彭亞麗 高倩 董文 熊安平 秦玉芝 林原 熊興耀 胡新喜
摘? ? 要:MYB是調(diào)節(jié)花青素生物合成的重要轉(zhuǎn)錄因子,通過激活和抑制結(jié)構(gòu)基因的表達(dá),維持植物器官內(nèi)花青素積累量的平衡。R2R3MYB轉(zhuǎn)錄激活因子單獨(dú)或與bHLH、WD40形成復(fù)合體調(diào)控植物花青素的生物合成。轉(zhuǎn)錄抑制因子有R2R3MYB和R3MYB 2種類型。R2R3MYB類抑制因子有2種作用方式,其中一種可以直接作用于結(jié)構(gòu)基因的啟動子,使結(jié)構(gòu)基因表達(dá)量下調(diào),花青素的生物合成減少;另一種需要借助輔助因子bHLH抑制MBW復(fù)合物在花青素生物合成中的表達(dá),減少花青素的積累。R3MYB類轉(zhuǎn)錄抑制因子都需要與bHLH蛋白形成復(fù)合物,主動或被動地抑制結(jié)構(gòu)基因的表達(dá),阻止花青素的合成積累。筆者對調(diào)控蔬菜花青素生物合成的MYB轉(zhuǎn)錄因子及其調(diào)控作用機(jī)制進(jìn)行了綜述,并對今后的研究重點(diǎn)進(jìn)行了展望。
關(guān)鍵詞:花青素;MBW復(fù)合物;激活因子;抑制因子
中圖分類號:S63+S64+S65 文獻(xiàn)標(biāo)志碼:A 文章編號:1673-2871(2020)12-001-07
Abstract:MYB is an important transcription factor that regulates anthocyanins biosynthesis and maintains the balance of anthocyanin accumulation in plant organs by activating and inhibiting the expression of structural genes. Transcription activators R2R3MYB regulate the biosynthesis of anthocyanins alone or by forming a regulatory complex with bHLH and WD40 in plant. Transcription repressors include both R2R3MYB type and R3MYB type. There are two modes of action of R2R3MYB inhibitors, one of which can directly act on the promoters of structural genes to down-regulate the expression of structural gene and decreased anthocyanin biosynthesis. The other inhibits the expression of MBW complex in anthocyanin biosynthesis by binding the cofactor bHLH, and reduces the accumulation of anthocyanin. R3MYB transcription inhibitors need to form a complex with bHLH protein, then inhibit the expression of structural genes actively or passively, and prevent the synthesis and accumulation of anthocyanins. We review the progress of the MYB transcription factors that regulate vegetable anthocyanins biosynthesis and the mechanism of their regulation and prospect the future researches.
Key words:Anthocyanins; MBW complex; Activators; Repressors
花青素是一類廣泛存在于高等植物組織中的類黃酮次生代謝產(chǎn)物,主要分布于植物的葉、花和果實(shí)中,主要為藍(lán)、紫和紅3種顏色[1]。研究表明,紫甘薯、血橙和紅肉蘋果等都有大量的花青素積累[2-4],關(guān)于玉米、擬南芥等的研究已經(jīng)證明花青素的生物合成是通過苯丙烷途徑完成的[5-6],PAL(苯丙氨酸解氨酶)、CHS(查爾酮合成酶)、CHI(查爾酮異構(gòu)酶)、F3H(黃烷酮羥化酶)、DFR(二氫黃酮醇4-還原酶)、ANS(花青素合酶)等直接編碼相關(guān)酶的合成[7]。同時,花青素的生物合成也受到MYB(v-myb avian myeloblastosis viral oncogene homolog)、bHLH(basic helix-loop-helix)、WD40等轉(zhuǎn)錄因子的調(diào)控[8],共同完成花青素的生物合成過程。如茄子里的Sm TTG1、Sm GL3和Sm TT8都與Sm MYB相互作用,共同完成茄子花青素的合成[9]。筆者對調(diào)控花青素生物合成的轉(zhuǎn)錄因子特別是MYB轉(zhuǎn)錄因子及其調(diào)控作用機(jī)制進(jìn)行綜述,并對今后的研究重點(diǎn)進(jìn)行展望。
1 調(diào)控蔬菜花青素生物合成的轉(zhuǎn)錄因子
轉(zhuǎn)錄因子主要通過調(diào)控結(jié)構(gòu)基因的轉(zhuǎn)錄和表達(dá),間接調(diào)控花青素的生物合成過程[8]。調(diào)控花青素生物合成途徑的轉(zhuǎn)錄因子家族主要有MYB、bHLH和WD40三大類[10]。MYB類轉(zhuǎn)錄因子作為植物代謝調(diào)控中最大的轉(zhuǎn)錄因子,也是目前真核生物中研究數(shù)目最多和作用最廣的轉(zhuǎn)錄因子家族之一[11],主要參與植物的次生代謝調(diào)控、細(xì)胞學(xué)形態(tài)建成、環(huán)境脅迫和急速應(yīng)答等過程[12]。其中,與花青素生物合成相關(guān)的是MYB家族最大的亞類R2R3MYB[13]。C1基因調(diào)控玉米花青素的生物合成,首次證明了MYB轉(zhuǎn)錄因子在植物中的調(diào)節(jié)作用[14]。何瓊[15]發(fā)現(xiàn),BrMYB2是紫心大白菜花青素合成的關(guān)鍵基因,可以在苗期準(zhǔn)確區(qū)別紫色和白色葉球。
近些年來,與R2R3MYB蛋白功能完全相反的一類單一MYB蛋白R3MYB被報道,其在花青素生物合成過程中起抑制作用[16]。CPC作為一個R3MYB類抑制子,首先在擬南芥中被發(fā)現(xiàn),主要抑制與毛狀體和根毛形成相關(guān)的MBW復(fù)合物[17-18]。bHLH類轉(zhuǎn)錄因子是調(diào)控植物次生代謝過程的第二大類轉(zhuǎn)錄因子,其N端包含約18個親水性的堿性氨基酸,緊跟2個由環(huán)隔開的兩親性α螺旋,有利于HLH區(qū)與bHLH蛋白的二聚化[19]。同時,bHLH蛋白也可以通過識別E-box和DNA序列來調(diào)節(jié)轉(zhuǎn)錄水平[16]。Ludwig等[20]在玉米中發(fā)現(xiàn),R基因編碼一個bHLH蛋白,bHLH首次被報道。Nesi等[21]在擬南芥中發(fā)現(xiàn)了原花色素調(diào)節(jié)因子TT8和腺毛調(diào)節(jié)因子GL3,首次證明了基因bHLH在MBW復(fù)合物中起作用。席浩淳等[22]發(fā)現(xiàn),SmbHLH13基因可以正調(diào)控茄子內(nèi)基因F3H和CHS的表達(dá),完成茄子花青素的合成。WD40重復(fù)蛋白存在一個包含40個殘基的核心區(qū)域,該區(qū)域由甘氨酸—組氨酸二肽(GH)和色氨酸—天冬氨酸(WD)二肽組成,進(jìn)行β螺旋折疊而成[23]。Miller等[24]發(fā)現(xiàn),僅有4個或5個WDR家族的TTG1基因控制擬南芥的色素合成,其同源序列在其他物種中也有相似功能。綜上所述,在蔬菜花青素合成的過程中,MYB轉(zhuǎn)錄因子起著關(guān)鍵性作用。
2 轉(zhuǎn)錄因子MYB在蔬菜花青素合成中的調(diào)節(jié)作用
2.1 參與蔬菜花青素合成的MYB蛋白結(jié)構(gòu)
MYB蛋白的N端具有一段高度保守的DNA結(jié)合域,即MYB結(jié)構(gòu)域。根據(jù)其結(jié)構(gòu)域的數(shù)目,可分為4個亞類(圖1),即RMYB、R2R3MYB、3RMYB 和 4RMYB[25]。每一個結(jié)構(gòu)域中含有約52個氨基酸殘基,形成3個α螺旋,其中第2、第3個螺旋構(gòu)成1個HLH結(jié)構(gòu)[26]。R2R3MYB亞類主要參與植物花青素合成,作為植物MYB蛋白家族中最大的亞類,包含著2個與c-MYB的R2和R3最相似的MYB重復(fù)序列[16]。保守的N末端MYB結(jié)構(gòu)域和可變的C末端是R2R3MYB的一個固定結(jié)構(gòu),通常C末端會有一個激活域或抑制域[27]。此外,R3MYB有1個高度保守的[D/E]LX2[R/K]X3LX6LX3R和WXM序列,能與bHLH蛋白相結(jié)合[28]。
2.2 轉(zhuǎn)錄因子MYB在蔬菜花青素合成中的激活作用
MYB轉(zhuǎn)錄因子對花青素生物合成的激活作用貫穿EBGs和LBGs兩個階段。在EBGs階段,MYB轉(zhuǎn)錄因子主要調(diào)節(jié)花青素合成過程中關(guān)鍵酶基因的轉(zhuǎn)錄和表達(dá)。在蘋果的研究中發(fā)現(xiàn),MdMYBA基因能在低溫下與ANS的啟動子進(jìn)行特異性結(jié)合,促進(jìn)花青素的積累[30]。ZHANG等[31]將擬南芥中的PAP1基因在丹參中過表達(dá),檢測出與花青素合成相關(guān)的PAL、CHS等關(guān)鍵酶基因的表達(dá)明顯上調(diào),花青素的積累量也明顯增加。番茄中的SlAN2基因能在脅迫下誘導(dǎo)果實(shí)花青素不均勻積累[32]。功能性的SlAN2-like基因在果皮花青素合成中起主要調(diào)控作用,能激活相關(guān)酶基因及其調(diào)控因子的表達(dá)[33]。過表達(dá)SlMYB75基因,能誘導(dǎo)紫番茄營養(yǎng)和生殖器官內(nèi)花青素的大量積累[34]。BoPr基因可以使花青素在觀賞性羽衣甘藍(lán)中富集,葉子呈紫色[35]。Wang等[36]分離出BrPur基因,發(fā)現(xiàn)其可以使中國白菜的葉片內(nèi)花青素大量積累,呈現(xiàn)紫色。
在花青素合成的LBGs階段,MYB轉(zhuǎn)錄因子的作用機(jī)制主要是與其他蛋白相互作用,其中主要有bHLH蛋白和WD40蛋白[8]。在葡萄中的研究表明,MYB轉(zhuǎn)錄因子可以與bHLH類基因VvMYC1相互作用,誘導(dǎo)花青素合成[24]。通過對白色、紅色和紫色馬鈴薯表皮的StAN1、StMYBA1和StMYB113基因功能分析,發(fā)現(xiàn)馬鈴薯的MYBs能在煙草中與bHLH相互作用,增加煙草花青素的積累[37]。WD40家族基因StAN11通過上調(diào)StDFR基因的表達(dá),增加馬鈴薯塊莖花青素的積累[38]。在馬鈴薯中超表達(dá)StANS基因,在塊莖中發(fā)現(xiàn)大量花青素積累[39]。煙草瞬時轉(zhuǎn)化試驗(yàn)發(fā)現(xiàn),RsMYB1和RsTT8在蘿卜的花青素生物合成中相互作用,Lim和Lai等[40-41]發(fā)現(xiàn),RsMYB1a基因和RsbHLH4相互作用,可以在主根中大量積累花青素。Xu等[42]在紫色胡蘿卜中發(fā)現(xiàn)了一個基因DcMYB6,在擬南芥中過表達(dá),能夠誘導(dǎo)花青素的合成。紫花菜中一個半顯性基因Pr能調(diào)節(jié)BobHLH1的表達(dá),同時使花青素晚期合成的BoF3H、BoDFR等基因表達(dá)量明顯上調(diào)[43]。紫葉芥菜中的BjDFR、BjTT19、BjTT8基因表達(dá)量顯著高于綠葉芥菜,這些基因與花青素的后期合成與轉(zhuǎn)運(yùn)相關(guān)[44]。
2.3 轉(zhuǎn)錄因子MYB在蔬菜花青素合成中的抑制作用
2.3.1 MYB抑制因子的蛋白結(jié)構(gòu) MYB蛋白的抑制類型取決于C末端的不同結(jié)構(gòu)域,這些保守的結(jié)構(gòu)域和MYB蛋白的抑制活性有關(guān)。MYB類的轉(zhuǎn)錄抑制因子主要有R2R3MYB和R3MYB兩大類[45]。R2R3MYB類抑制子可以分為一般苯丙烷、木質(zhì)素和類黃酮三大類[29]。它的C端包含一個DNA結(jié)構(gòu)結(jié)合域,含有GIDP和EAR兩個基團(tuán),EAR基團(tuán)是抑制子的重要結(jié)構(gòu)[46]。AtMYB4基因能夠抑制擬南芥的次生代謝過程,從而確定了EAR基團(tuán)的抑制功能[47-48]。R3MYB類抑制子僅包含一個單MYB重復(fù)的DNA結(jié)構(gòu)域, C端保守結(jié)構(gòu)域不同,則作用機(jī)制存在差異[49]。其N端與R2R3MYB類抑制子一樣,都含有DNA結(jié)構(gòu)結(jié)合域,但只有與花青素和原花青素合成相關(guān)的抑制子能夠與bHLH轉(zhuǎn)錄因子結(jié)合,共同作用[50-51]。AtCPC基因的C端不包含任何抑制基團(tuán),僅保留一個與bHLH蛋白相結(jié)合的結(jié)構(gòu)域,與R2R3MYB類轉(zhuǎn)錄激活因子競爭bHLH蛋白完成抑制作用[52-53]。AtMYBL2中含有一個R3結(jié)構(gòu)域和部分不完整的R2結(jié)構(gòu)域,可能是在染色體的串聯(lián)復(fù)制過程中,R2結(jié)構(gòu)域發(fā)生了大缺失[54]。Matsui等[53]在2008年的研究中發(fā)現(xiàn),AtMYBL2基因中有一個新的基團(tuán)TLLLFR(圖2),在擬南芥次生代謝中表現(xiàn)為抑制作用。
2.3.2 R2R3MYB類抑制因子 目前已經(jīng)報道的R2R3MYB類抑制因子中,有22種與木質(zhì)素、一般苯丙烷的生物合成相關(guān)[29]。擬南芥中的AtMYB3基因抑制蘋果酸介子堿和花青素的合成[55],AtMYB32可以影響木質(zhì)素在花粉中的合成,并參與其他花粉發(fā)育過程[56]。苯丙烷代謝途徑中,許多次生代謝產(chǎn)物之間相互影響。大葉楊中的PtoMYB156基因過表達(dá),能減少苯基丙烷基因的表達(dá)量,進(jìn)而抑制木質(zhì)素生物合成,同時,大葉楊的次生細(xì)胞壁黏性、酚類物質(zhì)和類黃酮含量都有不同程度的降低[57]。
對類黃酮的相關(guān)研究主要集中在花青素和原花青素富集方面。Espley等[58]研究發(fā)現(xiàn),R2R3MYB類抑制因子在抑制花青素的合成過程中,需要輔助因子bHLH。FaMYB1、PtrMYB182等抑制因子不能直接與靶向基因的啟動子結(jié)合,但能與bHLH結(jié)合,抑制MBW復(fù)合物在花青素合成中的表達(dá),進(jìn)而減少花青素的積累[54]。Pattanaik等[59]在矮牽牛試驗(yàn)中發(fā)現(xiàn),PhMYB27與MBW復(fù)合物結(jié)合,抑制了復(fù)合物的表達(dá)活性;過表達(dá)PhMYB27基因,矮牽?;ê腿~子中的花青素則明顯減少,同時種子中的原花青素積累減少;干擾表達(dá)PhMYB27,花青素積累量增加。酵母雙雜交試驗(yàn)發(fā)現(xiàn),PhMYB27通過bHLH蛋白與MBW復(fù)合物相互作用而下調(diào)花青素代謝的表達(dá),同樣適用于原花青素[45]。
R2R3MYB轉(zhuǎn)錄抑制因子中,有一類抑制子如MdMYB16、AtMYB4、AtMYB60和NtMYB2等,能直接與花青素合成相關(guān)結(jié)構(gòu)基因的啟動子發(fā)生作用,使結(jié)構(gòu)基因表達(dá)下調(diào)。蘋果中的MdMYB16基因能夠直接抑制MdUFGT和MdANS關(guān)鍵酶基因在花青素合成中的表達(dá);但是,在得到的過表達(dá)MdMYB16愈傷組織中再進(jìn)行MdbHLH過表達(dá),發(fā)現(xiàn)MdbHLH對花青素合成的抑制作用減弱,說明MdbHLH能影響MdMYB16基因的表達(dá),但具體機(jī)制尚不清楚[60]。過表達(dá)AtMYB60可以使花青素合成中的DFR基因表達(dá)量減少[61]。在轉(zhuǎn)基因煙草中過表達(dá)NtMYB2基因,UFGT的表達(dá)量顯著下降[62]。Fornale等[52]研究發(fā)現(xiàn),擬南芥中另一個AtMYB4的同源基因AtMYB7可以抑制DFR和糖基轉(zhuǎn)移酶基因UGT的表達(dá),從而下調(diào)黃酮醇的生物合成。在AtMYB7的突變植株內(nèi),黃酮生物合成代謝顯著增強(qiáng),含量顯著增加。
2.3.3 R3MYB類抑制因子 基因CPC作為R3MYB類抑制因子,在擬南芥的表皮細(xì)胞中被發(fā)現(xiàn)。研究表明,CPC可以抑制毛狀體的分裂和無毛細(xì)胞的分化[63]。從英國梧桐中分離出PaTRY和PaCPC-lke基因,將其在擬南芥中進(jìn)行過表達(dá),可以抑制擬南芥毛狀體的形成[64]。CPC型抑制因子也能抑制蔬菜花青素的形成,SlMYBATV基因能負(fù)調(diào)控番茄果實(shí)中花青素的合成[65-66]。StMYBATV可以和bHLHs蛋白結(jié)合,抑制馬鈴薯花青素的形成[67]。CPC型抑制子的表達(dá)量與非生物脅迫相關(guān),低氮環(huán)境下,CPC能與激活因子PAP1競爭bHLH(GL3),阻止PAP1對關(guān)鍵酶基因DFR的激活作用,導(dǎo)致花青素的合成受阻[68]。Nemie-Feyissa等[69]對擬南芥進(jìn)行氮脅迫處理,發(fā)現(xiàn)CPC基因在缺氮時的表達(dá)量顯著增加,蓮座葉中缺氮可以引起花青素積累的負(fù)反饋調(diào)節(jié)。
AtMYBL2作為另一種R3MYB類抑制因子,在擬南芥中過表達(dá),相關(guān)酶基因和花青素的積累均受到抑制[52,26]。AtMYBL2型的轉(zhuǎn)錄抑制子,與R2R3MYB類轉(zhuǎn)錄抑制子FaMYB1等作用機(jī)制相似[70]。AtMYBL2在強(qiáng)光下表達(dá)量減小[71]。AtMYBL2型抑制子與花青素的表達(dá)量呈負(fù)相關(guān)[52],如紫甘藍(lán)中檢測不到BoMYBL2-1基因的表達(dá)[72]。在PtrRML1基因的N末端發(fā)現(xiàn)一個EAR基團(tuán),擬南芥中進(jìn)行過表達(dá)時,它不僅可以抑制花青素的積累,同時還能影響擬南芥毛狀體的生長發(fā)育(圖2)[73]。
3 MYB轉(zhuǎn)錄激活因子和抑制子的互作調(diào)控
在花青素合成過程中,MYB轉(zhuǎn)錄激活因子和抑制子之間存在競爭關(guān)系,可以爭奪輔助因子bHLH蛋白和關(guān)鍵酶基因的啟動子。類黃酮類MYB抑制子能干擾MBW復(fù)合物中激活因子和bHLH蛋白的結(jié)合。酵母三雜交試驗(yàn)分析矮牽牛中的PhMYB27基因,發(fā)現(xiàn)MYB轉(zhuǎn)錄激活因子和抑制子可以同時與bHLH蛋白結(jié)合[45]。酵母雙雜交進(jìn)行激活因子、抑制子與bHLH蛋白的結(jié)合強(qiáng)度比較,發(fā)現(xiàn)啟動子上的功能可能與該細(xì)胞中MYB激活因子和抑制子間的相對豐度有關(guān)[74]。茄子中的SmMYBL1基因通過與MYB激活因子競爭bHLH結(jié)合位點(diǎn),抑制MYB復(fù)合物的表達(dá),進(jìn)而抑制茄子花青素的生物合成[75]。同一個基因可以在不同的合成途徑中有不同的功能。MYB75又名PAP1,在擬南芥中過表達(dá),會有大量花青素積累,是一個控制花青素合成的激活因子。Teng等[76]發(fā)現(xiàn)了一個MYB75突變體植株,在高糖濃度下,花青素含量積累極少。同時,MYB75也與擬南芥中木質(zhì)素的沉淀相關(guān),試驗(yàn)中發(fā)現(xiàn),MYB75突變體植株中次生細(xì)胞壁的總形成量增加,編碼木質(zhì)素和次生細(xì)胞壁多糖生物合成中關(guān)鍵酶基因的表達(dá)量升高[77],此時的MYB75是一個抑制因子。CsMYB3是柑橘中重要的抑制因子,在擬南芥中過表達(dá)CsMYB3基因,轉(zhuǎn)基因植株的花青素積累量顯著低于野生株,但種子中的原花青素合成并沒有受到影響。徐強(qiáng)對其調(diào)控機(jī)制進(jìn)行研究發(fā)現(xiàn),CsMYB3基因可以平衡CsRuby1基因的激活作用,防止柑橘中花青素的積累過量,形成一個激活—抑制反饋調(diào)節(jié)環(huán)(圖3)[78]。
4 展 望
花青素是很好的醫(yī)用保健物質(zhì),也是蔬菜自身應(yīng)對復(fù)雜環(huán)境的一種調(diào)控反應(yīng)物質(zhì)。轉(zhuǎn)錄因子通過與啟動子或其他轉(zhuǎn)錄因子結(jié)合介導(dǎo)結(jié)構(gòu)基因的表達(dá),已經(jīng)成為植物界最常見的調(diào)控機(jī)制。MYB家族作為調(diào)控蔬菜花青素合成的最大類轉(zhuǎn)錄因子,既能激活花青素的合成,又能抑制花青素的積累,在花青素的生物合成中占有很重要的作用。最近一些研究報道,MYB類轉(zhuǎn)錄激活因子和抑制因子之間存在著復(fù)雜的分級反饋調(diào)節(jié)機(jī)制,進(jìn)而使得我們對MBW復(fù)合物有了新的認(rèn)知。但是關(guān)于MYB轉(zhuǎn)錄抑制因子的上游研究和具體調(diào)節(jié)機(jī)制依舊存在很多未知之處。MYB類轉(zhuǎn)錄抑制因子與MBW復(fù)合物的特異結(jié)合可能與其轉(zhuǎn)錄激活因子相關(guān),抑制因子與MBW復(fù)合物間的作用強(qiáng)度或許與抑制強(qiáng)弱相關(guān)。相關(guān)脅迫對抑制因子表達(dá)的潛在影響,是否能在蔬菜作物育種等其他方面得到進(jìn)一步應(yīng)用有待后續(xù)深入研究。
參考文獻(xiàn)
[1] HARBORNE J B.The flavonoids advances in research since 1986[J].Chapman and Hall London,1993:619-652.
[2] MANO H,OGASAWARA F,SATO K,et al.Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato[J].Plant Physiology,2007,143(3):1252-1268.
[3] ZHANG L Y,HU J,HAN X L,et al.A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour[J].Nature Communications,2019,10(1):1494.
[4] BUTELLI E,LICCIARDELLO C,ZHANG Y,et al.Retrotransposons control fruit-specific,cold-dependent accumulation of anthocyanins in blood oranges[J].Plant Cell,2012,24(3):1242-1255.
[5] KOES R,VERWEIJ W,QUATTROCCHIO F.et al.Flavonoids:a colorful model for the regulation and evolution of biochemical pathways[J].Trends in Plant Science,2005,10(5):236-242.
[6] NAING A H and KIM C K.Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants[J].Plant Molecular Biology,2018,98:1-18.
[7] SAITO K,YONEKURA-SAKAKIBARA K,NAKABAYASHI R,et al.The flavonoid biosynthetic pathway in Arabidopsis:structural and genetic diversity[J].Plant Physiology and Biochemistry,2013,72:21-34.
[8] XU W J,DUBOS C,LEPINIEC L.Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J].Trends in Plant Science,2015,20(3):176-185.
[9] 劉新宇,韓洪強(qiáng),葛海燕,等.茄子花青素合成中SmTTG1、SmGL3和SmTT8的表達(dá)及其蛋白質(zhì)間的相互作用[J].園藝學(xué)報,2014,41(11):2241-2249.
[10] 許志茹,李春雷,崔國新,等.植物花青素合成中的蛋白[J].植物生理學(xué)通訊,2008,44(3):597-604.
[11] 王萃鉑,張瓚,張曉雪,等.菊花轉(zhuǎn)錄因子CmMYB59 的克隆與表達(dá)特性分析[J].南京農(nóng)業(yè)大學(xué)學(xué)報,2016,39(1):63-69.
[12] 官麗莉,張雪,韓怡來,等.紅花轉(zhuǎn)錄因子 Ct MYB1 基因的克隆及原核表達(dá)[J].中草藥,2015,46(17):2603-2609.
[13] AZUMA A,KOBAYASHI S,MITANI N,et al.Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin[J].Theoretical and Applied Genetics,2008,117(6):1009-1019.
[14] PAZ-ARES J,GHOSAL D,WIENAND U,et al.The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators[J].The EMBO Journal,1987,6(12):3553-3558.
[15] 何瓊.紫心大白菜花青素合成和積累的分子機(jī)理研究[D].陜西楊凌:西北農(nóng)林科技大學(xué),2018.
[16] FELLER A,MACHEMER K,BRAUN E L,et al.Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J].The Plant Journal,2011,66(1):94-116.
[17] WANG S C,HUBBARD L,CHANG Y,et al.Comprehensive analysis of single-repeat R3MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis[J].BMC Plant Biology,2008,8(1):81.
[18] WESTER K,DIGIUNI S,GEIER F,et al.Functional diversity of R3 single-repeat genes in trichome development[J].Development,2009,136(9):1487-1496.
[19] MASSARI M E, MURRE C.Helix-loop-helix proteins:regulators of transcription in eukaryotic organisms[J].Molecular and Cellular Biology,2000,20(2):429-440.
[20] LUDWIG S R,HABERA L F,DELLAPORTA S L,et al.Lc,a member of the maize R gene family responsible for tissue-specific anthocyanin production,encodes a protein similar to transcriptional activators and contains the myc homology region[J].Proceedings of the National Academy of Sciences of the USA,1989,86(18):7092-7096.
[21] NESI N,DEBEAUJON I,JOND C,et al.The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J].The Plant Cell,2000,12(10):1863-1878.
[22] XI H C,HE Y J,CHEN H Y.Functional characterization of SmbHLH13 in anthocyanin biosynthesis and flowering in eggplant [J/OL].Horticultural Plant Journal [2020-08-28].https://doi.org/10.1016/j.hpj.2020.08.006.
[23] MISHRA A K ,PURANIK S,PRASAD M.Structure and regulatory networks of WD40 protein in plants[J].Journal of Plant Biochemistry and Biotechnology,2012,21(1):32-39.
[24] MILLER J C,CHEZEM W R, CLAY N K.Ternary WD40 repeat-containing protein complexes:evolution,composition and roles in plant immunity[J].Frontiers in Plant Science,2015,6:1108.
[25] OGATA K,MORIKAWA S,NAKAMURA H,et al.Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices[J].Cell,1994,79(4):639-648.
[26] DUBOS C,STRACKE R,GROTEWOLD E,et al.MYB transcription factors in Arabidopsis[J].Trends in Plant Science,2010,15(10):573-581.
[27] STRACKE R,WERBER M, WEISSHAAR B.The R2R3-MYB gene family in Arabidopsis thaliana[J].Current Opinion in Plant Biology,2001,4(5):447-456.
[28] ZIMMERMANN I M,HEIM M A,WEISSHAAR B,et al.Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like bHLH proteins[J].The Plant Journal,2004,40(1):22-34.
[29] MA D W and CONSTABLE C P.MYB repressors as regulators of phenylpropanoid metabolism in plants[J].Trends in Plant Science,2019,24(3):275-289.
[30] BAN Y,HONDA C,HATSUYAMA Y,et al.Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin[J].Plant and Cell Physiology,2007,48(7):958-970.
[31] ZHANG Y,YAN Y P,WANG Z Z,et al.The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza[J].Journal of Agricultural and Food Chemistry,2010,58(23):12168-12175.
[32] KIFERLE C,F(xiàn)ANTINI E,BASSOLINO L,et al.Tomato R2R3-MYB proteins SlANT1 and SlAN2:same protein activity,different roles[J].PLOS ONE,2015,10(8):e0136365.
[33] SUN C L,DENG L,DU M M,et al.A transcriptional network promotes anthocyanin biosynthesis in tomato flesh[J].Molecular Plant,2020,13(1):42-58.
[34] JIAN W,CAO H H,YUAN S,et al.SlMYB75,an MYB-type transcription factor,promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits[J].Horticulture Research,2019,6:22-36.
[35] LIU X P,GAO B Z,HAN F Q,et al.Genetics and fine mapping of a purple leaf gene,BoPr,in ornamental kale(Brassica oleracea L.var.acephala).[J] BMC Genomics,2017,18(1):230-238.
[36] WANG W H,ZHANG D S,YU S C,et al.Mapping the BrPur gene for purple leaf color on linkage group A03 of Brassica rapa[J].Euphytica,2014,199(3):293-302.
[37] LIU Y H,LIN-WANG K,ESPLEY R V,et al.Functional diversification of the potato R2R3 MYB anthocyanin activators AN1,MYBA1,and MYB113 and their interaction with basic helix-loop-helix cofactors[J].Journal of Experimental Botany,2016,67(8):2159-2176.
[38] LI W,WANG B,WANG M,et al.Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation[J].Journal of Integrative Plant Biology,2014,56(4):364-372.
[39] ZHANG H L,ZHAO X J,ZHANG J P,et al.Functional analysis of an anthocyanin synthase gene StANS in potato[J].Scientia Horticulturae,2020,15:272-279.
[40] LIM S H,KIM D H,KIM J K,et al.A radish basic helix-loop-helix transcription factor,RsTT8 acts a positive regulator for anthocyanin biosynthesis[J].Frontiers in Plant Science,2017,8:1917.
[41] LAI B,CHENG Y Y,LIU H,et al.Differential anthocyanin accumulation in radish taproot:importance of RsMYB1 gene structure[J].Plant Cell Reports,2020,39(2):217-226.
[42] XU H F,WANG N,LIU J X,et al.The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdBHLH33 genes[J].Plant Molecular Biology,2017,94(1/2):149-165.
[43] CHIU L W,ZHOU X J,BURKE S,et al.The purple cauliflower arises from activation of a MYB transcription factor[J].Plant Physiology,2010,154(3):1470-1480.
[44] ZHANG D W,LIU L L,ZHOU D G,et al.Genome-wide identification and expression analysis of anthocyanin biosynthetic genes in Brassica juncea[J].Journal of Integritive Agricuture,2020,19(5):1250-1260.
[45] ALBERT N W,DAVIES K M,LEWIS D H,et al.A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots[J].The Plant Cell,2014,26(3):962-980.
[46] KRANZ H D,DENEKAMP M,GRECO R,et al.Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana[J].The Plant Journal,1998,16(2):263-276.
[47] OHTA M,MATSUI K,HIRATSU K,et al.Repression domains of class II ERF transcriptional repressors share an essential motif for active repression[J].The Plant Cell,2001,13(8):1959-1968.
[48] KAZAN K.Negative regulation of defence and stress genes by EAR-motif-containing repressors[J].Trends in Plant Science,2006,11(3):109-112.
[49] DU H,WANG Y B,XIE Y,et al.Genome-wide identification and evolutionary and expression analyses of MYB-related genes in land plants[J].DNA Research,2013,20(5):437-448.
[50] YOSHIDA K,MA D W,CONSTABEL C P.The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes[J].Plant Physiology,2015,167(3):693-710.
[51] WANG S C, CHEN J G.Regulation of cell fate determination by single-repeat R3 MYB transcription factors in Arabidopsis[J].Frontiers in Plant Science,2014,5:133.
[52] FORNALE S,LOPEZ E,SALAZAR-HENAO J E,et al.AtMYB7,a new player in the regulation of UV sunscreens in Arabidopsis thaliana[J].Plant Cell Physiology,2014,55(3):507-516.
[53] MATSUI K,UMEMURA Y,OHME-TAKAGI M.AtMYBL2,a protein with a single MYB domain,acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis[J].The Plant Journal,2008,55(6):954-967.
[54] CHEN L H,HU B,QIN Y H,et al.Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors[J].Plant Physiology and Biochemistry,2019,136: 178-187.
[55] ZHOU M L,ZHANG K X,SUN Z M,et al.LNK1 and LNK2 corepressors interact with the MYB3 transcription factor in phenylpropanoid biosynthesis[J].Plant Physiology,2017,174(3):1348-1358.
[56] PRESTON J,WHEELER J,HEAZLEWOOD J,et al.AtMYB32 is required for normal pollen development in Arabidopsis thaliana[J].The Plant Journal,2004,40(6):979-995.
[57] YANG L,ZHAO X,RAN L Y,et al.PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar[J].Scientific Reports,2017,7:41209.
[58] ESPLEY R V,HELLENS R P,PUTTERILL J,et al.Red colouration in apple fruit is due to the activity of the MYB transcription factor MdMYB10[J].The Plant Journal,2007,49(3):414-427.
[59] PATTANAIK S,PATRA B,SINGH S K,et al.An overview of the gene regulatory network controlling trichome development in the model plant,Arabidopsis[J].Frontiers in Plant Science,2014,5:259.
[60] XU Z S,F(xiàn)ENG K,QUE F,et al.A MYB transcription factor,DcMYB6,is involved in regulating anthocyanin biosynthesis in purple carrot taproots[J].Scientific Reports,2017(7):45324.
[61] PARK J S,Kim J B,CHO K J,et al.Arabidopsis R2R3- MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce(Lactuca sativa)[J].Plant Cell Reports,2008,27(6):985-994.
[62] ANWAR M,WANG G Q,WU J C,et al.Ectopic overexpression of a novel R2R3-MYB,NtMYB2 from Chinese narcissus represses anthocyanin biosynthesis in tobacco[J].Molecules,2018,23(4):781-799.
[63] CAVALLINI E,MATUS J T,F(xiàn)INEZZO L,et al.The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine[J].Plant Physiology,2015,167(4):1448-1470.
[64] ZHANG Y P,ZHANG J Q,SHAO C S,et al.Single-repeat R3 MYB transcription factors from Platanus acerifolia negatively regulate trichome formation in Arabidopsis[J].Planta,2019,249:861-877.
[65] CAO X,QIU Z K,WANG X T,et al.A putative R3 MYB repressor is the candidate gene underlying atroviolacium,a locus for anthocyanin pigmentation in tomato fruit[J].Journal of Experimental Botany,2017,68(21/22):5745-5758.
[66] COLANERO S,PERATA P,GONZALI S,et al.The atroviolacea gene encodes an R3-MYB protein repressing anthocyanin synthesis in tomato plants[J].Frontiers in Plant Science,2018,9:830.
[67] VINCENZO D,CLIZIA V,GIORGIA B,et al.Genetic and epigenetic dynamics affecting anthocyanin biosynthesis in potato cell culture[J].Plant Science,2020,298:110597.
[68] ZHU H F,F(xiàn)ITZAIMMONS K,KHANDELWAL A,et al.CPC,a single-repeat R3 MYB,is a negative regulator of anthocyanin biosynthesis in Arabidopsis[J].Molecular Plant,2009,2(4):790-802.
[69] NEMIE-FEYISSA D,OLAFSDOTTIR S M,HEIDARI B,et al.Nitrogen depletion and small R3-MYB transcription factors affecting anthocyanin accumulation in Arabidopsis leaves[J].Phyto Chemistry,2014,98:34-40.
[70] GATES D J,OLSON B J S C,CLEMENTE T E,et al.A novel R3 MYB transcriptional repressor associated with the loss of floral pigmentation in Iochroma[J].New Phytologist,2018,217(3):1346-1356.
[71] NAKATSUKA T,YAMADA E,SAITO M,et al.Heterologous expression of gentian MYB1R transcription factors suppresses anthocyanin pigmentation in tobacco flowers[J].Plant Cell Reports,2013,32:1925-1937.
[72] SONG H,YI H,LEE M,et al.Purple Brassica oleracea var.capitata F. rubra is due to the loss of BoMYBL2-1 expression[J].BMC Plant Biology,2018,18(1):18.
[73] HU Q N,YANG L,LIU S D,et al.A repressor motif-containing poplar R3 MYB like transcription factor regulates epidermal cell fate determination and anthocyanin biosynthesis in Arabidopsis[J].Journal of Plant Biology,2016,59:525-535.
[74] ANDREA M,F(xiàn)RANCESCO E F,SERGIO I,et al.Identification of a new R3 MYB type repressor and functional characterization of the members of the MBW transcriptional complex involved in anthocyanin biosynthesis in eggplant(S.melongena L.)[J].PLOS ONE,2020,15(6):e0235081.
[75] MA D,REICHLET M,YOSHIDA K.et al.Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar[J].The Plant Journal,2018,96(5):949-965.
[76] JULIE M,KASHCHANDRA G R,AJAY J,et al.A genome-wide transcriptional analysis using Arabidopsis thaliana affymetrix gene chips determined plant responses to phosphate deprivation[J].Proceedings of the National Academy of Science of the USA,2005,102(33):11934-11939.
[77] BREVITZ J O,XIA Y,BLOUNT J,et al.Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J].Plant Cell,2000,12(12):2383-2394.
[78 ] HUANG D,TANG Z Z,F(xiàn)U J L,et al.CsMYB3 and CsRuby1 form an ‘a(chǎn)ctivator-and- repressor loop for the regulation of anthocyanin biosynthesis in citrus[J].Plant and Cell Physiology,2020,61(2):318-330.
[79] HUANG D,WANG X,TANG Z Z,et al.Subfunctionalization of the Ruby2-Ruby1 gene cluster during the domestication of citrus[J].Nature Plants,2018,4(11):930-941.