趙方杰,謝婉瀅,汪 鵬
土壤與人體健康*
趙方杰,謝婉瀅,汪 鵬
(南京農業(yè)大學資源與環(huán)境科學學院,南京 210095)
土壤可以通過多條途徑對人體健康產生正面或負面的影響。本文從土壤通過食物鏈提供人體必需的礦質營養(yǎng)、人體來自于土壤-食物鏈的有害重金屬暴露、以及土壤中抗生素抗性基因傳播等方面探討土壤與人體健康的關系。土壤對人體健康的影響具有非均等性,貧困地區(qū)與低收入群體往往更容易受到土壤對人體健康的負面影響。在未來人口增長與全球氣候變化雙重壓力下,土壤與人體健康的關系將變得更為突出。本文還提出了消減土壤對人體健康負面影響的一些干預措施選項及未來的研究方向。
人體健康;礦質營養(yǎng);重金屬;抗生素抗性基因
眾所周知,土壤具有多種功能,如農業(yè)生產和生態(tài)服務功能,這些功能對人類生存和生態(tài)環(huán)境起重要作用。土壤還和人體健康息息相關,健康的土壤是健康的人體的一個重要保障。
土壤可以通過多條途徑影響人體健康,這些影響既有正面的,也有負面的,既有直接的,也有間接的[1-2]。例如,人體所必需的礦質養(yǎng)分大部分來自土壤,土壤中礦質養(yǎng)分缺乏也會導致人體養(yǎng)分缺乏;土壤中的各種污染物可以通過食物鏈傳遞進入人體,影響人體健康;土壤中存在多種人體致病菌,抗生素抗性基因的傳播可能提高這些致病菌的風險;土壤的微生物組可能也會影響人體的微生物組,從而間接影響人體健康;土壤還會通過影響地下水和空氣質量影響人體健康。
雖然土壤與人體健康關系密切,但是要確立并量化二者之間的因果關系難度很大。這是因為人群和食品的移動性,模糊了土壤與居民的直接聯(lián)系,城市化和物聯(lián)網的興起,也使得食品來源更加多樣化。歷史上出現(xiàn)的一些地方病,由于人群和食品的流動而逐漸消失。此外,要確立土壤與人體健康的關系,需要大量的人體健康和流行病學數(shù)據(jù),這些數(shù)據(jù)往往難于獲取。
本文將舉幾個例子探討土壤與人體健康的關系,并提出可能的干預措施及未來的研究方向。
人體需要至少20種礦質元素、13種維生素、9種氨基酸和2種脂肪酸[3]。土壤通過食物鏈向人體供應礦質營養(yǎng),但是這個供應鏈并不能滿足人體對某些礦質元素的需求,最典型的例子包括鈉、碘、硒、鐵、鋅。其中,鈉、碘和硒在地表巖石風化、土壤形成的漫長過程中容易淋失,遷移進入海洋,而且這三種元素均是動物必需而植物不需要的礦質元素,因此,土壤中這些元素的缺乏不會影響植物生長,但會影響人體健康。所以,人類早已知道需要通過食鹽補充鈉的供應。歷史上,由于國家對食鹽專賣權的控制,食鹽成了國家稅收和鹽商致富的重要商品。不但人體需要補充鈉,土壤中的一些食草動物也受鈉不足的制約。Kaspari等在亞馬遜熱帶雨林做過一個有趣的試驗[4-5],向土壤添加食鹽大幅度增加螞蟻和白蟻的數(shù)量,加快凋落物的分解和土壤碳循環(huán)。為什么動物需要鈉而植物不需要?鈉在動物體內的主要功能是維持細胞內外的滲透壓平衡,防止細胞內的溶解質滲漏。生命起源于海洋,海水中豐富的鈉離子成為調節(jié)細胞滲透壓平衡的最佳選擇,演化到陸地上的動物保持了這一特性。與動物不同,陸地植物演化出通過液泡和細胞壁調節(jié)滲透壓平衡和防滲漏的功能,而液泡里調節(jié)滲透壓平衡的物質主要是鉀離子和有機酸。
鈉屬于大量元素,碘則是人體需求量很少的微量元素。與鈉相似,人們發(fā)現(xiàn)廣大的內陸地區(qū)食品中碘含量不能滿足人體需求,影響甲狀腺功能,向食鹽添加微量碘是解決人體缺碘的有效方法。Cao等[6]在新疆南部進行試驗,通過向灌溉水添加碘酸鉀提高土壤碘含量3倍、作物碘含量2倍,并使得動物和人體碘的攝入量顯著增加。然而,人體碘需求有個安全閾值,當攝入碘過量也會引起甲狀腺功能紊亂。
硒是另一個對人體健康有廣泛影響的微量元素,人體含有20多種含硒的酶,硒對甲狀腺激素代謝、抗氧化和免疫系統(tǒng)功能起重要作用[7]。不同國家推薦的硒攝入量為50~70mg·d–1。據(jù)估計,全球5億~10 億人口硒攝入量不足[8]。我國存在一個從東北黑龍江到西南川藏高原窄長的缺硒帶,斜跨16個省或自治區(qū),居住人口達1億以上。這個地帶土壤和農產品硒含量很低,兩個與缺硒相關的地方病,即克山?。↘eshan Disease)和大骨節(jié)?。↘ashin-Beck Disease),均出現(xiàn)在這個地帶[9-11]。克山病患者主要是15歲以下的兒童和育齡階段的婦女,患者表現(xiàn)為心功能不全、心臟擴大、心律失常,血液和頭發(fā)硒含量遠低于正常人的水平,每周服用0.5~1 mg亞硒酸鈉可有效防治克山病[9-10]。除了嚴重缺硒,病毒感染可能也是克山病的病因之一[7]。大骨節(jié)病是一種慢性和變形性骨關節(jié)病,主要影響兒童四肢和關節(jié)軟骨,致其變性和深層細胞壞死。我國20世紀90年代有一百萬至三百萬患者,目前仍有六十多萬患者[12]。大骨節(jié)病的病因仍然不清楚,但與缺硒、缺碘有關,谷物的霉菌毒素及飲用水較高的富里酸可能也是致病的原因[7,12-13]。
克山病和大骨節(jié)病主要發(fā)生在相對較為貧困的農民家庭,他們的食品種類少,來源單一,因此土壤缺硒很容易造成硒攝入量不足。目前市場上有多種富硒食品,但是由于經濟原因,這些富硒食品很難到達最需要補硒的人群中。向克山病、大骨節(jié)病發(fā)病區(qū)域人群提供硒片是防治疾病的有效手段,但是對于占多數(shù)的硒攝入量不足但又沒有顯示病癥的人群,這個方法相對難于執(zhí)行。在食鹽中添加硒也不合適,因為與缺鈉或缺碘不同,缺硒是局部的,缺硒帶周邊甚至還有個別地區(qū)土壤富硒造成硒中毒現(xiàn)象。一種有效的辦法是在缺硒帶土壤施用少量硒肥,增加農產品硒含量。芬蘭在20世紀80年代采取全國性措施,在復合肥中添加少量硒,相當于每公頃農田施用3~10 g硒,使得全國人口硒的平均攝入量由原來的25mg·d–1增加到110mg·d–1[14-16]。Broadley 等[17]在英國進行的大田試驗表明,每公頃施用10 g硒(硒酸鈉)可提高小麥籽粒硒含量10倍左右,達到對人體足夠的水平。對于我國缺硒帶,尤其是大骨節(jié)病流行較嚴重的川藏地區(qū),在復合肥中添加少量硒可能是提高當?shù)鼐用裎鴶z入量的有效辦法。
為什么我國會存在一個斜跨東北—西南的缺硒帶?Blazina 等[18]認為,缺硒帶正好處于東亞夏季季風帶來的降雨的邊界,源自海洋的降雨是硒的重要來源,海水中的硒通過海洋浮游生物的甲基化揮發(fā)到大氣中,在大氣的傳輸過程中重新氧化成為無機硒酸鹽、亞硒酸鹽,隨降雨沉降到土壤中,我國土壤硒含量呈現(xiàn)由東南沿海向缺硒帶遞減的規(guī)律,與東亞季風帶來的降雨量分布規(guī)律相似,而缺硒帶的西北面土壤硒含量主要受降塵影響。Jones等[19]在全球尺度上對土壤硒含量進行分析,得到影響硒含量的7個參數(shù),包括干旱指數(shù)(潛在蒸騰量與降水量之比)、土壤黏粒含量、蒸騰量、成土母巖類型、土壤pH、降水量和土壤有機質含量,其中干旱指數(shù)的影響最大,干旱指數(shù)越高,土壤硒含量越低,包含這7個參數(shù)的模型可預測全球3萬多份土壤硒含量變異的67%。他們用這個模型預測未來氣候變化對全球土壤硒含量的影響,預測至2080—2099 年間,58% 土地硒含量將下降(平均降幅8.4%),20% 土地硒含量變化很小,此外22%土地硒含量將增加(平均增幅 5.7%),農田土壤硒含量下降的比例高達66%(平均降幅8.7%)。推測在未來氣候變化情景中,缺硒人口的比例將會增加。
人體所需的微量元素中,鐵和鋅也經常缺乏。據(jù)估計,全球40% 的人口缺鐵、33%的人口缺鋅,主要影響發(fā)展中國家以禾谷類為主糧的人口[3,20-21]。有證據(jù)表明,綠色革命大幅度提高小麥產量的同時,也使得籽粒多種礦質養(yǎng)分含量顯著下降[22]。缺鐵、鋅的主要原因是禾谷類中這兩種元素含量普遍較低,而且由于植酸對鐵、鋅的結合,使得禾谷類中這兩種元素對人體的有效性很低。土壤中鐵的含量很高,但在中性至堿性條件下鐵的有效性很低,有些農作物容易缺鐵。稻田淹水后,土壤中部分鐵被還原為溶解度高的亞鐵,甚至可以導致水稻亞鐵毒害,但是水稻籽粒中鐵含量仍然較低,說明水稻對鐵向籽粒的轉運有著嚴格的控制。堿性土壤鋅的有效性也低,土壤鋅含量和pH是影響禾谷類鋅含量的重要因素,向土壤施用鋅肥或向作物葉面噴施鋅肥可以顯著提高籽粒鋅含量[23]。葉面噴施鋅、鐵、硒、碘混合溶液顯著提高小麥籽粒鋅、硒、碘含量,鐵含量也有小幅度增加[24]。對于禾谷類糧食,通過遺傳育種降低植酸含量是提高鐵、鋅人體有效性的一種策略。
土壤中可能存在的污染物種類繁多,包括有機污染物、無機污染物、生物污染物、放射性核素等,這些污染物可能通過多條途徑進入人體,影響人體健康。本文以我國土壤污染問題比較突出的無機污染物重金屬為例討論對人體健康的影響。
耕地土壤重金屬污染物主要有鎘、鎳、砷、銅、汞、鉛、鉻、鋅等,砷雖然不屬于重金屬,但由于其行為、來源、危害均與重金屬相似,通常也被列為重金屬考慮。土壤重金屬污染不僅會引起生態(tài)環(huán)境質量惡化,還會通過食物鏈傳遞進入人體,危害人體健康。就重金屬向農產品遷移行為而言,重金屬可以劃分為4類(表1)[25]。第一類是在土壤中溶解遷移能力較弱的元素,它們在土壤中生物有效性較低,如銀、金、鉻(III)、汞、錫等。第二類是在植物體內轉運能力較弱的元素,如鋁、汞、鉛等,這些元素往往積累在根部,很少向植物地上部及可食部位轉移。第三類是過量時會對植物生長造成明顯毒害的元素,如銅、錳、鋅等,對植物的毒害很大程度上會限制這些元素到達人們的餐桌。第四類是向農產品有較高遷移能力的元素,這些元素在對植物產生毒性之前可能就會對人體健康產生影響,如鎘、硒、鉬等。由于淹水稻田的厭氧條件和水稻對三價砷較強的吸收能力,稻米也會積累較高的砷[26],因此對于水稻而言,砷也歸入第四類。根據(jù)這一概念,針對第二和第三類重金屬,我們應該更多地關注其生態(tài)安全風險,而針對第四類重金屬,我們應關注其對農產品安全以及人體健康的影響。我國的快速工業(yè)化導致了部分耕地土壤重金屬污染嚴重,第四類重金屬鎘和砷處在我國耕地土壤污染物之前列,分別有7%和3%耕地土壤點位鎘、砷超標[27]。土壤污染導致了農產品鎘、砷超標問題嚴重,例如我國南方部分污染地區(qū),稻米鎘含量超標高達60%~80%[28-32],砷超標高達40%~50%[32]。因此,鎘、砷已經成為威脅我國農產品安全最突出的兩個污染元素。
表1 重金屬從土壤向農產品遷移能力分類(基于Chaney等[25]提出的概念修改)
鎘是一種對人體有毒有害元素。鎘在人體滯留周期長,長達10~30年,主要在腎臟和骨骼中積累[33]。長期鎘的攝入會導致嚴重的健康問題,例如,高鎘的攝入會導致腎功能受損、骨質疏松以及癌癥發(fā)病率升高等健康問題[34-38]。鎘對人體毒害最為嚴重的疾病要數(shù)“痛痛病”。20世紀40、50年代,日本富山縣神通川流域曾發(fā)生一種疾病?;颊甙Y狀有全身發(fā)生骨痛、神經痛現(xiàn)象,行動困難,甚至呼吸都會導致疼痛,患病后期,患者骨骼軟化,四肢彎曲,脊椎變形,骨質疏松,極容易導致骨折?;颊咄床豢把?,此病因此得名“痛痛病”(Itai-Itai Disease)[39]。該病在當?shù)厥⑿?0~30年,確診患者410多例,其中死亡380多例[39]?!巴赐床 辈∫蚴怯捎诋?shù)鼐用耖L期食用鎘污染的大米而導致的鎘慢性中毒。此病一旦發(fā)生,尚無有效的治療方法?!巴赐床 币脖蝗毡径榈谝惶柇h(huán)境公害事件。日本神通川流域發(fā)生的“痛痛病”具有以下特征:土壤鎘有效性高、患者以大米為主食、患者主要為生育多胎的婦女。大米中鐵、鋅、鈣等人體必需的礦質營養(yǎng)相比其他糧食比較缺乏,而生育多胎的婦女又特別容易缺乏這些礦質營養(yǎng),可能導致婦女對鎘的吸收效率增加[40],因而容易受鎘的毒害。
結合當年日本爆發(fā)“痛痛病”地區(qū)的田間調研數(shù)據(jù)和流行病學資料,通過對比可以發(fā)現(xiàn)我國南方局部地區(qū)的稻米鎘濃度已經接近甚至超過日本發(fā)病地區(qū)[41],需要引起警覺。當年日本發(fā)病地區(qū)的田間調查發(fā)現(xiàn)稻米鎘平均含量為0.38 mg·kg–1(范圍0.02~0.95 mg·kg–1;=2 446)[42]。Zhu等[28]在湖南省長-株-潭地區(qū)田間調查了近4萬份稻米樣品,發(fā)現(xiàn)稻米鎘的平均含量高達0.43 mg·kg–1(范圍0.005~4.80 mg·kg–1)。鎘暴露高風險群體主要是自產自銷型的農戶家庭,他們食物來源較為單一,而且自產的糧食未經收購部門檢驗,長期食用鎘污染的糧食人群特別容易受土壤污染的危害。值得注意的是,“痛痛病”是長期慢性暴露引起的,鎘的健康風險具有隱蔽性,不能因現(xiàn)在未出現(xiàn)病例而掉以輕心。
我國目前的食品衛(wèi)生標準規(guī)定稻米鎘限量為0.2 mg·kg–1[43],這個標準嚴于聯(lián)合國糧農組織(FAO)和世界衛(wèi)生組織(WHO)2006年頒布的0.4 mg·kg–1限量標準[44]。通過鎘攝入量的計算可知,成年人(60 kg 體重)每天食用250 g 含0.2 mg·kg–1Cd 的大米,鎘的攝入量為0.83mg·kg–1體重·d–1,正好達到FAO/WHO制定的可容忍鎘攝入限量(Tolerable Cd intake)[33]。我國衛(wèi)生部2002年開展的中國居民營養(yǎng)與健康狀況調查表明,我國農村與城市成年人人均米及其制品食用量分別為每天246 g和218 g,南方省份成年人食用量更高,人均260~430 g之間[45]。因此,我們認為不宜將我國稻米鎘限量標準提高到FAO/WHO的限量水平。其實,F(xiàn)AO/WHO制定的小麥(歐美國家及我國北方人口的主糧)鎘限量標準也是0.2 mg·kg–1。
砷也是一種有毒有害的致癌物,長期攝入不僅會導致皮膚癌、膀胱癌和肺癌,還會引起心腦血管疾病、生長發(fā)育和代謝紊亂[46-48]。人體砷慢性中毒一個明顯特征是皮膚斑點性損傷,這也是皮膚癌的一個前兆。人體砷攝入的主要途徑是飲用水和膳食攝入。南亞及東南亞的一些國家由于抽提含砷量高的地下水飲用,造成了人類歷史上最大的群體中毒事件[49]。在這些國家,地下水還用于稻田灌溉,導致土壤和稻米砷含量增加[50]。對于飲用水砷含量未超標且以大米為主糧的人群,食用大米砷的攝入量可能高于飲用水砷的攝入量。中國、歐洲和美國等國的飲用水無機砷的限量標準是10 μg·L–1[46],人均每天飲水大約1.5 L,即使飲用含砷為10 μg·L–1飲用水,每天攝入無機砷為15 μg。相比而言,我國人群通過膳食攝入無機砷的量每天達42.5 μg[51],已經是美國環(huán)保署制定的參考劑量(Reference Dose,RfD)的2.4倍,致癌風險為10萬分之177。其中通過食用大米每天攝入無機砷為24.5 μg,占無機砷攝入總量的60%[51]。
通常認為無機砷對人體的毒性較有機砷毒性強,但是有機三價砷的毒性也很強,甚至強于無機砷。亞洲稻米中無機砷含量占總砷比例平均為78%,其他組份主要為二甲基砷(DMA)[52-53]。稻米中無機砷含量占比在全球范圍存在很大的變異,亞洲和歐洲生產的稻米無機砷比例普遍要高于美洲[52],在我國也存在較明顯的地理差異,呈現(xiàn)出無機砷比例南方稻米較北方稻米高[54]。導致稻米砷形態(tài)比例地理差異的原因不甚清楚,但可能與土壤微生物區(qū)系和土壤環(huán)境因素有關[52-55]。最近的研究表明,淹水還原條件下,水稻土中的硫酸鹽還原菌是驅動砷甲基化的主要微生物類群,而有些產甲烷古菌又會將甲基砷脫甲基,這兩個相反的過程決定了土壤中甲基砷的水平[56]。
膳食中砷的化學形態(tài)以無機砷為主。無機砷被人體吸收后,能夠被亞砷酸甲基轉移酶(AS3MT)轉化為有機砷,并通過尿液排除體外,因此尿液中砷的化學形態(tài)比例為10%~20% 無機砷、10%~20% MMA(一甲基砷)和60%~80% DMA[57-60]。人體基因自然變異會導致尿液DMA % 差異,這種代謝效率差異也是導致砷對不同人體毒性(例如,皮膚損傷)差異的重要原因[59-60]。人體將無機砷甲基化的過程中可能會產生毒性很強的有機三價砷中間產物或巰基砷化合物。
砷毒害敏感的群體是嬰幼兒和孕婦。嬰幼兒單位體重無機砷的攝入量是成人的2倍~3倍,且嬰幼兒身體對砷毒性更為敏感,嬰兒期的砷暴露會影響生長、嬰幼期的免疫能力和神經系統(tǒng)發(fā)育等一些終身的健康問題[61]。Signes-Pastor 等[62]發(fā)現(xiàn)嬰兒斷奶后食用輔助食品后尿液中砷的濃度是哺乳期的1.6倍。最新的一項研究也發(fā)現(xiàn),吃大米類食品的嬰兒尿液砷含量是不吃大米類食品嬰兒的2倍~3倍[61]。因此需要對嬰幼兒的大米輔助食品中砷的含量加強管理。世界衛(wèi)生組織食品法典委員會和聯(lián)合國糧農組織將大米無機砷的標準訂為0.2 mg·kg–1[63],鑒于嬰幼兒對砷的毒害更敏感,歐盟2016年把嬰幼兒大米輔助食品中無機砷安全標準提高到更嚴格的水平,即不超過0.1 mg·kg–1[64]。我們國家嬰幼兒谷類輔助食品無機砷的標準與大米砷標準一樣,均為0.2 mg·kg–1,鑒于我國嬰幼兒習慣米糊米湯作為輔食,結構過于單一,因此是否需要提高我國嬰幼兒大米輔食砷的標準有待進一步論證。
土壤污染是導致農產品鎘、砷含量超標的一個重要原因,解析并阻斷污染源是當務之急。此外,土壤條件、田間管理措施、作物種類和栽培品種也是影響農產品鎘、砷積累的重要因素。例如,土壤酸化可導致土壤鎘有效性大幅度提高,是我國南方稻米鎘含量超標的一個重要原因[28,65],施用石灰將土壤pH提高至6.5以上是降低稻米鎘含量的有效措施[66]。稻田淹水導致土壤中的鐵氧化物還原溶解,吸附態(tài)砷釋放到溶液中,并且五價砷還原為有效性更高的三價砷,這些過程是水稻吸收較多砷的重要原因[26]。即使土壤砷含量在背景值范圍內,稻米砷含量仍然可能超標。旱作或干濕交替是降低稻米砷含量的有效措施[67],但是會導致鎘含量增加[68]。如何解決稻田砷、鎘這對生物地球化學矛盾,達到同時阻控水稻對這兩種有害元素的積累,仍需進一步的研究。水稻品種間鎘、砷積累能力差異很大,通過多年多點篩選可以得到一些較為穩(wěn)定的低積累品種[69]。從長遠的角度看,需要通過分子遺傳分析挖掘低積累的優(yōu)異等位基因,在育種過程中將這些等位基因導入新品種中。近年來,對植物吸收與轉運重金屬的分子機制研究已經取得了很大進展[70],為通過生物技術降低農產品重金屬含量開辟了道路。例如,Tang等[71]采用CRISPR/Cas9技術編輯水稻基因,創(chuàng)制了低鎘雜交水稻材料。采用轉基因技術過量表達水稻本身的基因,可以大幅度降低稻米鎘含量,降幅達90%以上[72-73]。過量表達編碼三價砷轉運蛋白的或基因,也可顯著降低稻米砷含量[74]。如何高效移除土壤中的重金屬,也是一個重要的研究方向。采用鎘超積累植物可以在較短時間內將中輕度污染農田土壤鎘含量降低到環(huán)境質量標準以內[75-76]。
抗生素和抗生素抗性基因古已有之,土壤是二者的天然庫。臨床中使用的許多抗生素來源于可培養(yǎng)的土壤細菌或者真菌的次生代謝產物及其其衍生物[77]。作為微生物的次生代謝產物,天然條件下低濃度的抗生素往往并沒有“抗生”的作用,它們在微生物中行使著其他重要的功能,例如作為信號分子調控微生物的基因表達[78]??股貙毦囊种苹蛘邭缧ЧS著其濃度的增加才顯現(xiàn)。與抗生素同時存在的是抗生素抗性基因(Antibiotic resistance genes,ARGs),這些基因的表達使微生物產生對抗生素不同程度的耐性。在未受人類影響的環(huán)境中,ARGs大多只存在于產生抗生素的微生物以及以抗生素為營養(yǎng)底物的微生物中[79]。此外,許多微生物廣泛存在多藥物外排泵(Multidrug resistance efflux pumps),起到中間代謝產物解毒和信號傳導等功能,這些外排泵對一些抗生素也會表現(xiàn)抗性[79]。因此,在從未受人類影響的土壤中也能夠檢測到ARGs[80-81],這些可以被認為是土壤環(huán)境中的本底ARGs。然而,隨著人類活動對環(huán)境影響的加劇,土壤中ARGs的豐度、多樣性以及環(huán)境傳播能力均顯著增加,給人類健康帶來很大的風險。
抗生素自被發(fā)現(xiàn)后對細菌感染的良好療效使人們對其產生了過度依賴。然而,由于管控措施的滯后,抗生素的不合理使用甚至濫用的現(xiàn)象在全世界范圍都很普遍,這促使了ARGs在環(huán)境中的廣泛傳播,伴隨而來的是抗生素療效的銳減。大多數(shù)抗生素主要被用于人體細菌感染防治,因此抗性細菌和新型ARGs常常最早在人體內被發(fā)現(xiàn)[82]。抗生素、抗性細菌和ARGs隨醫(yī)療廢水和生活廢水進入城市污水處理系統(tǒng)。然而,現(xiàn)有的污水處理工藝很難去除抗生素和ARGs[83],因而城市污水處理廠中水及城市污泥是環(huán)境抗生素和ARGs的重要污染源。污水灌溉及污泥回用可將城市源的抗生素及ARGs引入土壤[84-85]。
全球范圍內將近一半的抗生素用于動物養(yǎng)殖業(yè),抗生素在動物養(yǎng)殖業(yè)中的使用也極大地促進了環(huán)境ARGs的富集及傳播。動物養(yǎng)殖業(yè)中的抗生素除了用于細菌感染治療外,常以低于治療劑量長期添加在飼料中,用于預防疾病以及促進動物生長[86]。在抗生素長期的選擇壓力下,動物糞便中常含有豐富的抗性細菌和ARGs。同時,抗生素由于不能被動物完全吸收或者代謝,會以較大比例匯集到動物糞便中[87]。堆肥或者厭氧發(fā)酵等工藝可以在一定程度上降低畜禽糞便中的抗生素和ARGs,但這些工藝的普及范圍還不夠廣,并且對抗生素和ARGs的去除效率還需進一步提高[87]。因此,畜禽糞肥作為肥料可將動物源的抗生素及ARGs引入土壤。雖然城市源或者動物源的微生物會由于不適應土壤環(huán)境而逐漸消失,但抗生素產生的選擇壓力可促使其中的ARGs通過水平基因轉移(horizontal gene transfer,HGT)被土壤微生物獲取,成為土壤抗生素抗性組的成員[88-89]。有些重金屬對ARGs具有共選擇的作用,因此重金屬污染也可能增加土壤微生物的抗生素抗性[90]。
隨著抗生素和ARGs污染的加劇,土壤中ARGs的水平轉移能力也增加[85,91-92]。HGT可使ARGs在不同種類的細菌之間轉移,促使ARGs在不同環(huán)境間傳播。環(huán)境中ARGs傳播的加劇導致了超級細菌事件在世界范圍內的頻發(fā)。典型的例子如攜帶NDM-1抗性基因的致病菌(如,,,等)感染事件從印度到世界范圍內的爆發(fā),這些感染事件中大多數(shù)菌株對除粘菌素和替加環(huán)素以外的抗生素都產生了抗性[93]。粘菌素被用于對抗這些超級細菌的最后防線。然而僅過了幾年,對粘菌素具有抗性的基因便在世界范圍內的環(huán)境及人體樣品中檢出[94-95]。一些土壤抗性細菌中的ARGs與人體病原菌中對應的基因具有100%的序列相似性,說明土壤ARGs在一定的條件下可轉移到人體致病菌中[91]。
此外,土壤中存在多種人體致病菌,例如可導致人體罹患破傷風的破傷風梭菌(),引起腸胃炎的產氣莢膜梭菌()等[96]??股卦卺槍ζ苽L的治療中起著重要的作用[97]。若感染人體的破傷風梭菌攜帶ARGs,將會加重治療難度,引發(fā)嚴重的健康風險。由于有效檢測措施的匱乏,明確由土壤ARGs傳播直接導致的抗生素治療失敗的案例甚少見于報道。但這并不意味著土壤ARGs傳播對人體健康就沒有危害。
針對環(huán)境ARGs的傳播的風險,我們應該遵循預警原則[98]。因為風險一旦變成危害,我們能夠選擇的抗生素已經很少。我們應盡快從多方面采取應對措施。首先,應從國家層面制定法律法規(guī)管理抗生素的銷售和使用,嚴格區(qū)分人用和獸用抗生素,逐步取消抗生素作為疾病預防藥物和促生長劑在養(yǎng)殖業(yè)中的使用。其次,在細菌感染治療中,盡量選用窄譜抗生素,避免更容易產生抗性的廣譜抗生素的使用。第三,針對城市污泥和動物糞便中的抗生素和ARGs污染,應開發(fā)經濟有效的消除方法并進行推廣,減少抗生素和ARGs在土壤及其他環(huán)境中的傳播。第四,加強宣傳教育,提高公眾對抗生素和ARGs的正確認識,在大眾層面合理使用抗生素。
人類面臨著人口增長和全球氣候變化兩大挑戰(zhàn),二者均可能影響甚至重塑土壤與人體健康的關系。預計到21世紀中世界人口將增長至100億左右,這將對土壤資源施加越來越大的壓力,人類活動也將會排放更多的污染物進入土壤。與此同時,未來的全球氣候變化對生態(tài)系統(tǒng)將產生很大影響,空氣CO2濃度增加可能會對農產品中人體必需礦質養(yǎng)分含量起稀釋作用,從而加劇人體礦質微量元素的缺乏[99-100]。與此相反,增溫或增加CO2濃度可能會增加重金屬鎘在禾谷類作物籽粒中的積累[101-102]。保護土壤資源與土壤健康,是人類應對未來人口增長與全球氣候變化兩大挑戰(zhàn)中必須優(yōu)先考慮的一項任務。探討雙重壓力下的土壤與人體健康關系,也是未來土壤學研究的重要方向。
從本文列舉的幾個例子可以看出,土壤對人體健康的影響具有非均等性,收入低的社會弱勢群體可能更容易受到土壤對健康的負面影響。因此,研究土壤與人體健康關系時,必需更多地關注貧困地區(qū)與弱勢群體。消除土壤對人體健康負面影響的技術或措施,也必需針對并適宜于這些地區(qū)與群體。這就意味著,這些措施具有公益性質,單靠市場機制往往解決不了問題,政府干預可能是必需的選項。
土壤與人類生存息息相關,但很多人對土壤的健康問題往往視而不見,或者習以為常。近年來,有機農業(yè)的興起在某種程度上反映了人們對土壤健康的關注,雖然有機農產品是否比常規(guī)農產品更富營養(yǎng)尚無定論。互聯(lián)網與新媒體的崛起,對信息傳播起到極大的推動作用,但也使得很多似是而非、嘩眾取寵、甚至是反科學的言論盛行。向大眾傳播基于證據(jù)的科學知識,是科學家們越來越需要學會的一項重要任務。
[1] Oliver M A. Soil and human health:A review. European Journal of Soil Science,1997,48(4):573—592.
[2] Steffan J J,Brevik E C,Burgess L C,et al. The effect of soil on human health:An overview. European Journal of Soil Science,2018,69(1):159—171.
[3] Zhao F J,Shewry P R. Recent developments in modifying crops and agronomic practice to improve human health. Food Policy,2011,36:S94—S101.
[4] Kaspari M,Clay N A,Donoso D A,et al. Sodium fertilization increases termites and enhances decomposition in an Amazonian forest. Ecology,2014,95(4):795—800.
[5] Pennisi E. Ecosystems say ‘Pass the salt!’ Science,2014,343(6170):472—473.
[6] Cao X Y,Jiang X M,Kareem A,et al. Iodination of irrigation water as a method of supplying iodine to a severely iodine-deficient population in Xinjiang,China. Lancet,1994,344(8915):107—110.
[7] Fairweather-Tait S J,Bao Y,Broadley M R,et al. Selenium in human health and disease. Antioxidants & Redox Signaling,2011,14(7):1337—1383.
[8] Combs G F. Selenium in global food systems. British Journal of Nutrition,2001,85(5):517—547.
[9] Chen J. An original discovery:Selenium deficiency and Keshan disease(an endemic heart disease). Asia Pacific Journal of Clinical Nutrition,2012,21(3):320—326.
[10] Chen X,Yang G,Chen J,et al. Studies on the relations of selenium and Keshan disease. Biological Trace Element Research,1980,2(2):91—107.
[11] Tan J A,Zhu W Y,Wang W Y,et al. Selenium in soil and endemic diseases in China. Science of the Total Environment,2002,284(1/3):227—235.
[12] Guo X,Ma W J,Zhang F,et al. Recent advances in the research of an endemic osteochondropathy in China:Kashin-Beck disease. Osteoarthritis and Cartilage,2014,22(11):1774—1783.
[13] Stone R. A medical mystery in middle China. Science,2009,324:1378—1381.
[14] Eurola M,Ekholm P,Ylinen M,et al. Effects of selenium fertilization on the selenium content of cereal grains,flour,and bread produced in Finland. Cereal Chemistry,1990,67(4):334—337.
[15] Varo P,Alfthan G,Ekholm P,et al. Selenium intake and serum selenium in Finland—Effects of soil fertilization with selenium. American Journal of Clinical Nutrition,1988,48(2):324—329.
[16] Hartikainen H. Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology,2005,18(4):309—318.
[17] Broadley M R,Alcock J,Alford J,et al. Selenium biofortification of high-yielding winter wheat(L.)by liquid or granular Se fertilisation. Plant and Soil,2010,332(1/2):5—18.
[18] Blazina T,Sun Y,Voegelin A,et al. Terrestrial selenium distribution in China is potentially linked to monsoonal climate. Nature Communications,2014,5. DOI:10.1038/ncomms5717.
[19] Jones G D,Droz B,Greve P,et al. Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences of the United States of America,2017,114(11):2848—2853.
[20] The World Bank. Repositioning nutrition as central to development//A strategy for large-scale action. Washington:The International Bank for Reconstruction and Development/The World Bank,2006.
[21] White P J,Broadley M R. Biofortification of crops with seven mineral elements often lacking in human diets- iron,zinc,copper,calcium,magnesium,selenium and iodine. New Phytologist,2009,182(1):49—84.
[22] Fan M S,Zhao F J,F(xiàn)airweather-Tait S J,et al. Evidence of decreasing mineral density in wheat grain over the last 160 years. Journal of Trace Elements in Medicine and Biology,2008,22:315—324.
[23] Cakmak I,Kutman U B. Agronomic biofortification of cereals with zinc:A review. European Journal of Soil Science,2018,69(1):172—180.
[24] Zou C,Du Y,Rashid A,et al. Simultaneous biofortification of wheat with zinc,iodine,selenium and iron through foliar treatment of a micronutrient cocktail in six countries. Journal of Agricultural and Food Chemistry,2019,67:8096—8106.
[25] Chaney R L. Health risks associated with toxic metals in municipal sludge//Bitton G. Sludge:Health risks of land applications. Ann Arbor,Michigan:Ann Arbor Science Publisher,1980:59—83.
[26] Zhao F J,McGrath S P,Meharg A A. Arsenic as a food-chain contaminant:Mechanisms of plant uptake and metabolism and mitigation strategies. Annual Review of Plant Biology,2010,61:535—559.
[27] Ministry of Environmental Protection,Ministry of Land and Resources. National Soil Pollution Survey Bulletin. http://www.gov.cn/foot/2014-04/17/content_2661768. htm. [環(huán)境保護部,國土資源部. 全國土壤污染狀況調查公報. http://www.gov.cn/foot/2014-04/17/content_ 2661768.htm.]
[28] Zhu H H,Chen C,Xu C,et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environmental Pollution,2016,219:99—106.
[29] Du Y,Hu X F,Wu X H,et al. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan Province,central south China. Environmental Monitoring and Assessment,2013,185(12):9843—9856.
[30] Wang M,Chen W,Peng C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan,southern China. Chemosphere,2016,144:346—351.
[31] Chen H,Yang X,Wang P,et al. Dietary cadmium intake from rice and vegetables and potential health risk:A case study in Xiangtan,southern China. Science of the Total Environment,2018,639:271—277.
[32] Williams P N,Lei M,Sun G,et al. Occurrence and partitioning of cadmium,arsenic and lead in mine impacted paddy rice:Hunan,China. Environmental Science & Technology,2009,43(3):637—642.
[33] Joint FAO/WHO Expert Committee on Food Additives. Joint FAO/WHO Expert Committee on Food Additives seventy-third meeting. http://www.who.int/foodsafety/ publications/chem/summary73.pdf. Geneva:World Health Organization,2010.
[34] European Food Safety Authority. Cadmium dietary exposure in the European population. EFSA Journal 2012,10(1):2551—2588.
[35] Nordberg G,Jin T,Bernard A,et al. Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio,2002,31(6):478—481.
[36] Jin T,Nordberg G,Ye T,et al. Osteoporosis and renal dysfunction in a general population exposed to cadmium in China. Environmental Research,2004,96(3):353—359.
[37] Zhang W L,Du Y,Zhai M M,et al. Cadmium exposure and its health effects:A 19-year follow-up study of a polluted area in China. Science of the Total Environment,2014,470:224—228.
[38] Nordberg G F,Nogawa K,Nordberg M,et al. Chapter 23 - Cadmium // Handbook on the toxicology of metals. 3rded. Burlington:Academic Press,2007:445—486.
[39] Kasuya M. Present status of Itai-itai disease patients as of January 14,2001,Kankyo Hoken Report. 2002:41—54.
[40] Reeves P G,Chaney R L. Nutritional status affects the absorption and whole-body and organ retention of cadmium in rats fed rice-based diets. Environmental Science & Technology,2002,36(12):2684—2692.
[41] Wang P,Chen H,Kopittke P M,et al. Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution,2019,249:1038—1048.
[42] Nogawa K,Sakurai M,Ishizaki M,et al. Threshold limit values of the cadmium concentration in rice in the development of itai-itai disease using benchmark dose analysis. Journal of Applied Toxicology,2017,37(8):962—966.
[43] National Health and Family Planning Commission of China,China Food and Drug Administration. National food safety standard:Maximum levels of contaminants in food. GB2762—2017. [中華人民共和國國家衛(wèi)生和計劃生育委員會,國家食品藥品監(jiān)督管理總局. 食品安全國家標準—食品中污染物限量:GB2762—2017.]
[44] Codex Alimentarius Commission. Report of the 29th Session of the Codex Alimentarius Commission,ALINORM 06/29/41. Rome:Codex Alimentarius Commission,F(xiàn)AO,2006.
[45] Ministry of Environmental Protection. Exposure factors handbook of Chinese population:Adults. Bejing:China Environmental Science Press,2013:849. [環(huán)境保護部. 中國人群暴露參數(shù)手冊(成人卷). 北京:中國環(huán)境出版社,2013:849.]
[46] National Research Council. Arsenic in drinking water:2001 update. Washington,DC:National Academy Press,2001 .
[47] Smith A H,Steinmaus C M. Health effects of arsenic and chromium in drinking water:recent human findings. Annual Review of Public Health,2009,30:107—122.
[48] Chen Y,Parvez F,Gamble M,et al. Arsenic exposure at low-to-moderate levels and skin lesions,arsenic metabolism,neurological functions,and biomarkers for respiratory and cardiovascular diseases:Review of recent findings from the Health Effects of Arsenic Longitudinal Study(HEALS)in Bangladesh. Toxicology and Applied Pharmacology 2009,239(2):184—192.
[49] Fendorf S,Michael H A,van Geen A. Spatial and temporal variations of groundwater arsenic in south and southeast Asia. Science,2010,328(5982):1123—1127.
[50] Meharg A A,Rahman M. Arsenic contamination of Bangladesh paddy field soils:Implications for rice contribution to arsenic consumption. Environmental Science & Technology,2003,37(2):229—234.
[51] Li G,Sun G X,Williams P N,et al. Inorganic arsenic in Chinese food and its cancer risk. Environment International,2011,37(7):1219—1225.
[52] Zhao F J,Zhu Y G,Meharg A A. Methylated arsenic species in rice:Geographical variation,origin,and uptake mechanisms. Environmental Science & Technology,2013,47(9):3957—3966.
[53] Zhu Y G,Sun G X,Lei M,et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environmental Science & Technology,2008,42(13):5008—5013.
[54] Chen H,Tang Z,Wang P,et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environmental Pollution,2018,238:482—490.
[55] Zhao F J,Harris E,Yan J,et al. Arsenic methylation in soils and its relationship with microbial arsm abundance and diversity,and as speciation in rice. Environmental Science & Technology,2013,47(13):7147—7154.
[56] Chen C,Li L,Huang K,et al. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils. The ISME Journal,2019,13:2523—2535.
[57] Buchet J P,Lauwerys R,Roels H. Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite,monomethylarsonate,or dimethylarsinate in man. International Archives of Occupational and Environmental Health,1981,48(1):71—79.
[58] Chung J Y,Yu S D,Hong Y S. Environmental source of arsenic exposure. Journal of Preventive Medicine and Public Health,2014,47(5):253—257.
[59] Pierce B L,Tong L,Dean S,et al. A missense variant in FTCD is associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genetics,2019,15(3):e1007984.
[60] Pierce B L,Kibriya M G,Tong L,et al. Genome-wide association study identifies chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genetics,2012,8(2):e1002522.
[61] Karagas M R,Punshon T,Sayarath V,et al. Association of rice and rice-product consumption with arsenic exposure early in life. JAMA Pediatrics,2016,170(6):609—616.
[62] Signes-Pastor A J,Woodside J V,McMullan P,et al. Levels of infants’ urinary arsenic metabolites related to formula feeding and weaning with rice products exceeding the EU inorganic arsenic standard. PLoS One,2017,12(5):e0176923.
[63] Joint Food and Agriculture Organization of the United Nations/World Health Organization Codex Alimentarius Commission. Report of the eighth session of the codex committee on contaminants in foods. 2014.
[64] European Commission. Amending Regulation(EC)No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. 2015/2016.
[65] Zhao F J,Ma Y,Zhu Y G,et al. Soil contamination in China:Current status and mitigation strategies. Environmental Science & Technology,2015,49(2):750—759.
[66] Chen H,Zhang W,Yang X,et al. Effective methods to reduce cadmium accumulation in rice grain. Chemosphere,2018,207:699—707.
[67] Li R Y,Stroud J L,Ma J F,et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environmental Science & Technology,2009,43:3778—3783.
[68] Arao T,Kawasaki A,Baba K,et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science & Technology,2009,43(24):9361—9367.
[69] Duan G L,Shao G S,Tang Z,et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice,2017,10:9. DOI:10.1186/s12284-017- 0149-2.
[70] Clemens S,Ma J F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annual Review of Plant Biology,2016,67:489—512.
[71] Tang L,Mao B,Li Y,et al. Knockout ofusing the CRISPR/Cas9 system produces low Cd-accumulatingrice without compromising yield. Scientific Reports,2017,7,14438. DOI:10.1038/s41598-017- 14832-9.
[72] Ueno D,Yamaji N,Kono I,et al. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America,2010,107(38):16500—16505.
[73] Lu C,Zhang L,Tang Z,et al. Producing cadmium-free Indica rice by overexpressing OsHMA3. Environment International,2019,126:619—626.
[74] Sun S-K,Chen Y,Che J,et al. Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. New Phytologist,2018,219(2):641—653.
[75] Li Z,Wu L,Hu P,et al. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator. Environmental Pollution,2014,189:176—183.
[76] Zhao F J,Lombi E,McGrath S P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator. Plant and Soil,2003,249(1):37—43.
[77] Charlop-Powers Z,Owen J G,Reddy B V B,et al. Global biogeographic sampling of bacterial secondary metabolism. eLife,2015,4:e05048. DOI:10.7554 /eLife.05048
[78] Fajardo A,Martinez J L. Antibiotics as signals that trigger specific bacterial responses. Current Opinion in Microbiology,2008,11(2):161—167.
[79] Martinez J L. Antibiotics and antibiotic resistance genes in natural environments. Science,2008,321:365–367.
[80 ]Allen H K,Moe L A,Rodbumrer J,et al. Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. The ISME Journal,2008,3(2):243—251.
[81] Lang K S,Anderson J M,Schwarz S,et al. Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics. Applied and Environmental Microbiology,2010,76(15):5321—5326.
[82] Yong D,Toleman M A,Giske C G,et al. Characterization of a new metallo-β-lactamase gene,NDM-1,and a novel erythromycin esterase gene carried on a unique genetic structure insequence type 14 from India. Antimicrobial Agents and Chemotherapy,2009,53(12):5046—5054.
[83] Michael I,Rizzo L,McArdell C S,et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment:A review. Water Research,2013,47(3):957—995.
[84] Wang F H,Qiao M,Su J Q,et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environmental Science & Technology,2014,48(16):9079—9085.
[85] Xie W Y,McGrath S P,Su J Q,et al. Long-term impact of field applications of sewage sludge on soil antibiotic resistome. Environmental Science & Technology,2016,50(23):12602—12611.
[86] Castanon J I. History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Science,2007,86(11):2466–2471.
[87] Xie W Y,Shen Q,Zhao F J. Antibiotics and antibiotic-resistance from animal manures to soil:A review. European Journal of Soil Science,2018,69:181—195.
[88] Zhu Y G,Johnson T A,Su J Q,et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America,2013,110(9):3435—3440.
[89] Xie W Y,Yuan S T,Xu M G,et al. Long-term effects of manure and chemical fertilizers on soil antibiotic resistome. Soil Biology & Biochemistry,2018,122:111—119.
[90] Yu Z,Gunn L,Wall P,et al. Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production. Food Microbiology,2017,64:23—32.
[91] Forsberg K J,Reyes A,Wang B,et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science,2012,337(6098):1107—1111.
[92] Graham D W,Knapp C W,Christensen B T,et al.Appearance of β-lactam resistance genes in agricultural soils and clinical isolates over the 20thcentury. Scientific Reports,2016,6:21550.https://doi.org/10.1038/srep 21550.
[93] Rolain J M,Parola P,Cornaglia G. New Delhi metallo-beta-lactamase(NDM-1):towards a new pandemia? Clinical Microbiology and Infection,2010,16(12):1699—1701.
[94] Liu Y Y,Wang Y,Walsh T R,et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China:A microbiological and molecular biological study. The Lancet Infectious Diseases,2016,16(2):161—168.
[95] von Wintersdorff C J H,Wolffs P F G,van Niekerk J M,et al. Detection of the plasmid-mediated colistin- resistance genein faecal metagenomes of Dutch travellers. Journal of Antimicrobial Chemotherapy,2016,71(12):3416—3419.
[96] Palmer J S,Hough R L,West H M,et al. A review of the abundance,behaviour and detection of clostridial pathogens in agricultural soils. European Journal of Soil Science,2019,70:911—929.
[97] Brook I. Current concepts in the management ofinfection. Expert Review of Anti- infective Therapy,2008,6(3):327—336.
[98] Manaia C M. Assessing the risk of antibioticresistance transmission from the environment to humans:Non-direct proportionality between abundance and risk. Trends in Microbiology,2017,25:173—181.
[99] Myers S S,Zanobetti A,Kloog I,et al. Increasing CO2threatens human nutrition. Nature,2014,510(7503):139—143.
[100]Loladze I. Rising atmospheric CO2and human nutrition:toward globally imbalanced plant stoichiometry? Trends in Ecology & Evolution,2002,17(10):457—461.
[101]Ge L Q,Cang L,Liu H,et al. Effects of warming on uptake and translocation of cadmium(Cd)and copper(Cu)in a contaminated soil-rice system under Free Air Temperature Increase(FATI). Chemosphere,2016,155:1—8.
[102]Guo H,Zhu J,Zhou H,et al. Elevated CO2levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions. Environmental Science & Technology,2011,45(16):6997—7003.
Soil and Human Health
ZHAO Fangjie, XIE Wanying, WANG Peng
(College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095, China)
Soil can exert both positive and negative impacts on human health. In this paper, three aspects of the relationship between soil and human health are discussed: 1) supply of essential mineral nutrients from soil to humans; 2) human’s exposure to toxic heavy metals and metalloids via their transfer from soil to the food chain; and 3) the spread of antibiotic resistance genes in soil. Although soils, through the food chain, are a main source of many essential mineral nutrients for humans, for some nutrients the supply may not meet the requirements of humans, especially those elements that are required by animals but not by plants. Selenium is a typical example, which is deficient in the diets of many people due to low levels of this element in the soil. Agronomic biofortification through additions of selenium in fertilizers is an effective way to increase selenium intake in the population living in the low selenium areas. Human activities have caused contamination of soil with various types of organic and inorganic contaminants. Heavy metals and metalloids such as cadmium and arsenic can be transferred readily from soil to the edible organs of crop plants, posing a risk to human health. Soil contamination coupled with soil acidification has resulted in increased availability of cadmium in soil and elevated accumulation of this toxic metal in food crops. A number of strategies can be used to reduce the accumulation of heavy metals and metalloids in food crops, including methods to immobilize contaminants in soil, cultivar selection, breeding and genetic engineering to reduce heavy metal uptake or translocation in crop plants, phytoextraction of heavy metals and metalloids with hyperaccumulators to clean up contaminated soil. Overuse of antibiotics in humans and in animal production has resulted in increased antibiotic resistance in microorganisms in the environment, which may lead to the evolution of superbugs of human pathogens. Animal manures may contain high levels of antibiotic resistant microbes and resistance genes, which can disseminate into agricultural soil via manure applications. Urgent actions should be taken to control the overuse of antibiotics in animal production. Effective methods are also needed to decrease the abundance and diversity of antibiotic resistance microbes and genes in animal manures before application to soil. It is recognized that the impacts of soil on human health are uneven across the whole population; people living in poor areas or having a low income are often more vulnerable to the negative effects of soil on human health. The relationship between soil and human health will become more prominent in the future with the dual challenges of increasing population and global climate changes. Options to alleviate the negative impacts of soil on human health and future research directions are also discussed.
Human health; Mineral nutrients; Heavy metals; Antibiotic resistance genes
S153;X18
A
10.11766/trxb201907200376
趙方杰,謝婉瀅,汪 鵬. 土壤與人體健康[J]. 土壤學報,2020,57(1):1–11.
ZHAO Fangjie,XIE Wanying,WANG Peng. Soil and Human Health[J]. Acta Pedologica Sinica,2020,57(1):1–11.
* 國家自然科學基金項目(21661132001,41671309)資助 Supported by the National Natural Science Foundation of China(Nos. 21661132001,41671309)
趙方杰(1963—),男,福建安溪人,博士,教授。E-mail:Fangjie.Zhao@njau.edu.cn
2019–07–20;
2019–09–16;
2019–12–24
(責任編輯:盧 萍)