鄭麗霞,王玉書,劉 海,黃建國?
吡蟲啉對伯克霍爾德氏菌生長和溶磷作用的影響*
鄭麗霞1,王玉書1,劉 海1,2,黃建國1?
(1. 西南大學(xué)資源環(huán)境學(xué)院,重慶 400716;2. 貴州省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)科技信息研究所,貴陽 550006)
吡蟲啉;無機(jī)磷細(xì)菌;溶磷
吡蟲啉(Imidacloprid)又名氯化煙堿,是目前國內(nèi)外施用最廣、用量最大的新型煙堿類高效殺蟲劑,廣泛用于植物生產(chǎn)、寵物和野生動物等的寄生蟲防治。殺蟲譜廣、效果好、毒性低、不易產(chǎn)生抗性,對非靶標(biāo)生物—人、家畜、魚類和天敵昆蟲比較安全。但是,該殺蟲劑的殘留期較長,約25 d[1]。在作物蟲害防治過程中,吡蟲啉主要施于土壤和葉面或用于浸種,防治糧食作物、經(jīng)濟(jì)作物和蔬果蟲害,如飛虱、葉蟬和蚜蟲等多種刺吸式口器和咀嚼式口器害蟲[2-3]。吡蟲啉施用之后,經(jīng)直接或間接途徑進(jìn)入土壤[4],可能影響微生物生命活動、種群結(jié)構(gòu)和生態(tài)功能等,進(jìn)而影響土壤有機(jī)質(zhì)礦化、毒物降解、養(yǎng)分活化,氮素循化等生物化學(xué)過程[5-6]。用吡蟲啉防止豆科植物蟲害,根瘤數(shù)減少,瘤體減小,瘤重減輕,生物固氮受到抑制[7]。
在農(nóng)業(yè)生產(chǎn)中,磷是作物需要的“三要素”之一??扇苄粤追适┤胪寥乐?,由于強(qiáng)烈的固定作用,其利用率一般不超過25%[8-9]。為了滿足日益增長糧食需要,只得大量施用磷肥以維持作物產(chǎn)量。但大量施肥造成一系列生產(chǎn)、土壤和環(huán)境問題,如肥效降低、土壤磷積累、水體富營養(yǎng)化等。從全球土壤平均含磷量看,目前積累在土壤中的磷高達(dá)1 584 kg·hm–2,若能有效利用則可持續(xù)滿足約350年的作物生產(chǎn)需要[10]。因此,活化利用土壤中積累的磷有益于減施磷肥,保持農(nóng)業(yè)生產(chǎn)的可持續(xù)發(fā)展。在土壤中,無機(jī)磷細(xì)菌(Inorganic phosphate- solubilizing bacteria,IPSB)是重要的有益微生物,它們能分泌氫離子(H+)和低分子有機(jī)酸,包括草酸、乙酸、檸檬酸、琥珀酸、蘋果酸等,溶解或絡(luò)合沉淀土壤難溶性無機(jī)磷酸鹽中的鈣、鎂、鐵、鋁等,釋放可溶性磷,提高有效含量[11]。因此,利用IPSB挖掘利用土壤難溶性是供給作物磷素營養(yǎng),提高磷肥利用率重要策略之一[12-13]。
伯克霍爾德氏菌()分布廣泛,具有多種多樣的生理生態(tài)功能,它們不僅能溶解土壤難溶性無機(jī)磷酸鹽,增加有效磷含量,而且還能增強(qiáng)作物抗病能力,提高產(chǎn)量品質(zhì)[14-15]。在葡萄糖、草酸銨和氯化鈉組成的液體培養(yǎng)基中,P0417的溶磷能力與培養(yǎng)液pH密切相關(guān),H+分泌量越高,對Ca3(PO4)2溶解作用愈強(qiáng),溶磷量高達(dá)791.84 μg· mL–1[14]。在農(nóng)業(yè)生產(chǎn)中,使用化學(xué)農(nóng)藥防治病蟲害的現(xiàn)象十分普遍,其機(jī)理也有深入研究,但對土壤IPSB種群結(jié)構(gòu)和生理功能的影響研究甚少。為此,本研究以的3株IPSB為供試菌株,利用固體和液體培養(yǎng)技術(shù),設(shè)置不同濃度吡蟲啉處理,研究其生長繁殖、對Ca3(PO4)2溶解影響及其有關(guān)機(jī)理,目的是了解該農(nóng)藥對土壤IPSB種群結(jié)構(gòu)和溶磷作用的影響,為合理使用吡蟲啉提供科學(xué)依據(jù)。
IPSB菌株:3株伯克霍爾德氏菌(B05、B07和B09),分離自重慶市縉云山國家森林公園的砂巖黃壤(106o20′ E,29o49′ N,pH 4.34),保存于西南大學(xué)資源環(huán)境學(xué)院微生物—植物營養(yǎng)實(shí)驗(yàn)室。
固體培養(yǎng)基(g·L–1):10葡萄糖、2.5 Ca3(PO4)2、0.5 (NH4)2SO4、0.2 NaCl、0.1 MgSO4.7H2O、0.2 KCl、0.5酵母膏、0.002 MnSO4.4H2O、0.002 FeSO4.7H2O、20瓊脂、1 L蒸餾水,pH 7.0~7.5。液體培養(yǎng)基則含瓊脂。
吡蟲啉:吡蟲啉粉劑(含吡蟲啉10%),上海悅聯(lián)化工有限公司生產(chǎn)。
蒸汽滅菌(121℃,1.5 kPa,30 min,下同)固體培養(yǎng)基。取保藏菌株,劃線接種,25±1 ℃恒溫暗培養(yǎng)72 h,無菌生理鹽水洗滌,配成1′103cell·mL–1的菌懸液備用。在通常情況下,吡蟲啉在土壤中的殘留量≤10 mg·L–1,故當(dāng)培養(yǎng)基冷卻至50 ℃左右,加入吡蟲啉,形成0、5、10和20 mg·L–1等不同濃度的處理,依次簡稱為對照、低、中、高濃度(下同)。取10 mL尚未固化的培養(yǎng)基,轉(zhuǎn)移到直徑為6.0 cm的培養(yǎng)皿中,冷卻至常溫(25~30 ℃)后,分別在培養(yǎng)基中央接種0.1 mL 菌懸液,25±1 ℃暗培養(yǎng)7 d,重復(fù)5次,用菌落測定儀測量菌落和透明圈直徑,計(jì)算Ca3(PO4)2的溶解指數(shù)(溶磷指數(shù))[16]:
溶磷指數(shù) = (菌落直徑+透明圈直徑)/菌落直徑
取100 mL液體培養(yǎng)基,置于250 mL 三角瓶中,蒸汽滅菌,待冷卻至常溫(25~30 ℃)后分別加入吡蟲啉,形成0、5、10和20 mg·L–1等不同濃度的處理。然后,各接種1.0 mL菌懸液,搖床暗培養(yǎng)120 h(25±1 ℃、75 r·min–1),重復(fù)5次。
在培養(yǎng)至6、12、18、36、72、120 h時(shí),各吸取5.0 mL菌懸液,用XSP-6C顯微鏡(上海迪諾力泰公司生產(chǎn))觀測計(jì)數(shù)IPSB。然后,10 000 r·min–1離心10 min。取上清液,先用pH電極測定pH,再用鉬藍(lán)比色法測定無機(jī)磷含量[17],計(jì)算氫離子濃度(pH = –lg [H+])和溶磷量(培養(yǎng)液無機(jī)磷濃度-對照培養(yǎng)液無機(jī)磷濃度)×培養(yǎng)液體積)[18]。培養(yǎng)結(jié)束后,用0.1 mol·L–1HCl酸化培養(yǎng)液,離心去除固體物質(zhì),用D-7000高效液相色譜儀(Hitachi Ltd.,Tokyo,Japan)測定有機(jī)酸濃度。色譜條件為:L-7455二級管陣列檢測器,RezexRoa-Organic Acid 300離子交換柱(Phenomenex Ltd.,Los Angeles,USA),進(jìn)樣量20 μL,流動相2.5 mmol·L–1H2SO4,柱溫35℃,壓力3.1 MPa,流速0.5 mL·min–1,Diode Array L-7455紫外檢測器,檢測波長210 nm。檢測的有機(jī)酸為乙酸、琥珀酸、蘋果酸、檸檬酸和草酸等,出峰時(shí)間依次為23.92、19.47、16.05、13.73和11.60 min。
分別用 Excel 2010和SPSS 17.0進(jìn)行基本計(jì)算、方差分析和LSD多重比較,顯著水平為< 0.05;作圖軟件為SigmaPlot 12.5。
將供試菌株接種于固體培養(yǎng)基,隨培養(yǎng)基中吡蟲啉濃度提高,對IPSB的抑制作用顯著增強(qiáng),菌落直徑的降幅高達(dá)39.81%~55.45%(圖1,表1)。與之類似,B09的溶磷透明圈和溶磷指數(shù)顯著減小;但B05和B07則相反,透明圈直徑和溶磷指數(shù)增加,最大增幅分別為9.72%~19.44%和40.69%~106.94%。
在液體培養(yǎng)時(shí),由于菌株不同,IPSB的生長速率也不一樣(圖2)。培養(yǎng)120 h后,IPSB在培養(yǎng)液中的平均密度變化于9.07×108~26.56× 108cell·mL–1,B07和B9的密度無顯著差異,但顯著高于B05。隨吡蟲啉濃度提高,IPSB在培養(yǎng)液中的密度呈逐漸降低的趨勢,降幅高達(dá)49.87%~65.28%。
圖1 在含吡蟲啉的固體培養(yǎng)基上,3株IPSB的生長狀況和溶磷圈
表1 固體培養(yǎng)時(shí)吡蟲啉對IPSB生長和溶磷的影響
注:在同列中,有不同小寫字母者表示差異顯著(< 0.05),下同。Note:Means±standard deviations followed by different lowercase letters in each column are significantly different at< 0.05 level. The same below.
注:不同大寫表示菌株間差異顯著;不同小寫字母表示吡蟲啉濃度間差異顯著(P < 0.05)。Note:Different capital and lowercase letters above the bars indicate significant difference among fungal strains and among imidacloprid concentrations at 0.05 level,respectively.
由表2可知,供試驗(yàn)菌株均可分泌較多草酸和檸檬酸,二者合計(jì)超過有機(jī)酸分泌總量的67.65%,最高達(dá)83.28%。值得注意的是,IPSB分泌有機(jī)酸和H+的數(shù)量因菌株和吡蟲啉濃度不同而有所差異。
就分泌草酸而言,B05、B07和B09的平均分泌量分別為1.01、1.29和1.45 mmol·L–1。在培養(yǎng)液中加入吡蟲啉,隨濃度提高,對B07和B09分泌草酸的抑制作用增強(qiáng);但對B05的作用則相反,即吡蟲啉濃度越高,分泌草酸的速率反而增加,最大增幅達(dá)到35.63%。供試株菌株的檸檬酸分泌量B09 < B05 < B07,平均分泌速率變化于0.15~0.73 mmol·L–1之間。在含吡蟲啉的液體培養(yǎng)基中,B05分泌檸檬酸無顯著變化,B07的分泌速率增加,B09顯著降低;B09的乙酸分泌量低于檢測限,B05的乙酸分泌量顯著高于B07,分別為1.15~1.22 mmol·L–1和0.74~0.82 mmol·L–1。此外,在B05和B07的培養(yǎng)液中,未檢測到分泌蘋果酸;B09分泌蘋果酸的速率隨吡蟲啉濃度增加而降低,最大降低幅度超過67.95%;B05和B09不分泌琥珀酸,吡蟲啉對B07分泌琥珀酸無顯著影響,變化于0.64~0.65 mmol·L–1。
表2 IPSB培養(yǎng)液中的有機(jī)酸和H+濃度
注:ND表示未檢出 Note:ND,not detected
供試菌株H+平均分泌量依次為:B07(389.5mmol·L–1)、B09(172.2mmol·L–1)、B05(20.14mmol·L–1)。在培養(yǎng)液中加入不同濃度的吡蟲啉,促進(jìn)B05分泌H+;低濃度吡蟲啉對B07分泌H+有促進(jìn)作用;盡管低濃度吡蟲啉對B09分泌H+無顯著影響,但中、高濃度的吡蟲啉仍表現(xiàn)出顯著的抑制作用。
在培養(yǎng)液中,吡蟲啉對IPSB溶解Ca3(PO4)2的影響因菌株和濃度而異(圖3)。溶磷量B05最低、B09 次之、B07 最高。其中,B05和B09對Ca3(PO4)2的溶解量為=/(a+b),B07的溶磷量為=0+ a(1–e–bx)c(為培養(yǎng)時(shí)間)。此外,培養(yǎng)液中的吡蟲啉濃度越高,B05對Ca3(PO4)2的溶解量愈大;在高濃度的吡蟲啉培養(yǎng)液中,促進(jìn)B07但抑制B09溶解Ca3(PO4)2;在低濃度的吡蟲啉培養(yǎng)液中,B07和B09對Ca3(PO4)2的溶解量與對照無顯著差異。
圖3 在培養(yǎng)液中,吡蟲啉對IPSB溶磷量的影響
相關(guān)性分析表明,在B07和B09培養(yǎng)液中,Ca3(PO4)2的溶解量分別與有機(jī)酸和H+分泌總量呈極顯著線性正相關(guān);但是,B05對Ca3(PO4)2的溶解量與有機(jī)酸和H+分泌總量相關(guān)不顯著。將供試菌株作為整體進(jìn)行統(tǒng)計(jì)時(shí)發(fā)現(xiàn),Ca3(PO4)2的溶解量均與有機(jī)酸和H+分泌總量呈顯著線性正相關(guān)(有機(jī)酸= 0.876**,氫離子= 0.823*,= 12,**< 0.01,*< 0.05)。此外,IPSB的H+和有機(jī)酸分泌總量也呈顯著線性正相關(guān)(= 0.852*,= 12)。
化學(xué)農(nóng)藥對土壤微生物數(shù)量、活性、種群結(jié)構(gòu)及功能有重要影響[19]。當(dāng)濃度大于10 mg·L–1時(shí),吡蟲啉對供試IPSB的生長繁殖均有不同程度的抑制作用,在固體培養(yǎng)時(shí)菌落減小,液體培養(yǎng)時(shí)密度降低。據(jù)報(bào)道,吡蟲啉顯著抑制青海弧菌(Q67)、費(fèi)氏弧菌()和發(fā)光桿菌(T3)的生長繁殖,表現(xiàn)出較強(qiáng)生物毒性[20-21]。吡蟲啉抑制土壤硫酸鹽還原菌(Q235)產(chǎn)酸,可能減輕土壤酸化,但增強(qiáng)對金屬材料的腐蝕作用[22]。培養(yǎng)試驗(yàn)表明,吡蟲啉抑制水稻條紋病毒(Rice stripe virus)的NSvc4、CP、NS3和SP等多個(gè)基因的表達(dá),降低CP和SP基因所控制的蛋白質(zhì)合成[23];利用電子顯微鏡觀察還發(fā)現(xiàn),吡蟲啉可破壞某些微生物細(xì)胞內(nèi)的線粒體、細(xì)胞膜、高爾基體的結(jié)構(gòu),并使DNA發(fā)生斷裂、扭曲和形狀改變[23]。此外,在酶促作用下,吡蟲啉在昆蟲和微生物體內(nèi)發(fā)生去飽和、脫烷基、甲基化、羥基化、酯化和硝基化等一系列生物化學(xué)反應(yīng),產(chǎn)物包括胍、脲、5-羥基吡蟲啉和亞硝基胍等[25]。其中亞硝基胍為烷基化劑,可作用于DNA雙螺旋結(jié)構(gòu)中的多個(gè)靶點(diǎn),造成基因突變,使昆蟲和微生物代謝改變,生長繁殖異常,或使細(xì)胞形態(tài)發(fā)生畸變、解體、死亡[26]。
多數(shù)IPSB屬于根際微生物,除活化土壤難溶性無機(jī)磷酸鹽和改善植物磷素營養(yǎng)之外,還能合成植物激素和生長活性物質(zhì),如生長素、水楊酸、嘌呤類、細(xì)胞分裂素等,調(diào)節(jié)植物生長發(fā)育[27]。在加入吡蟲啉的固體和液體培養(yǎng)基中,不同程度地降低了供試IPSB的菌落直徑和在培養(yǎng)液中的密度,說明吡蟲啉抑制了它們的生長繁殖。與此同時(shí),B09溶解Ca3(PO4)2的能力降低,但隨吡蟲啉濃度提高,B05和B07對Ca3(PO4)2的溶解量增加,說明即使供試IPSB屬于同一個(gè)種,吡蟲啉對它們生長繁殖和溶解Ca3(PO4)2的影響也不完全相同。這意味著在農(nóng)業(yè)生產(chǎn)中,大量使用吡蟲啉可能改變土壤IPSB的群落結(jié)構(gòu),影響供試菌株對土壤難溶性無機(jī)磷酸鹽的溶解。
值得注意的是,類似于其他IPSB種群,供試3株伯克霍爾德氏菌均能分泌H+、草酸和檸檬酸,B07還能分泌琥珀酸和乙酸,B09分泌蘋果酸,B05分泌乙酸。菌株之間H+和各種有機(jī)酸的分泌量也有所不同,這意味著在不同供試菌株之間,H+和有機(jī)酸代謝(或分泌)各異。不同代謝(或分泌)途徑對吡蟲啉敏感性可能有所差異,這可能也是吡蟲啉對IPSB溶解Ca3(PO4)2產(chǎn)生不同影響的重要原因之一。在土壤中,IPSB分泌的H+和有機(jī)酸不僅能活化難溶性磷酸鹽,溶解鈣鎂,提高磷、鈣、鎂的生物有效性,而且還可溶解含鉀礦物,既能釋放鉀離子,又可減少鉀離子固定,提高鉀肥利用率[30]。此外,由于草酸、檸檬酸和蘋果酸等低分子有機(jī)酸絡(luò)合(沉淀)重金屬的能力較強(qiáng),故存在于根系周圍的有機(jī)酸可減少植物吸收重金屬,減輕危害[34]。在農(nóng)業(yè)生產(chǎn)中,防治蟲害施用的吡蟲啉進(jìn)入土壤之后,不同程度地抑制IPSB的生長繁殖,可能影響其種群結(jié)構(gòu)和溶磷功能。由于人工純培養(yǎng)試驗(yàn)與田間自然情況的差異較大,很有必要進(jìn)一步開展田間研究。
吡蟲啉不同程度地抑制IPSB繁殖生長,促進(jìn)B05和B07但降低B09的溶磷能力;供試菌株均能分泌H+和不同種類的有機(jī)酸,參與Ca3(PO4)2溶解;在不同菌株之間,有機(jī)酸代謝、H+分泌和溶解Ca3(PO4)2的機(jī)制有所不同,這可能是供試IPSB的溶磷作用對吡蟲啉產(chǎn)生不同響應(yīng)的主要原因之一。因此,在農(nóng)業(yè)生產(chǎn)中,施用吡蟲啉防治作物蟲害對土壤IPSB種群結(jié)構(gòu)和溶磷功能等的影響可能因IPSB株系不同而異。
[1] Cai D S,Huang X P,Jiang D J,et al. Study on the formulation of 70% imidacloprid WG. Guangdong Chemical Industry,2013,40(24):49—50. [蔡德勝,黃雪萍,蔣殿君,等. 70% 吡蟲啉水分散粒劑的研制. 廣東化工,2013,40(24):49—50.]
[2] Cang T,Wang Y H,Wu C X,et al. Acute toxicity risk assessment of neonicotinoid insecticides to Hon-eybees (L.). Asian Journal of Ecotoxicology,2017,12(4):285—292. [蒼濤,王彥華,吳長興,等. 新煙堿類殺蟲劑對蜜蜂的急性毒性及風(fēng)險(xiǎn)評價(jià). 生態(tài)毒理學(xué)報(bào),2017,12(4):285—292.]
[3] Wang J J,Han Z J,Wang Y C. A review on the toxicology of new nicotinyl insecticides. Acta Phytophylacica Sinica,2001,28(2):178—182. [王建軍,韓召軍,王蔭長. 新煙堿類殺蟲劑毒理學(xué)研究進(jìn)展. 植物保護(hù)學(xué)報(bào),2001,28(2):178—182.]
[4] Yu S Q. Study on residue of pesticide imidacloprid in water and soil. Chengdu:Southwest Jiaotong University,2016. [俞思綺. 農(nóng)藥吡蟲啉在水體和土壤中的殘留研究. 成都:西南交通大學(xué),2016.]
[5] Yang Q. Study on effects of planting years and pesticides on microbial number and enzyme activities in vegetables solar greenhouse soil. Lanzhou:Gansu Agricultural University,2013. [楊琴. 種植年限和農(nóng)藥對蔬菜日光溫室土壤微生物數(shù)量及酶活性影響的研究. 蘭州:甘肅農(nóng)業(yè)大學(xué),2013.]
[6] Zheng X Z,Ding H,Lei J J,et al. Effect of imidacloprid and chlorpyrifos on the transformation of urea nitrogen in soil. Chinese Journal of Pesticide Science,2013,15(6):648—654. [鄭祥洲,丁洪,雷俊杰,等. 吡蟲啉和毒死蜱對尿素氮在土壤中轉(zhuǎn)化的影響. 農(nóng)藥學(xué)學(xué)報(bào),2013,15(6):648—654.]
[7] Gong P,Sun T H,Li P J. Ecological effects of pesticides on soil microorganisms. Chinese Journal of Applied Ecology,1996,7(Sup):127—132. [龔平,孫鐵珩,李培軍. 農(nóng)藥對土壤微生物的生態(tài)效應(yīng). 應(yīng)用生態(tài)學(xué)報(bào),1996,7(增):127—132.]
[8] Yang M Y,Wang C H,Wu Z H,et al. Phosphorus dissolving capability,glucose dehydrogenase gene expression and activity of two phosphate solubilizing bacteria. Acta Microbiologica Sinica,2016,56(4):651—663. [楊美英,王春紅,武志海,等. 不同條件下兩株溶磷菌溶磷量及葡萄糖脫氫酶基因表達(dá)與酶活分析. 微生物學(xué)報(bào),2016,56(4):651—663.]
[9] Han X F,Xie D T,Gao M,et al. Effect of reduced phosphorus fertilizer combining organic fertilizers and phosphorus dynamics changes in purple soil. Journal of Soil and Water Conservation,2016,30(6):207—213. [韓曉飛,謝德體,高明,等. 紫色土減磷配施有機(jī)肥的磷肥效應(yīng)與磷素動態(tài)變化. 水土保持學(xué)報(bào),2016,30(6):207—213.]
[10] Pingale S S,Virkar P S. Study of influence of phosphate dissolving micro-organisms on yield and phosphate uptake by crops. Ciência & Saúde Coletiva,2017,19(9):3809—3818.
[11] Menezes-Blackburn D,Jorquera M A,Greiner R,et al. Phytases and phytase-labile organic phosphorus in manures and soils. Critical Reviews in Environmental Science and Technology,2013,43(9):916—954.
[12] Sreedevi S. Effect of hosphate solubilising bacteria bacillus IPSB24 on growth of tomato plants. ?International Journal of Current Microbiology and Applied Sciences,2016,5(7):311—320.
[13] Delfim J,Schoebitz M,Paulino L,et al. Phosphorus availability in wheat,in volcanic soils inoculated with phosphate-solubilizing bacillus thuringiensis. Sustainability,2018,DOI:10.3390/su10010144.
[14] Huang D M,Li Q,Guan G Q,et al. Selection,identification and medium optimization of a phosphate-solubilizing bacterium. Biotechnology Bulletin,2015,31(2):173—178. [黃達(dá)明,李倩,管國強(qiáng),等. 一株解磷細(xì)菌的篩選、鑒定及其溶磷培養(yǎng)條件的優(yōu)化. 生物技術(shù)通報(bào),2015,31(2):173—178.]
[15] Yang J,Jiang Y,Wang X T,et al. Screening and identification of several endophytic diazotrophs with high capability of phosphate solubilizing and potassium decomposing from. Journal of Agricultural Biotechnology,2016,24(2):186—195. [陽潔,江院,王曉甜,等. 幾株高效溶磷解鉀藥用稻內(nèi)生固氮菌的篩選與鑒定. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2016,24(2):186—195.]
[16] Wang Y S,Liu H,Yuan L. Negative allelopathic effects of root exudate ofon growth and phosphate dissolution of inorganic phosphorus bacteria. Acta Pedologica Sinica,2017,54(6):1486—1496. [王玉書,劉海,袁玲. 空心蓮子草根系分泌物對IPSB的負(fù)化感效應(yīng). 土壤學(xué)報(bào),2017,54(6):1486—1496.]
[17] Lu R K. Analytical methods for soil and agro-chemistry. Beijing:China Agricultural Science and Technology Press,2000. [魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版,2000.]
[18] Li J,Wang W L,Lu B L,et al. Selection and measurement of phosphate-solubilizing micro-organisms and their phosphate-dissolving ability in high calcium soil of Hexi corridor in Gansu Province(In Chinese). Agricultural Research in the Arid Areas,2008,26(2):7—10. [李娟,王文麗,盧秉林,等. 甘肅省河西高鈣土溶磷菌篩選及其溶磷能力初步研究. 干旱地區(qū)農(nóng)業(yè)研究,2008,26(2):7—10.]
[19] Karpouzas D G,Tsiamis G,Trevisan M,et al. “LOVE TO HATE” pesticides:Felicity or curse for the soil microbial community ? An FP7 IAPP Marie Curie project aiming to establish tools for the assessment of the mechanisms controlling the interactions of pesticides with soil microorganisms. Environmental Science & Pollution Research,2016,23(18):1—5.
[20] Zhu X W,Liu S S,Zhang Q,et al. Short-term and long-term toxicities of selected insecticides on phototobacteria.Research of Environmental Sciences,2009,22(5):589—594. [朱祥偉,劉樹深,張瓊,等. 殺蟲劑及抗生素對發(fā)光菌的短期毒性與長期毒性. 環(huán)境科學(xué)研究,2009,22(5):589—594.]
[21] Wu S H,Zhou D P,Xu Y T,et al. A cute toxicity of 18 kinds of pesticide to photobacteroa. Journal of Agro-Environment Science,2007,26(6):2267—2270. [吳淑杭,周德平,徐亞同,等. 18種農(nóng)藥對發(fā)光細(xì)菌的急性毒性研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2007,26(6):2267—2270.]
[22] Zhao L L,Zhao P,Sun C,et al. Reserch on the influence of pesticide to Q235 steel microbilogical corrosion. Journal of Shenyang Ligong University,2011,30(6):22—24. [趙琳琳,趙平,孫成,等. 殺蟲劑對Q235鋼微生物腐蝕影響的研究. 沈陽理工大學(xué)學(xué)報(bào),2011,30(6):22—24.]
[23]Wang S,F(xiàn)u H W,Yang Y Z. Stress effect of imidacloprid on RSV in rice plants. Chinese Journal of Applied Ecology,2014,25(12):3593—3599. [王爽,伏紅偉,楊益眾. 吡蟲啉對水稻體內(nèi)條紋病毒的脅迫效應(yīng). 應(yīng)用生態(tài)學(xué)報(bào),2014,25(12):3593—3599.]
[24] Karabay N U,Oguz M G. Cytogenetic and genotoxic effects of the insecticides,imidacloprid and methamidophos. Genetics and Molecular Research,2005,4(4):653—662.
[25] Fan Y J,Shi X Y,Gao X W. Research progresses on the metabolism of neonicotinoids imidacloprid and thiamethoxam. Chinese Journal of Pesticide Science,2012,14(6):587—596. [范銀君,史雪巖,高希武. 新煙堿類殺蟲劑吡蟲啉和噻蟲嗪的代謝研究進(jìn)展. 農(nóng)藥學(xué)學(xué)報(bào),2012,14(6):587—596.]
[26] Wang Q,Jin X H,Niu B L,et al. Mutagenesis breeding of nitrosoguanidine and optimization of fermentation conditions in high yield strain of Curdlan. Journal of Anhui Agricultural Sciences,2017,45(33):83—86,105. [王欽,靳曉菡,牛寶琳,等. 可得然膠高產(chǎn)菌株的亞硝基胍誘變育種及其發(fā)酵條件的優(yōu)化. 安徽農(nóng)業(yè)科學(xué),2017,45(33):83—86,105.]
[27] Zhao C X,Liu Q G,Zhang Z Y. Study on the ability of phosphoric bacteria and potassic bacteria in decomposing of phosphate and silicate. Journal of Hunan Agricultural University (Natural Sciences),2004,30(6):519—521. [趙晨曦,劉前剛,張志元. 磷鉀細(xì)菌解磷解鉀能力的研究. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,30(6):519—521.]
[28] Zhang H X,Zhang Q L,Wang Z S,et al. Pesticide degrading mechanism in soil. World Sci-tech R&D,2009,31(1):112—115. [張洪霞,張祺玲,王兆守,等. 土壤農(nóng)藥降解微生物及其作用機(jī)理. 世界科技研究與發(fā)展,2009,31(1):112—115.]
[29] Niu X G,Hua X Y,He S C. Studies on the potassium-disssolving ability of silicate bacteria. Chinese Journal of Soil Science,2005,36(6):950—953. [鈕旭光,華秀英,何隨成.硅酸鹽細(xì)菌解鉀活性的研究. 土壤通報(bào),2005,36(6):950—953.]
[30] Najafi S,Jalali M. Effect of heavy metals on pH buffering capacity and solubility of Ca,Mg,K,and P in non-spiked and heavy metal-spiked soils. Environmental Monitoring and Assessment,2016,https://doi.org/10. 1007/s10661-016-5329-9 .
[31] Fox T R,Comerford N B,Mcfee W W. Phosphorus and aluminium release from a spodic horizon mediated by organic acids. Soil Science Society of America Journal,1990,54(6):1763—1767.
[32] Gadd G M. Fungal production of citric and oxalic acid:Importance in metal speciation,physiology and biogeochemical processes. Advances in Microbial Physiology,1999,41:47—92.
[33] Chen S H. Analytical chemistry. Beijing:China Agriculture Press,2013. [陳時(shí)洪. 分析化學(xué). 北京:中國農(nóng)業(yè)出版社,2013.]
[34] Ding L,Shen S G,Liang S X,et al. Effect of different organic acids for heavy metal extraction from Pb,Zn and Cd contaminated soil. DEStech Transactions on Environment,Energy and Earth Science,2016,DOI:10.12783/dteees/edep2016/5898.
Effects of Imidacloprid on the Growth and P-Solubilization of
ZHENG Lixia1, WANG Yushu1, LIU Hai1, 2, HUANG Jianguo1?
(1. College of Resources and Environment, Southwest University, Chongqing 400716, China; 2. Institute of Agricultural Science and Technology Information, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China)
Imidacloprid, a new type of neonicotinoid insecticide with high pest control efficiency, is widely used in recent years. As this chemical insecticide has a long residual period (about 25 days), it is necessary to evaluate risks it might pose to beneficial microbes in the soils.Solid and liquid incubations were carried out simultaneously to investigate effects of the insecticide on growth, reproduction, and phosphorus (P)dissolving capacity of inorganic phosphate-solubilizing bacteria (IPSB), such asB05, B07 and B09, relative to concentrations of imidacloprid (0, 5, 10, and 20 mg·L–1).Imidacloprid inhibited to a varying extent the growth and reproduction of all the three strains of IPSB, with the diameter of bacterial colonies decreased by 39.81%~55.45% in solid incubation. The tested bacteria varied in solubilization of tricalcium phosphate in response to imidacloprid. B09 was lowered in diameter of P-dissolving halos and index in the presence of imidacloprid, but B05 and B07 behaved otherwise, with the diameter of P-dissolving halos and index reaching as high as 9.72%~19.44% and 40.69%~106.94%, respectively. In liquid incubations, imidacloprid also inhibited growth and reproduction of the three strains of IPSB, with the bacterial density decreased by 49.87%~65.28% in culture solutions. P solubilization capacibility of the bacterial strains varied with imidacloprid concentrations. Imidacloprid, regardless of concentration, stimulated P solubilization of B05. P solubilization of B07 varied in solutions low or mediumin concentration of imidacloprid, but increased in those high in imidacloprid concentrations compared with CK (without imidacloprid). B09 showed a similar tread to B07 in variation of P dissolving capacity in solutions low in imidacloprid concentrations, while it decreased greatly in solution medium or high in imidacloprid concentrations. All the three strains of bacteria were able to excrete protons, oxalate, and citrate. Oxalate and citrate accounted for 67.65%~83.28% of the total organic acids excreted. In addition, acetate was detected in culture solution with B05 and B07, malate with B09, and succinate with B07. Excretion of the organic acids was affected by not only imidacloprid concentration, but also strain of bacteria and type of organic acid. Furthermore, imidacloprid inhibited bacterial proton secretion by a varying degrees. The amount of P dissolved from tricalcium phosphate was positively related to the excretion of total organic acids (= 0.876,< 0.05,= 12) and to that of protons (= 0.823,< 0.05,= 12) as well.It could be concluded that imidacloprid inhibites growth and reproduction of the IPSB by a varying degree in the soil, thus affecting the effects of the bacterial excreting organic acids and protons, and hence the effect of promoting or inhibiting and P solubilization. So in pest controlling application of a large amount of imidacloprid could influence the activities, numbers, and functions of IPSB to a various extent, depending on type of the soil and group of IPSB.
Imidacloprid; Inorganic phosphate-solubilizing bacteria; Phosphorus solubilization
S144
A
10.11766/trxb201804100189
鄭麗霞,王玉書,劉海,黃建國. 吡蟲啉對伯克霍爾德氏菌生長和溶磷作用的影響[J].土壤學(xué)報(bào),2020,57(1):174–182.
ZHENG Lixia,WANG Yushu,LIU Hai,HUANG Jianguo. Effects of Imidacloprid on the Growth and P-Solubilization of[J]. Acta Pedologica Sinica,2020,57(1):174–182.
* 重慶市科委重點(diǎn)項(xiàng)目(CSTC2018jscx-mszd0133)和貴州省煙草公司遵義市公司科研項(xiàng)目(201503)資助 Supported by the Major Project of Chonqing Science and Technology Bureau(No. CSTC2018jscx-mszd0133)and the Research Project of Zunyi Tobacco Company,Guizhou Province(No. 201503)
,E-mail:huang99@swu.edu.cn
鄭麗霞(1993—),女,甘肅人,碩士研究生,主要從事土壤微生物研究。E-mail:1871809558 @qq.com
2018–04–10;
2018–07–21;
2018–11–02
(責(zé)任編輯:盧 萍)