion and compartmental segregation., 2018, 115(29): E6697–E6706.
[28] Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions., 2012, 485(7398): 376–380.
[29] Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E. Spatial partitioning of the regulatory landscape of the X-inactivation centre., 2012, 485(7398): 381–385.
[30] Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G. Three- dimensional folding and functional organization principles of the drosophila genome., 2012, 148(3): 458–472.
[31] Sofueva S, Yaffe E, Chan WC, Georgopoulou D, Vietri Rudan M, Mira-Bontenbal H, Pollard SM, Schroth GP, Tanay A, Hadjur S. Cohesin-mediated interactions organize chromosomal domain architecture., 2013, 32(24): 3119–3129.
[32] Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J. Organization of the mitotic chromosome., 2013, 342(6161): 948–953.
[33] Smallwood A, Ren B. Genome organization and long- range regulation of gene expression by enhancers., 2013, 25(3): 387–394.
[34] Hou C, Li L, Qin ZS, Corces VG. Gene density, transcription, and insulators contribute to the partition of the drosophila genome into physical domains., 2012, 48(3): 471–484.
[35] Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RW, van de Corput MP, van de Werken HJ, Knoch TA, van IJcken WF, Grosveld FG, Ren B, Wendt KS. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells., 2014, 111(3): 996–1001.
[36] Phillips JE, Corces VG. CTCF: master weaver of the genome., 2009, 137(7): 1194–1211.
[37] Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, Huang X, Shamim MS, Shin J, Turner D, Ye Z, Omer AD, Robinson JT, Schlick T, Bernstein BE, Casellas R, Lander ES, Aiden EL. Cohesin loss eliminates all loop domains., 2017, 171(2): 305–320 e324.
[38] Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, Dekker J, Mirny LA, Bruneau BG. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization., 2017, 169(5): 930–944.e922.
[39] Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W, Haering CH, Mirny L, Spitz F. Two independent modes of chromatin organization revealed by cohesin removal., 2017, 551(7678): 51–56.
[40] Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M, Wohlfahrt KJ, Boucher W, O'Shaughnessy- Kirwan A, Cramard J, Faure AJ, Ralser M, Blanco E, Morey L, Sansó M, Palayret MGS, Lehner B, Di Croce L, Wutz A, Hendrich B, Klenerman D, Laue ED. 3D structures of individual mammalian genomes studied by single-cell Hi-C., 2017, 544(7648): 59–64.
[41] Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M, Kinrot S, Yamaya K, Boettiger AN, Zhuang XW. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells., 2018, 362(6413): eaau1783.
[42] Szabo Q, Jost D, Chang JM, Cattoni DI, Papadopoulos GL, Bonev B, Sexton T, Gurgo J, Jacquier C, Nollmann M, Bantignies F, Cavalli G. TADs are 3D structural units of higher-order chromosome organization in Drosophila., 2018, 4(2): eaar8082.
[43] Noordermeer D, de Laat W. Joining the loops: beta-globin gene regulation., 2008, 60(12): 824–833.
[44] Bulger M, Groudine M. Looping versus linking: toward a model for long-distance gene activation., 1999, 13(19): 2465–2477.
[45] Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P. Long-range chromatin regulatory interactions., 2002, 32(4): 623–626.
[46] Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J, Sim HS, Peh SQ, Mulawadi FH, Ong CT, Orlov YL, Hong S, Zhang Z, Landt S, Raha D, Euskirchen G, Wei CL, Ge W, Wang H, Davis C, Fisher-Aylor KI, Mortazavi A, Gerstein M, Gingeras T, Wold B, Sun Y, Fullwood MJ, Cheung E, Liu E, Sung WK, Snyder M, Ruan Y. Extensive promoter- centered chromatin interactions provide a topological basis for transcription regulation., 2012, 148(1–2): 84–98.
[47] Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape of gene promoters., 2012, 489(7414): 109–113.
[48] Kieffer-Kwon KR, Tang Z, Mathe E, Qian J, Sung MH, Li G, Resch W, Baek S, Pruett N, Gr?ntved L, Vian L, Nelson S, Zare H, Hakim O, Reyon D, Yamane A, Nakahashi H, Kovalchuk AL, Zou J, Joung JK, Sartorelli V, Wei CL, Ruan X, Hager GL, Ruan Y, Casellas R. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation., 2013, 155(7): 1507– 1520.
[49] Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen CA, Schmitt AD, Espinoza CA, Ren B. A high-resolution map of the three-dimensional chromatin interactome in human cells., 2013, 503(7475): 290–294.
[50] Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I, Schmierer B, Jolma A, Kivioja T, Taipale M, Taipale J. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites., 2013, 154(4): 801–813.
[51] Chien R, Zeng W, Kawauchi S, Bender MA, Santos R, Gregson HC, Schmiesing JA, Newkirk DA, Kong X, Ball AR, Jr., Calof AL, Lander AD, Groudine MT, Yokomori K. Cohesin mediates chromatin interactions that regulate mammalian β-globin expression., 2011, 286(20): 17870–17878.
[52] Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke A, Melnikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes., 2015, 112(47): E6456–E6465.
[53] Busslinger GA, Stocsits RR, van der Lelij P, Axelsson E, Tedeschi A, Galjart N, Peters JM. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl., 2017, 544(7651): 503–507.
[54] Palstra RJ, Simonis M, Klous P, Brasset E, Eijkelkamp B, de Laat W. Maintenance of long-range DNA interactions after inhibition of ongoing RNA polymerase II transcription., 2008, 3(2): e1661.
[55] Mitchell JA, Fraser P. Transcription factories are nuclear subcompartments that remain in the absence of transcription., 2008, 22(1): 20–25.
[56] Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, Dean A, Blobel GA. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor., 2012, 149(6): 1233–1244.
[57] Ray J, Munn PR, Vihervaara A, Lewis JJ, Ozer A, Danko CG, Lis JT. Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock., 2019, 116(39): 19431–19439.
[58] Isoda T, Moore AJ, He Z, Chandra V, Aida M, Denholtz M, Piet van Hamburg J, Fisch KM, Chang AN, Fahl SP, Wiest DL, Murre C. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate., 2017, 171(1): 103–119 e118.
[59] Hu GQ, Cui KR, Fang DF, Hirose S, Wang X, Wangsa D, Jin WF, Ried T, Liu PT, Zhu JF, Rothenberg EV, Zhao KJ. Transformation of accessible chromatin and 3D nucleome underlies lineage commitment of early T cells., 2018, 48(2): 227–242.e228.
[60] Bunting KL, Soong TD, Singh R, Jiang Y, Béguelin W, Poloway DW, Swed BL, Hatzi K, Reisacher W, Teater M, Elemento O, Melnick AM. Multi-tiered reorganization of the genome during b cell affinity maturation anchored by a germinal center-specific locus control region., 2016, 45(3): 497–512.
[61] Kieffer-Kwon KR, Nimura K, Rao SSP, Xu JL, Jung S, Pekowska A, Dose M, Stevens E, Mathe E, Dong P, Huang SC, Ricci MA, Baranello L, Zheng Y, Tomassoni Ardori F, Resch W, Stavreva D, Nelson S, McAndrew M, Casellas A, Finn E, Gregory C, St Hilaire BG, Johnson SM, Dubois W, Cosma MP, Batchelor E, Levens D, Phair RD, Misteli T, Tessarollo L, Hager G, Lakadamyali M, Liu Z, Floer M, Shroff H, Aiden EL, Casellas R. Myc regulates chromatin decompaction and nuclear architecture during B cell activation., 2017, 67(4): 566–578 e510.
[62] Phanstiel DH, Van Bortle K, Spacek D, Hess GT, Shamim MS, Machol I, Love MI, Aiden EL, Bassik MC, Snyder MP. Static and Dynamic DNA loops form AP-1-Bound activation hubs during macrophage development., 2017, 67(6): 1037–1048 e1036.
[63] Magli A, Baik J, Pota P, Cordero CO, Kwak IY, Garry DJ, Love PE, Dynlacht BD, Perlingeiro RCR. Pax3 cooperates with Ldb1 to direct local chromosome architecture during myogenic lineage specification., 2019, 10(1): 2316.
[64] Monahan K, Horta A, Lomvardas S. LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice., 2019, 565(7740): 448–453.
[65] Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, Xu X, Lv X, Hugnot JP, Tanay A, Cavalli G. Multiscale 3D genome rewiring during mouse neural development., 2017, 171(3): 557–572.e524.
[66] Rubin AJ, Barajas BC, Furlan-Magaril M, Lopez-Pajares V, Mumbach MR, Howard I, Kim DS, Boxer LD, Cairns J, Spivakov M, Wingett SW, Shi M, Zhao Z, Greenleaf WJ, Kundaje A, Snyder M, Chang HY, Fraser P, Khavari PA. Lineage-specific dynamic and pre-established enhancer- promoter contacts cooperate in terminal differentiation., 2017, 49(10): 1522–1528.
[67] Ediger BN, Lim HW, Juliana C, Groff DN, Williams LT, Dominguez G, Liu JH, Taylor BL, Walp ER, Kameswaran V, Yang J, Liu C, Hunter CS, Kaestner KH, Naji A, Li C, Sander M, Stein R, Sussel L, Won KJ, May CL, Stoffers DA. LIM domain-binding 1 maintains the terminally differentiated state of pancreatic β cells., 2017, 127(1): 215–229.
[68] Carpenter AC, Bosselut R. Decision checkpoints in the thymus., 2010, 11(8): 666–673.
[69] Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, Herrmann H, Blum H, Engelkamp D, Stewart CL, Leonhardt H, Joffe B. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation., 2013, 152(3): 584–598.
[70] Spilianakis CG, Flavell RA. Long-range intrachromo-somal interactions in the T helper type 2 cytokine locus., 2004, 5(10): 1017–1027.
[71] Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA. Interchromosomal associations between alternatively expressed loci., 2005, 435(7042): 637–645.
[72] Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, Wingett SW, Andrews S, Grey W, Ewels PA, Herman B, Happe S, Higgs A, LeProust E, Follows GA, Fraser P, Luscombe NM, Osborne CS. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C., 2015, 47(6): 598–606.
[73] Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping., 2014, 159(7): 1665–1680.
[74] Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W. The beta-globin nuclear compartment in development and erythroid differentiation., 2003, 35(2): 190–194.
[75] Zhai YN, Xu Q, Guo Y, Wu Q. Characterization of a cluster of CTCF-binding sites in a protocadherin regulatory region., 2016, 38(4): 323–336. 翟亞男, 許泉, 郭亞, 吳強(qiáng). 原鈣粘蛋白基因簇調(diào)控區(qū)域中成簇的CTCF結(jié)合位點分析. 遺傳, 2016, 38(4): 323–336.
[76] Ong CT, Corces VG. CTCF: an architectural protein bridging genome topology and function., 2014, 15(4): 234–246.
[77] Ghirlando R, Felsenfeld G. CTCF: making the right connections., 2016, 30(8): 881–891.
[78] Sun S, Del Rosario BC, Szanto A, Ogawa Y, Jeon Y, Lee JT. Jpx RNA activates xist by evicting CTCF., 2013, 153(7): 1537–1551.
[79] Hansen AS, Hsieh THS, Cattoglio C, Pustova I, Salda?a- Meyer R, Reinberg D, Darzacq X, Tjian R. Distinct classes of chromatin loops revealed by deletion of an RNA-Binding region in CTCF., 2019, 76(3): 395–411.e313.
[80] Salda?a-Meyer R, Rodriguez-Hernaez J, Escobar T, Nishana M, Jácome-López K, Nora EP, Bruneau BG, Tsirigos A, Furlan-Magaril M, Skok J, Reinberg D. RNA interactions are essential for CTCF-Mediated genome organization., 2019, 76(3): 412–422.e415.
[81] Stadhouders R, Thongjuea S, Andrieu-Soler C, Palstra RJ, Bryne JC, van den Heuvel A, Stevens M, de Boer E, Kockx C, van der Sloot A, van den Hout M, van Ijcken W, Eick D, Lenhard B, Grosveld F, Soler E. Dynamic long- range chromatin interactions control Myb proto-oncogene transcription during erythroid development., 2012, 31(4): 986–999.
[82] Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing., 2011, 479(7371): 74–79.
[83] Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, Abraham BJ, Cohen MA, Nabet B, Buckley DL, Guo YE, Hnisz D, Jaenisch R, Bradner JE, Gray NS, Young RA. YY1 is a Structural Regulator of enhancer- promoter loops., 2017, 171(7): 1573–1588.e1528.
[84] Heidari N, Phanstiel DH, He C, Grubert F, Jahanbani F, Kasowski M, Zhang MQ, Snyder MP. Genome-wide map of regulatory interactions in the human genome., 2014, 24(12): 1905–1917.
[85] Ye BY, Shen WL, Wang D, Li P, Zhang Z, Shi ML, Zhang Y, Zhang FX, Zhao ZH. ZNF143 is involved in CTCF- mediated chromatin interactions by cooperation with cohesin and other partners., 2016, 50(3): 496–503.
[86] Deng W, Rupon JW, Krivega I, Breda L, Motta I, Jahn KS, Reik A, Gregory PD, Rivella S, Dean A, Blobel GA. Reactivation of developmentally silenced globin genes by forced chromatin looping., 2014, 158(4): 849–860.
[87] Magklara A, Yen A, Colquitt BM, Clowney EJ, Allen W, Markenscoff-Papadimitriou E, Evans ZA, Kheradpour P, Mountoufaris G, Carey C, Barnea G, Kellis M, Lomvardas S. An epigenetic signature for monoallelic olfactory receptor expression., 2011, 145(4): 555–570.
[88] Monahan K, Lomvardas S. Monoallelic expression of olfactory receptors., 2015, 31: 721–740.
[89] Flyamer IM, Gassler J, Imakaev M, Brand?o HB, Ulianov SV, Abdennur N, Razin SV, Mirny LA, Tachibana- Konwalski K. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition., 2017, 544(7648): 110–114.
[90] Darrow EM, Huntley MH, Dudchenko O, Stamenova EK, Durand NC, Sun Z, Huang SC, Sanborn AL, Machol I, Shamim M, Seberg AP, Lander ES, Chadwick BP, Aiden EL. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture., 2016, 113(31): E4504–E4512.
[91] Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, Lai MM, Shishkin AA, Bhat P, Takei Y, Trinh V, Aznauryan E, Russell P, Cheng C, Jovanovic M, Chow A, Cai L, McDonel P, Garber M, Guttman M. Higher-order inter-chromosomal hubs shape 3D Genome organization in the nucleus., 2018, 174(3): 744– 757.e724.
[92] Zheng M, Tian SZ, Capurso D, Kim M, Maurya R, Lee B, Piecuch E, Gong L, Zhu JJ, Li Z, Wong CH, Ngan CY, Wang P, Ruan X, Wei CL, Ruan Y. Multiplex chromatin interactions with single-molecule precision., 2019, 566(7745): 558–562.
Molecular mechanism of the 3D genome structure and function regulation during cell terminal differentiation
Ke Yang, Zheng Xue, Xiang Lv
The eukaryotic chromatin is folded into highly complex three-dimensional (3D) structures, which plays an important role in the precise regulation of gene expression and normal physiological function. During differentiation and terminal maturation, cells usually undergo dramatic morphology and gene expression changes, accompanied by significant changes in the 3D structure of the genome. In this review, we provide a comprehensive view of the spatial hierarchical organization of the genome, including chromosome territories, A/B compartment, topologically associating domains (TADs) and looping, focusing on recent progresses in the dynamic 3D genomic structural changes and functional regulation during cell differentiation and terminal maturation. In the end, we summarize the unsolved issues as well as prospects of the 3D genome research in cell differentiation and maturation.
3D genome; A/B compartment; topologically associating domain (TAD); looping; cell terminal differentiation
2019-09-05;
2019-12-13
國家重點研發(fā)計劃干細(xì)胞及轉(zhuǎn)化研究專項(編號:2016YFA0100603),中國醫(yī)學(xué)科學(xué)院醫(yī)學(xué)與健康科技創(chuàng)新工程協(xié)同創(chuàng)新團(tuán)隊項目(編號:2016-I2M-3-002)和國家自然科學(xué)基金面上項目(編號:81670108) 資助[Supported by the National Key Research and Development Program for Stem Cells and Transformation Research (No. 2016YFA0100603), Chinese Academy of Medical Sciences Medical and Health Science and Technology Innovation Engineering Collaborative Innovation Team Project (No. 2016-I2M-3-002) and General Program of the National Natural Science Foundation of China (No. 81670108)]
楊科,博士研究生,研究方向:造血調(diào)控與三維基因組。E-mail: yangk_92@163.com
呂湘,博士,教授,研究方向:造血調(diào)控與三維基因組。E-mail: lvxiang@pumc.edu.cn
10.16288/j.yczz.19-270
2019/12/26 9:41:30
URI: http://kns.cnki.net/kcms/detail/11.1913.r.20191224.1742.004.html
(責(zé)任編委: 方向東)