李洋洋 張苡銘 魏孔熙 周婷 何進(jìn)鵬 丁楠 周谷城 史桐凡 柯宜誠(chéng) 牛帆 劉永琦 張利英
摘 要 目的:比較黃芪不同有效成分對(duì)電離輻射致人骨髓間充質(zhì)干細(xì)胞(BMSCs)DNA損傷的防護(hù)作用。方法:采用2 Gy X射線直接輻照BMSCs建立輻射細(xì)胞模型。采用CCK-8法檢測(cè)不同質(zhì)量濃度(25、50、75、100 μg/mL)黃芪多糖、黃芪皂苷、黃芪黃酮輻射前干預(yù)1 d+輻射后干預(yù)1~5 d對(duì)輻射BMSCs增殖的影響,篩選給藥濃度和輻射后繼續(xù)干預(yù)時(shí)間。將輻射BMSCs分為輻射組、黃芪多糖組、黃芪皂苷組、黃芪黃酮組,后3組輻射前后均使用適宜的相應(yīng)藥物進(jìn)行干預(yù),另設(shè)空白組進(jìn)行比較;采用胞漿分裂阻滯微核法檢測(cè)輻射后干預(yù)適宜時(shí)間的微核細(xì)胞率和細(xì)胞微核率,免疫熒光法檢測(cè)輻射后干預(yù)適宜時(shí)間細(xì)胞中53BP1焦點(diǎn)簇?cái)?shù)量,并對(duì)不同時(shí)間點(diǎn)(0.5、2、12、24 h)的53BP1焦點(diǎn)簇?cái)?shù)量進(jìn)行比較。結(jié)果:與空白組比較,輻射組BMSCs的OD值顯著降低(P<0.05或P<0.01);與輻射組比較,50 μg/mL黃芪多糖、黃芪皂苷、黃芪黃酮繼續(xù)干預(yù)2~3 d時(shí)BMSCs的OD值均顯著升高,其余劑量組僅部分時(shí)間點(diǎn)有顯著差異(P<0.05或P<0.01);綜合考慮確定給藥濃度為50 μg/mL,輻射后繼續(xù)干預(yù)時(shí)間為2 d。與空白組比較,輻射組、黃芪多糖組、黃芪皂苷組、黃芪黃酮組微核細(xì)胞率和細(xì)胞微核率均顯著升高,輻射組和黃芪多糖組細(xì)胞中53BP1焦點(diǎn)簇?cái)?shù)量均顯著增加(P<0.01)。與輻射組和黃芪黃酮組比較,黃芪多糖組和黃芪皂苷組微核細(xì)胞率、細(xì)胞微核率和53BP1焦點(diǎn)簇?cái)?shù)量(輻射后干預(yù)0.5、2、12 h)均顯著降低或減少,且黃芪多糖組微核細(xì)胞率和細(xì)胞微核率均顯著低于黃芪皂苷組(P<0.05);超過24 h檢測(cè)不出53BP1焦點(diǎn)簇。結(jié)論:黃芪多糖和黃芪皂苷對(duì)輻射所致的BMSCs DNA損傷均有防護(hù)作用,其中黃芪多糖防護(hù)效果優(yōu)于黃芪皂苷;黃芪黃酮對(duì)輻射所致的DNA損傷無防護(hù)作用。
關(guān)鍵詞 黃芪多糖;黃芪黃酮;黃芪皂苷;電離輻射;骨髓間充質(zhì)干細(xì)胞;DNA損傷
ABSTRACT ? OBJECTIVE: To compare the protective effects of different effective components of Astragali radix against DNA damage of human bone marrow mesenchymal stem cells (BMSCs) induced by ionizing radiation. METHODS: 2 Gy X-rays were used to directly irradiate BMSCs to establish a radiation model. CCK-8 method was used to detect the effects of different mass concentrations (25, 50, 75, 100 μg/mL) of astragalus polysaccharide, astragalus saponin and astragalus flavonoids for 1 day before radiation + 1 to 5 days after radiation on the proliferation of BMSCs. The dose concentration and the duration of intervention after radiation were selected. The irradiated BMSCs were divided into radiation group, astragalus polysaccharide group, astragalus saponin group and astragalus flavonoids group. The last three groups were treated with appropriate dosage of corresponding drugs before and 2 days after radiation, and a blank group was set for comparison. Cytoplasmic division arrest micronucleus method was used to detect micronucleus cell rate and cell micronucleus rate after appropriate time of intervention following radiation; immunofluorescence method was used to detect the number of 53BP1 foci in cells after appropriare time of intervention following radiation; the number of 53BP1 foci were compared among different time points (0.5, 2, 12, 24 h). RESULTS: Compared with blank group, OD values of BMSCs were decreased significantly in radiation group (P<0.05 or P<0.01). Compared with radiation group, the OD values of BMSCs were significantly increased when 50 μg/mL astragalus polysaccharide, astragalus saponin and astragalus flavonoids continuously intervened radiation for 2-3 days, there was significant difference in other groups at some time point (P<0.05 or P<0.01). After consideration, drug concentration was determined to be 50 μg/mL, and the continuous intervention time was 2 days after radiation. Compared with blank group, the micronucleus cell rate and cell micronucleus rate of radiation group, astragalus polysaccharide group, astragalus saponin group and astragalus flavonoids group increased significantly, and the number of 53BP1 focus cluster in radiation group and astragalus polysaccharide group increased significantly (P<0.01). Compared with radiation group and astragalus flavonoids group, the micronucleus cell rate, cell micronucleus rate and the number of 53BP1 focus cluster (continued intervention for 0.5, 2, 12 h) in the astragalus polysaccharide group and astragalus saponin group were significantly reduced, and the micronucleus cell rate and cell micronucleus rate in the astragalus polysaccharide group were significantly lower than astragalus saponin group (P<0.05). 53BP1 focus cluster could not be detected 24 h later (P<0.05). CONCLUSIONS: Astragalus polysaccharide and astragalus saponin both have protective effects on BMSCs DNA damage induced by radiation, and the protective effect of astragalus polysaccharide is better than that of astragalus saponin; astragalus flavonoids has no protective effect on radiation-induced DNA damage.
KEYWORDS ? Astragalus polysaccharide; Astragalus flavonoids; Astragalus saponin; Ionizing radiation; Bone marrow mesenchymal stem cells; DNA damage
放療是惡性腫瘤的主要治療手段之一,放療在殺傷腫瘤組織的同時(shí),不可避免地會(huì)對(duì)正常組織造成損傷,產(chǎn)生放療毒性[1-2]。已有研究表明,電離輻射(Ionizing radiation,IR)可通過多種機(jī)制破壞細(xì)胞,其中最重要的是造成細(xì)胞DNA損傷,當(dāng)損傷無法修復(fù)時(shí),則可引發(fā)細(xì)胞癌變[3]。骨髓間充質(zhì)干細(xì)胞(Bone marrow mesenchymal stem cells,BMSCs)是具有自我更新和多向分化潛能的細(xì)胞,參與多種組織的修復(fù)。當(dāng)輻射腫瘤組織時(shí),該組織周圍會(huì)聚集大量的BMSCs;受輻射影響,BMSCs可引發(fā)多種生物學(xué)反應(yīng),包括活性氧(ROS)生成、細(xì)胞凋亡和增殖抑制等,甚至?xí)l(fā)生BMSCs惡性轉(zhuǎn)化[4]。研究表明,IR會(huì)誘導(dǎo)BMSCs DNA損傷,其中細(xì)胞凋亡、細(xì)胞周期紊亂、衰老和細(xì)胞因子分泌等分子機(jī)制均可影響B(tài)MSCs的輻射反應(yīng)[5],因此,防護(hù)IR致BMSCs DNA損傷至關(guān)重要。中醫(yī)認(rèn)為,輻射可導(dǎo)致機(jī)體耗氣傷陰,而運(yùn)用補(bǔ)氣類中藥黃芪可有效改善輻射導(dǎo)致的細(xì)胞損傷[6]。黃芪最主要的活性成分為黃芪多糖、黃芪皂苷和黃芪黃酮,研究表明其具有增強(qiáng)機(jī)體免疫、抗應(yīng)激、抗腫瘤、延緩衰老、抗輻射等多種藥理作用[7],但目前尚不明確何種成分可以有效改善IR所造成的DNA損傷?;诖?,本研究擬著重比較黃芪的3種主要活性成分黃芪多糖、黃芪皂苷、黃芪黃酮對(duì)IR致BMSCs DNA損傷的防護(hù)作用,旨在為臨床BMSCs的輻射防護(hù)用藥提供依據(jù)。
1 材料
1.1 儀器
MCO-15AC型CO2培養(yǎng)箱(日本Sanyo公司);X-RAD225型X射線輻射儀(美國(guó)Faxitron公司);Infinite M200 Pro型全波長(zhǎng)酶標(biāo)儀(瑞士Tecan公司);BX51TRF型熒光顯微鏡(日本Olympus公司);SKY- 111Z型超凈工作臺(tái)(蘇州凈化設(shè)備有限公司)。
1.2 藥品與試劑
黃芪多糖、黃芪皂苷、黃芪黃酮(上海源葉生物科技有限公司,批號(hào)分別為ZD1219LA18、B20563、J20F7T9819,均為混合物);0.25%胰蛋白酶(美國(guó)Hyclone公司,批號(hào):J150037);CCK-8試劑盒(上海東仁化學(xué)科技有限公司,批號(hào):JQ878);4′,6-二脒基-2-苯基吲哚(DAPI,上海浩然生物技術(shù)有限公司,批號(hào):H-1200);兔源p53結(jié)合蛋白1(53BP1)多克隆抗體、山羊抗兔免疫球蛋白G(IgG)(DyLight? 594)二抗(美國(guó)Abcam公司,批號(hào)分別為GR89172-5、G1101);細(xì)胞松弛素B和吖啶橙染料(北京索萊寶科技有限公司,批號(hào)分別為C8080、A8120)、Triton-X 100試劑(上海生工生物工程股份有限公司,批號(hào):0694);卡諾固定液(實(shí)驗(yàn)室自制);其余試劑均為實(shí)驗(yàn)室常用規(guī)格,水為超純水。
1.3 細(xì)胞
人源BMSCs(批號(hào):7500)及其專用培養(yǎng)基(批號(hào):0074)均購(gòu)自美國(guó)ScienCel公司。
2 方法
2.1 細(xì)胞培養(yǎng)
用專用培養(yǎng)基將BMSCs接種于60 mm培養(yǎng)皿中,置于37 ℃、5%CO2培養(yǎng)箱中培養(yǎng),每3 d換液1次,待細(xì)胞融合度達(dá)到85%時(shí),用0.25%胰蛋白酶消化傳代,取第5代細(xì)胞用于試驗(yàn)。
2.2 輻射細(xì)胞模型建立
用X射線直接輻照BMSCs建立輻射模型,劑量率為200 cGy/min(225.0 kV,13.3 mA),總劑量2 Gy,時(shí)間1 min,距輻射源距離為70 cm。
2.3 含藥培養(yǎng)基制備
黃芪多糖、黃芪皂苷和黃芪黃酮分別用專用培養(yǎng)基溶解,具體方法為:取相應(yīng)藥物20 mg,分別溶于專用培養(yǎng)基20 mL中,使其質(zhì)量濃度均為1 000 μg/mL,再分別用專用培養(yǎng)基進(jìn)行稀釋,使其質(zhì)量濃度分別均為100、75、50、25 μg/mL。
2.4 細(xì)胞增殖能力檢測(cè)
采用CCK-8法檢測(cè)。收集對(duì)數(shù)生長(zhǎng)期的BMSCs,用0.25%胰蛋白酶消化后,以專用培養(yǎng)基制成單細(xì)胞懸液,按100 μL/孔(即2×103個(gè)/孔)接種于5個(gè)96孔板中,將細(xì)胞隨機(jī)分為空白組、輻射組、黃芪多糖組、黃芪皂苷組、黃芪黃酮組。待細(xì)胞貼壁后,棄去培養(yǎng)基,各藥物組分別加入含不同質(zhì)量濃度(25、50、75、100 μg/mL,濃度按前期預(yù)試驗(yàn)結(jié)果設(shè)置)黃芪多糖、黃芪皂苷、黃芪黃酮的專用培養(yǎng)基100 μL,空白組和模型組加入專用培養(yǎng)基100 μL,每個(gè)濃度設(shè)6個(gè)復(fù)孔。預(yù)干預(yù)培養(yǎng)1 d后,吸棄培養(yǎng)基50 μL,空白組用0.3 mm厚的鉛板擋住,其余各組用X射線按“2.2”項(xiàng)下條件進(jìn)行直接照射,照射后棄剩余培養(yǎng)基,重新加入上述相應(yīng)不含藥或含藥的專用培養(yǎng)基100 μL,置于培養(yǎng)箱中繼續(xù)干預(yù)。分別于繼續(xù)干預(yù)1、2、3、4、5 d時(shí)按CCK-8試劑盒說明書操作,使用酶標(biāo)儀在490 nm波長(zhǎng)處檢測(cè)各孔的光密度(OD)值。試驗(yàn)重復(fù)3次,根據(jù)OD值選取后續(xù)試驗(yàn)黃芪多糖、黃芪皂苷、黃芪黃酮的給藥濃度和輻射后繼續(xù)干預(yù)時(shí)間。
2.5 細(xì)胞微核形成情況檢測(cè)
采用胞漿分裂阻滯微核法檢測(cè)。收集對(duì)數(shù)生長(zhǎng)期的BMSCs,用0.25%胰蛋白酶消化后,以專用培養(yǎng)基制成單細(xì)胞懸液,按1 mL/孔(即1×104個(gè)/孔)接種于24孔板中,將細(xì)胞隨機(jī)分為空白組、輻射組、黃芪多糖組、黃芪皂苷組、黃芪黃酮組,每組設(shè)3個(gè)復(fù)孔。待細(xì)胞貼壁后,按“2.4”項(xiàng)下方法加藥、預(yù)干預(yù)、輻射,重新加入專用培養(yǎng)液后,繼續(xù)干預(yù)(藥物組的給藥濃度和繼續(xù)干預(yù)時(shí)間均參考“2.4”項(xiàng)下結(jié)果)。各組細(xì)胞加入1 mg/mL的細(xì)胞松弛素B 1 μL,放入細(xì)胞培養(yǎng)箱培養(yǎng)48 h后棄去培養(yǎng)基,用磷酸鹽緩沖液(PBS,pH=7.4)洗兩次,在通風(fēng)櫥中用卡諾固定液固定30 min,棄去固定液,反扣培養(yǎng)皿,在通風(fēng)櫥中干燥30 min,用吖啶橙染料染色30 s。用熒光顯微鏡觀察記錄1 000個(gè)雙核細(xì)胞中有微核的細(xì)胞數(shù)量和1 000個(gè)雙核細(xì)胞中微核的總數(shù)量(微核呈圓形或橢圓形,游離于主核之外),計(jì)算微核細(xì)胞率和細(xì)胞微核率,以千分率(‰)表示,微核細(xì)胞率=(帶微核的細(xì)胞總數(shù)/總的雙核細(xì)胞數(shù))×1 000‰,細(xì)胞微核率=(微核總數(shù)目/總的雙核細(xì)胞數(shù))×1 000‰。試驗(yàn)重復(fù)3次。
2.6 細(xì)胞中53BP1焦點(diǎn)簇?cái)?shù)量的檢測(cè)
采用免疫熒光法檢測(cè)。取無菌的12孔板,每孔加入20 mm×20 mm已滅菌蓋玻片,用紫外線照射1 h。取對(duì)數(shù)生長(zhǎng)期BMSCs,用0.25%胰蛋白酶消化后,以專用培養(yǎng)基制成單細(xì)胞懸液,按2 mL/孔(即4×103個(gè)/mL)接種于上述12孔板中,將細(xì)胞隨機(jī)分為空白組、輻射組、黃芪多糖組、黃芪皂苷組、黃芪黃酮組,每組設(shè)3個(gè)復(fù)孔。按“2.5”項(xiàng)下方法加藥、預(yù)干預(yù)、輻射、繼續(xù)干預(yù)適宜時(shí)間(參考“2.4”項(xiàng)下結(jié)果初設(shè)繼續(xù)干預(yù)時(shí)間,再根據(jù)檢測(cè)結(jié)果細(xì)分干預(yù)時(shí)間,即繼續(xù)干預(yù)0.5、2、12、24 h)。棄去培養(yǎng)基,細(xì)胞用4 ℃甲醇固定20 min后,于0.5%Triton-X 100試劑孵育10 min;用5%脫脂牛奶封閉1 h后,加入53BP1抗(稀釋比例為1 ∶ 500),室溫孵育2 h,以PBST溶液洗滌3次,再加入相應(yīng)二抗(稀釋比例為1 ∶ 1 000),室溫孵育1 h,以PBST溶液洗滌5次。細(xì)胞核以DAPI進(jìn)行復(fù)染并制片,使用熒光顯微鏡觀察并拍照,每個(gè)樣品計(jì)數(shù)100個(gè)細(xì)胞并計(jì)算其中53BP1焦點(diǎn)簇?cái)?shù)量(53BP1蛋白顯紅色熒光)。
2.7 統(tǒng)計(jì)學(xué)方法
采用SPSS 21.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。采用Shapiro-Wilk檢驗(yàn)進(jìn)行正態(tài)性檢驗(yàn)。計(jì)量資料符合正態(tài)分布者以x±s表示,不符合正態(tài)分布者以M(P25,P75)表示,多組間的比較采用單因素方差分析,兩組比較前者采用Students t檢驗(yàn),后者采用秩和檢驗(yàn)。計(jì)數(shù)資料以千分率表示,采用秩和檢驗(yàn)。P<0.05 表示差異有統(tǒng)計(jì)學(xué)意義。
3 結(jié)果
3.1 黃芪多糖、黃芪皂苷、黃芪黃酮對(duì)BMSCs增殖的影響
不同質(zhì)量濃度黃芪多糖、黃芪皂苷、黃芪黃酮繼續(xù)干預(yù)不同時(shí)間對(duì)BMSCs增殖的影響結(jié)果見表1~表3。
表1~表3結(jié)果顯示,與空白組比較,輻射組各時(shí)間點(diǎn)的OD值顯著降低,提示BMSCs增殖受到明顯抑制(P<0.05或P<0.01)。與輻射組比較,25 μg/mL黃芪多糖繼續(xù)干預(yù)2 d,25 μg/mL黃芪皂苷繼續(xù)干預(yù)1~3 d,25 μg/mL黃芪黃酮繼續(xù)干預(yù)2~3 d,50 μg/mL黃芪多糖繼續(xù)干預(yù)1~5 d,50 μg/mL黃芪皂苷、黃芪黃酮繼續(xù)干預(yù)2~4 d,75 μg/mL黃芪多糖、黃芪皂苷繼續(xù)干預(yù)2 d時(shí)BMSCs的OD值均顯著升高(P<0.05或P<0.01)。綜合考慮BMSCs的生長(zhǎng)狀況,將后續(xù)試驗(yàn)的藥物濃度確定為50 μg/mL,輻射后繼續(xù)干預(yù)時(shí)間確定為2 d。
3.2 黃芪多糖、黃芪皂苷、黃芪黃酮對(duì)BMSCs細(xì)胞微核形成的影響
與空白組比較,輻射組、黃芪多糖組、黃芪皂苷組、黃芪黃酮組微核細(xì)胞率和細(xì)胞微核率均顯著升高(P<0.01)。與輻射組和黃芪黃酮組比較,黃芪多糖組和黃芪皂苷組微核細(xì)胞率和細(xì)胞微核率均顯著降低,且黃芪多糖組顯著低于黃芪皂苷組(P<0.05)。各組微核細(xì)胞熒光顯微圖見圖1,微核細(xì)胞率和細(xì)胞微核率的檢測(cè)結(jié)果見圖2。
3.3 黃芪多糖、黃芪皂苷、黃芪黃酮對(duì)BMSCs中53BP1焦點(diǎn)簇?cái)?shù)量的影響
隨著繼續(xù)干預(yù)時(shí)間的延長(zhǎng),BMSCs中53BP1焦點(diǎn)簇?cái)?shù)量逐漸減少,超過24 h已基本檢測(cè)不出結(jié)果,故重點(diǎn)分析繼續(xù)干預(yù)0.5、2、12、24 h時(shí)53BP1焦點(diǎn)簇?cái)?shù)量的變化。與空白組比較,輻射組和黃芪多糖組細(xì)胞中53BP1焦點(diǎn)簇?cái)?shù)量均顯著增加(P<0.01)。與輻射組和黃芪黃酮組比較,黃芪多糖組繼續(xù)干預(yù)0.5、2、12、24 h(與黃芪黃酮組比較除外)和黃芪皂苷組繼續(xù)干預(yù)0.5、2、12時(shí)細(xì)胞中53BP1焦點(diǎn)簇?cái)?shù)量均顯著減少(P<0.05),而黃芪多糖組和黃芪皂苷組間比較差異均無統(tǒng)計(jì)學(xué)意義(P>0.05)。各組繼續(xù)干預(yù)0.5 h時(shí)細(xì)胞中53BP1焦點(diǎn)簇的熒光顯微圖見圖3(圖中,DAPI表示細(xì)胞核,53BP1表示53BP1蛋白),53BP1焦點(diǎn)簇?cái)?shù)量的檢測(cè)結(jié)果見圖4。
4 討論
放療是惡性腫瘤的關(guān)鍵治療手段,然而其對(duì)周圍組織造成的損傷也不容忽視。放療在治療惡性腫瘤的同時(shí),也有諸多副作用,例如其所導(dǎo)致的造血系統(tǒng)、胃腸道系統(tǒng)、心血管及神經(jīng)系統(tǒng)毒性反應(yīng),且隨著輻射劑量的增加,毒副反應(yīng)相應(yīng)增加[8]。已有研究表明,化療毒副反應(yīng)的罪魁禍?zhǔn)准醇?xì)胞DNA損傷,Smith TA等[9]研究發(fā)現(xiàn),低劑量的IR即可導(dǎo)致細(xì)胞DNA損傷,產(chǎn)生大量ROS和自由基,導(dǎo)致細(xì)胞基因組不穩(wěn)定,從而引起細(xì)胞凋亡、壞死,甚至癌變。BMSCs是具有自我更新和多向分化潛能的細(xì)胞。正常情況下,BMSCs可以對(duì)惡性腫瘤所導(dǎo)致的炎癥微環(huán)境進(jìn)行損傷修復(fù);但當(dāng)受到輻射時(shí),BMSCs會(huì)受到輻射副作用的影響,從而抑制細(xì)胞增殖,引起細(xì)胞凋亡,甚至癌變[9]。Thomas JG等[10]研究發(fā)現(xiàn),膠質(zhì)瘤放療后可增強(qiáng)BMSCs的定位,其中趨化因子CCL2在IR誘導(dǎo)BMSCs向膠質(zhì)瘤的定向中起著重要作用。因此,DNA損傷為輻射副作用致BMSCs癌變的罪魁禍?zhǔn)?。由此可見,防護(hù)輻射所致的BMSCs DNA損傷具有重要的臨床意義。
DNA損傷的兩個(gè)關(guān)鍵指標(biāo)為微核的產(chǎn)生和DNA雙鏈的斷裂。微核也叫微衛(wèi)星,是由斷裂的染色體片段或染色體形成的,其出現(xiàn)通常是遺傳毒性事件發(fā)生的標(biāo)志,細(xì)胞微核率可反映染色體DNA損傷程度[11]。DNA雙鏈斷裂是細(xì)胞暴露于IR后最重要的DNA損傷。細(xì)胞DNA雙鏈斷裂后,很快誘發(fā)組蛋白γH2AX的第139位絲氨酸磷酸化為53BP1,53BP1對(duì)于募集其他DNA損傷修復(fù)反應(yīng)蛋白到DNA損傷位點(diǎn)處進(jìn)行DNA損傷修復(fù)起著非常關(guān)鍵的作用,其焦點(diǎn)簇?cái)?shù)量能夠反映輻射損傷的水平,是評(píng)價(jià)DNA雙鏈斷裂的重要指標(biāo)[12-13]。本研究結(jié)果顯示,進(jìn)行IR之后,BMSCs微核細(xì)胞率和細(xì)胞微核率均顯著升高,這與已有研究[14]報(bào)道結(jié)果一致。
中醫(yī)將IR命名為新型毒邪——電離毒,兼具火熱之性,可耗氣傷津,使人體正氣虧虛,故補(bǔ)氣生津應(yīng)為輻射防護(hù)的主要治則[15]。中藥黃芪為補(bǔ)氣生津的代表,具有補(bǔ)氣升陽、益衛(wèi)固表等功效,是我國(guó)傳統(tǒng)的補(bǔ)氣中藥材之一。黃芪主要活性成分為多糖、皂苷和黃酮等,具有增強(qiáng)機(jī)體免疫、造血功能、抗應(yīng)激、抗腫瘤、延緩衰老、抗輻射、抗菌、抗病毒等多種藥理作用[7]。但黃芪是由多種成分共同構(gòu)成的,尚不清楚哪一種成分防護(hù)IR的效果更好。本研究通過CCK-8法檢測(cè)不同質(zhì)量濃度黃芪多糖、黃芪皂苷、黃芪黃酮對(duì)BMSCs增殖的影響,結(jié)果顯示,50 μg/mL黃芪多糖、黃芪皂苷和黃芪黃酮對(duì)輻射BMSCs進(jìn)行干預(yù)后均可明顯促進(jìn)BMSCs的增殖。用50 μg/mL黃芪多糖和黃芪皂苷對(duì)輻射BMSCs繼續(xù)干預(yù)2 d或24 h后,BMSCs的微核細(xì)胞率、細(xì)胞微核率和53BP1焦點(diǎn)簇?cái)?shù)量均顯著減少且黃芪多糖組的微核細(xì)胞率、細(xì)胞微核率均顯著低于黃芪皂苷組;而50 μg/mL黃芪黃酮干預(yù)則對(duì)微核細(xì)胞率、細(xì)胞微核率和53BP1焦點(diǎn)簇?cái)?shù)量無顯著影響。由此表明,黃芪多糖和黃芪皂苷對(duì)輻射所致的DNA損傷均有防護(hù)作用,其中黃芪多糖的防護(hù)效果優(yōu)于黃芪皂苷;而黃芪黃酮對(duì)輻射所致的DNA損傷無防護(hù)作用。其中,黃芪多糖對(duì)IR的防護(hù)作用與文獻(xiàn)報(bào)道結(jié)果[16-19]一致。本研究結(jié)果為黃芪有效成分防護(hù)IR所致BMSCs DNA損傷的應(yīng)用提供了選擇依據(jù),為臨床輻射防護(hù)奠定了理論基礎(chǔ),但是關(guān)于具體的防護(hù)作用機(jī)制尚不明確,后續(xù)仍需進(jìn)一步探討。
參考文獻(xiàn)
[ 1 ] CITRIN DE. Recent developments in radiotherapy[J]. N Engl J Med,2017,377(11):1065-1075.
[ 2 ] DE RUYSSCHER D,NIEDERMANN G,BURNET NG,et al. Radiotherapy toxicity[J]. Nat Rev Dis Primers,2019.DOI:10.1038/s41572-019-0073-4.
[ 3 ] SANTIVASI WL,XIA F. Ionizing radiation-induced DNA damage,response,and repair[J]. Antioxid Redox Sign,2014,21(2):251-259.
[ 4 ] LIU ZL,LI T,DENG SN,et al. Radiation induces apoptosis and osteogenic impairment through miR-22-mediated intracellular oxidative stress in bone marrow mesenchymal stem cells[J]. Stem Cells Int,2018. DOI:10.1155/2018/5845402.
[ 5 ] XIANG Y,WU C,WU J,et al. In vitro expansion affects the response of human bone marrow stromal cells to irradiation[J]. Stem Cell Res Ther,2019. DOI:10.1186/S1328/- 019-1191-3.
[ 6 ] WANG Z,QI F,CUI Y,et al. An update on Chinese herbal medicines as adjuvant treatment of anticancer therapeutics[J]. Biosci Trends,2018,12(3):220-239.
[ 7 ] LI X,QU L,DONG Y,et al. A review of recent research progress on the astragalus genus[J]. Molecules,2014,19(11):18850-18880.
[ 8 ] PANNKUK EL,F(xiàn)ORNACE AJ,LAIAKIS EC. Metabolomic applications in radiation biodosimetry:exploring radiation effects through small molecules[J]. Int J Radiat Biol,2017,93(10):1151-1176.
[ 9 ] SMITH TA,KIRKPATRICK DR,SMITH S,et al. Radioprotective agents to prevent cellular damage due to ionizing radiation[J]. J Transl Med,2017. DOI:10.1186/s12967- 017-1338-x.
[10] THOMAS JG,PARKER KERRIGAN BC,HOSSAIN A,et al. Ionizing radiation augments glioma tropism of mesenchymal stem cells[J]. J Neurosurg,2018,128(1):287- 295.
[11] SU C,HASKINS AH,KATO TA. Micronuclei formation analysis after ionizing radiation[J]. Methods Mol Biol,2019. DOI:10.1007/978-1-4939-9432-8_3.
[12] MAVRAGANI IV,NIKITAKI Z,KALOSPYROS SA,et al. Ionizing radiation and complex dna damage:from prediction to detection challenges and biological significan- ce[J]. Cancers:Basel,2019. DOI:10.3390/cancers11111789.
[13] GONON G,VILLAGRASA C,VOISIN P,et al. From energy deposition of ionizing radiation to cell damage signaling:benchmarking simulations by measured yields of initial DNA damage after ion microbeam irradiation[J]. Radiat Res,2019,191(6):566-584.
[14] SREETHARAN S,THOME C,TSANG KK,et al. Micronuclei formation in rainbow trout cells exposed to multiple stressors:morpholine,heat shock,and ionizing radiation[J]. Toxicol In Vitro,2018. DOI:10.1016/j.tiv.2017. 10.026.
[15] 王磊,王安,胡素敏.試論急性輻射損傷的中醫(yī)學(xué)病因:電離毒[J].北京中醫(yī)藥大學(xué)學(xué)報(bào),2017,40(1):27-30.
[16] 周妮娜,張利英,劉永琦,等.黃芪多糖對(duì)電離輻射誘發(fā)間充質(zhì)干細(xì)胞基因DNA損傷的保護(hù)作用[J].中國(guó)現(xiàn)代應(yīng)用藥學(xué),2016,33(2):139-143.
[17] 王磊,許小敏,張艷輝,等.黃芪多糖對(duì)X線輻射所致骨髓間充質(zhì)干細(xì)胞細(xì)胞核、染色體及DNA損傷的影響[J].中國(guó)腫瘤,2018,27(9):708-714.
[18] 張利英,王磊,張麗昕,等.黃芪多糖對(duì)重離子輻射BMSCs防護(hù)作用及與NF-κB相關(guān)機(jī)制研究[J].中華中醫(yī)藥雜志,2018,33(12):5576-5580.
[19] LI YR,CAO W,GUO J,et al. Comparative investigations on the protective effects of rhodioside,ciwujianoside-B and astragaloside Ⅳ on radiation injuries of the hematopoietic system in mice[J]. Phytother Res,2011,25(5):644-653.
(收稿日期:2020-09-16 修回日期:2020-10-29)
(編輯:鄒麗娟)