国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

microRNA對(duì)昆蟲(chóng)生長(zhǎng)和發(fā)育的調(diào)控

2019-12-23 01:22:25閘雯俊常萌游艾青
湖北農(nóng)業(yè)科學(xué) 2019年22期
關(guān)鍵詞:昆蟲(chóng)調(diào)控發(fā)育

閘雯俊 常萌 游艾青

摘要:microRNA是一種小的非編碼RNA,通過(guò)靶向信使RNA中的位點(diǎn)在植物和動(dòng)物的基因調(diào)控過(guò)程中發(fā)揮作用。已發(fā)現(xiàn)microRNA在整個(gè)昆蟲(chóng)發(fā)育過(guò)程中調(diào)節(jié)多種生理機(jī)能,包括蛻皮、變態(tài)、卵子發(fā)生、胚胎發(fā)生、行為和宿主病原體相互作用。microRNA的功能在高度分化的物種中具有保守性,因而在模式生物——黑腹果蠅中已經(jīng)被廣泛研究。探索microRNA在非果蠅昆蟲(chóng)物種中的作用已經(jīng)成為昆蟲(chóng)科學(xué)的一種趨勢(shì)。介紹了microRNA近年來(lái)在昆蟲(chóng)生理和發(fā)育過(guò)程中的作用。

關(guān)鍵詞:昆蟲(chóng);microRNA;生長(zhǎng);發(fā)育;調(diào)控

中圖分類號(hào):Q963? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A

文章編號(hào):0439-8114(2019)22-0198-05

DOI:10.14088/j.cnki.issn0439-8114.2019.22.045? ? ? ? ? ?開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):

Regulation of microRNA on insect growth and development

ZHA Wen-jun1,CHANG Meng1,YOU Ai-qing1,2

(1.Food Crops Institute,Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasms and Genetic Improvement,Wuhan 430064,China;2.Hubei Collaborative Innovation Center for Grain Industry,Yangtze University,Jingzhou 434025,Hubei,China)

Abstract: microRNA are small non-coding RNA that function in gene regulatory processes in plants and animals by targeting sites within messenger RNA. In insects, microRNA have been shown to regulate a variety of physiological processes throughout insect development, including molting, metamorphosis, oogenesis, embryogenesis, behavior and host-pathogen interactions. The roles of microRNA in the model organism, Drosophila melanogaster, have been studied extensively due to the conserved nature of microRNA function among highly divergent species. However, seeking to understand microRNA function in non-drosophilid insect species has become a growing trend in insect science. The role of microRNA in insect physiology and development in recent years were introduced.

Key words: insect; microRNA; growth; development; regulation

microRNA(以下簡(jiǎn)稱miRNA)是一種內(nèi)源性非編碼RNA,在轉(zhuǎn)錄后調(diào)節(jié)信使RNA的轉(zhuǎn)錄水平和翻譯水平,是存在于植物和動(dòng)物體內(nèi)的重要調(diào)控因子。在昆蟲(chóng)中,典型的小RNA基因位點(diǎn)通過(guò)RNA聚合酶II,類似的轉(zhuǎn)錄成mRNA,形成初級(jí)miRNA(pri-miRNA)轉(zhuǎn)錄物[1]。在形成靶向mRNA的成熟miRNA前,pri-miRNA經(jīng)歷了一系列加工和分選事件。pri-miRNA在細(xì)胞核中被RNaseIII-Drosha加工,釋放被稱為pre-miRNA(miRNA前體)的約70 nt的莖環(huán)結(jié)構(gòu)[2,3]。miRNA前體被Exportin-5(Exp-5)運(yùn)送到細(xì)胞質(zhì)中,它的末端環(huán)狀結(jié)構(gòu)被另一個(gè)RNaseIII內(nèi)切核酸酶——Dicer-I(Dcr-1)切割。產(chǎn)生一條22 nt的miRNA雙鏈體(duplex)[4-6]。雙鏈體的兩條鏈被分類并加載到各自的Argonauto(Ago)蛋白質(zhì)上,通過(guò)形成RNA誘導(dǎo)的沉默復(fù)合物(RISC)完成對(duì)靶序列的作用。RISC通常靶向靶轉(zhuǎn)錄物的3個(gè)非翻譯區(qū)(UTR),促進(jìn)翻譯抑制以及mRNA的降解[7]。mRNA-miRNA的相互作用可能導(dǎo)致mRNA的穩(wěn)定[8]。

目前,已經(jīng)在幾種昆蟲(chóng)中鑒定出保守和譜系特異性miRNA。保守的miRNA可以在生物體中引發(fā)保留功能以及非保守行動(dòng)。而譜系特異性和種特異性RNA可能有助于特定昆蟲(chóng)的發(fā)育。由于黑腹果蠅miRNA功能的保守性,其miRNA的生物發(fā)生、行為模式以及在動(dòng)物中的功能作用受到廣泛的關(guān)注。miRNA已被發(fā)現(xiàn)作用于各種生物進(jìn)程中,包括動(dòng)物的發(fā)育和疾病。由于miRNA在動(dòng)物生理學(xué)中的重要作用,研究其在醫(yī)學(xué)及農(nóng)業(yè)領(lǐng)域的其他昆蟲(chóng)中的功能已成為昆蟲(chóng)科學(xué)的一個(gè)發(fā)展趨勢(shì)。

1? miRNA在昆蟲(chóng)生長(zhǎng)與發(fā)育過(guò)程中的功能作用

1.1? 生長(zhǎng)與發(fā)育

研究表明,dme-miR-8調(diào)節(jié)脂肪體內(nèi)的多種肽激素,促進(jìn)細(xì)胞生長(zhǎng)[9-11]。dme-miR-14能夠靶向Hedgehog基因(Hg),而Hedgehog基因是高度保守的Hg信號(hào)通路的核心成分,在多種發(fā)育過(guò)程中發(fā)揮著重要作用[12]。該miRNA還通過(guò)調(diào)節(jié)肌醇1,4,5-三磷酸激酶2(iP3k2)來(lái)調(diào)節(jié)唾液腺細(xì)胞的自噬,從而在蛹發(fā)育過(guò)程中降解幼體唾液腺[13]。此外,Hippo信號(hào)通路通過(guò)果蠅中miRNA的dme-miR-2a簇調(diào)節(jié)在組織生長(zhǎng)期間促凋亡基因的表達(dá)[14]。dme-bamtam通過(guò)在胰島素信號(hào)通路上游發(fā)揮作用,控制信號(hào)中心(干細(xì)胞樣生態(tài)位)的生長(zhǎng)和繁殖[15]。dme-miR-305還與果蠅腸道干細(xì)胞中的胰島素信號(hào)通路以及Notch信號(hào)通路相互作用,以控制自我更新和分化[16]。dme-miR-7的miRNA通過(guò)靶向細(xì)胞周期的調(diào)節(jié)因子dacapo和Notch信號(hào)通路,來(lái)調(diào)控果蠅翅發(fā)育期間的細(xì)胞生長(zhǎng)和細(xì)胞周期進(jìn)程[17]。

昆蟲(chóng)的甾類激素20-羥基蛻皮激素(20E),協(xié)助昆蟲(chóng)的多種發(fā)育事件。部分昆蟲(chóng)miRNA通過(guò)調(diào)控蛻皮酮級(jí)聯(lián)基因在昆蟲(chóng)發(fā)育和變態(tài)過(guò)程中發(fā)揮作用。在家蠶中,bmo-miR-281通過(guò)對(duì)家蠶EcR-B的亞基特異型特異性抑制,參與家蠶馬氏管的發(fā)育調(diào)控[18]。與果蠅中的EcR不同,桑蠶EcR-A的3′-UTR與EcR-B的3′-UTR顯著不同,表明在桑蠶中保守的miR-281作為EcR-B的一個(gè)非保守的調(diào)控因子亞型起作用。利用轉(zhuǎn)基因miRNA海綿(miR-SP)技術(shù)結(jié)合家蠶二元Gal-UAS系統(tǒng)進(jìn)行研究,發(fā)現(xiàn)bmo-let-7 miR-SP在幼蟲(chóng)-幼蟲(chóng)和幼蟲(chóng)-蛹的轉(zhuǎn)變期間起毒害作用[19]。研究表明,bmo-let-7在蠶蛻皮和變態(tài)過(guò)程中起重要作用,bmo-let-7可能通過(guò)靶向調(diào)控蛻皮信號(hào)級(jí)聯(lián)的關(guān)鍵調(diào)控基因FTZ-F1和E74來(lái)調(diào)節(jié)蛻皮。

在昆蟲(chóng)中,神經(jīng)元的發(fā)育已經(jīng)被證明是受miRNAs調(diào)控的。果蠅的神經(jīng)肌肉鏈接(NMJ)在幼蟲(chóng)期后期需要dme-miR-8通過(guò)靶向激活的肌動(dòng)蛋白來(lái)進(jìn)行擴(kuò)張[20]。dme-miR-8通過(guò)在突觸細(xì)胞黏附分子,成束蛋白III(FasIII)和神經(jīng)膠質(zhì)蛋白(Nrg)上游發(fā)揮功能,從而在NMJ發(fā)育早期發(fā)揮作用。Dme-miR-8還可以調(diào)節(jié)阿托品的水平,以防止神經(jīng)退化,dme-miR-8突變體果蠅的幼蟲(chóng)大腦和成年發(fā)育缺陷均表現(xiàn)出明顯的凋亡[21]。在德國(guó)小蠊(蟑螂)中,bge-miR-3P和bge-miR-8-5P以阿托品為靶點(diǎn),而調(diào)節(jié)阿托品水平失誤會(huì)導(dǎo)致運(yùn)動(dòng)協(xié)調(diào)受損[22]。

在褐飛虱中,nlu-miR-8-5P和nlu-miR-2a-3P分別靶向甲殼素生物合成途徑成分,膜結(jié)合海藻糖酶(tre2)和磷酸乙酰氨基葡萄糖突變酶(PAGM)[23]。nlu-miR-5P和nlu-miR-2a-3P的過(guò)表達(dá)會(huì)導(dǎo)致個(gè)體存活率降低,并會(huì)導(dǎo)致甲殼素含量減少。此外,通過(guò)廣譜復(fù)合物(BR-C)顯示nlu-miR-8-5P和nlu-miR-2a-3P水平被20E負(fù)調(diào)節(jié)。在通常被稱為甜菜夜蛾的斑點(diǎn)翅目昆蟲(chóng)中,sex-miR-4924可能通過(guò)幾丁質(zhì)酶1來(lái)調(diào)控幼蟲(chóng)的發(fā)育和蛻皮[24]。飛蝗中的Dcr-1使miRNA含量減少,并破壞了蛻皮-若蟲(chóng)-若蟲(chóng)和若蟲(chóng)-成蟲(chóng)這兩種蛻皮類型[25]。

除了保守的miRNA,對(duì)譜系特異性miRNA的研究已經(jīng)確定了它們?cè)诶ハx(chóng)發(fā)育中的重要作用。在白紋伊蚊幼蟲(chóng)中,有關(guān)蚊子和幼蟲(chóng)特異性的miRNA-aael-miR-2942的消耗導(dǎo)致其羽化率降低,表明其在調(diào)節(jié)蚊子幼蟲(chóng)羽化事件中起重要作用[26]。對(duì)馬蹄潛葉蟲(chóng)和帕眼蝶(斑點(diǎn)木蝴蝶)這兩個(gè)鱗翅目昆蟲(chóng)發(fā)育階段中的小RNA文庫(kù)測(cè)序,鑒定了許多保守和譜系特異性miRNA[27]。鱗翅目昆蟲(chóng)特異的miRNA-miR-2768被發(fā)現(xiàn)來(lái)源于invected(inv)基因的內(nèi)含子,靶向翅脈中斷(ci)基因的編碼區(qū),并可能在胚胎分割或翅原基后胚胎發(fā)育中發(fā)揮作用。

1.2? 行為

近年來(lái),研究發(fā)現(xiàn)miRNA在調(diào)節(jié)昆蟲(chóng)行為可塑性、行為表現(xiàn)和行為記憶方面具有重要作用。在東亞飛蝗中,lmi-miR-133通過(guò)靶向多巴胺合成途徑中的關(guān)鍵參與者(henna和pale),來(lái)介導(dǎo)社交和孤立階段之間的表型可塑性和行為變化[28]。敲除dme-miR-124的果蠅,在成年期顯示出運(yùn)動(dòng)、飛行和生育能力嚴(yán)重下降,這表明這種miRNA是正常成體所必需的[29]。在蜜蜂(歐洲黑蜂)中,ami-miR-932的缺失會(huì)損害長(zhǎng)期記憶的形成,表明其在學(xué)習(xí)和記憶中具有調(diào)節(jié)作用。Ame-miR-932能與Act5C相互作用,這可能影響學(xué)習(xí)和記憶以及依賴于活動(dòng)的神經(jīng)元的可塑性[30]。

1.3? 性別決定

在幾種昆蟲(chóng)中已經(jīng)發(fā)現(xiàn)了調(diào)控性別決定作用的miRNA。miRNA在建立兩性特征以及控制性行為方面起重要作用。雄性和雌性偏倚,卵巢和睪丸豐富的miRNA序列揭示了miRNA在性別決定和配子發(fā)生方面調(diào)控的復(fù)雜性。dme-let-7的缺失會(huì)導(dǎo)致體細(xì)胞行為異常,卵巢早期生殖系分化延遲和睪丸中體細(xì)胞大量聚集。dme-let-7在幼蟲(chóng)后期到蛹后期在雄性和雌性的性別認(rèn)同中扮演著重要的角色,并且蛻皮激素信號(hào)通過(guò)dme-let-7在整個(gè)成年期持續(xù)調(diào)節(jié)著性別認(rèn)同[31]。

此外,dme-miRNA-124通過(guò)靶向性別決定通路中的性別特異性剪接因子轉(zhuǎn)換器來(lái)控制雄性性別分化[32]。miR-124突變的雄性果蠅產(chǎn)生異常信息素水平,導(dǎo)致其與雌性果蠅交配成功率以及接受雌性能力下降,并會(huì)增加雄性與雄性之間的求愛(ài)率。并且miRNA表達(dá)在雄性果蠅交配后的多個(gè)組織中發(fā)生改變[33]。缺少(dme-miR-279、dme-miR-317、dme-miR-278和dme-miR-184)miRNA的雌果蠅對(duì)SP的性接受反應(yīng)發(fā)生了改變。

雌蜂因其生存條件不同產(chǎn)生兩種表型(有相同基因型背景的工蜂和蜂后)而受到關(guān)注。已經(jīng)證明miRNA在這些蜜蜂(意大利工蜂)的分化中起作用,且在工蜂漿中的miRNA似乎比蜂王漿中更多[34]。在蜂王幼蟲(chóng)的食物中添加miRNA,尤其是ame-miRNA-184,會(huì)影響成年蜜蜂表型的形態(tài),并導(dǎo)致miRNA表達(dá)譜發(fā)生動(dòng)態(tài)變化。

1.4? 卵子發(fā)生和胚胎發(fā)生

大量的miRNA已被證明在卵子發(fā)生和胚胎發(fā)生中起作用。在果蠅中,dme-miR-989在體濾泡細(xì)胞中具有活性,并且在卵子發(fā)生過(guò)程中,在邊界細(xì)胞向卵母細(xì)胞遷移中起作用[35]。雙胸復(fù)合體(BX-C)HOX簇miRNAs——dme-miR-iab-4和dme-miR-iab-8通過(guò)限制HOX基因靶點(diǎn)來(lái)調(diào)節(jié)果蠅的神經(jīng)模式和繁殖[36]。敲除dme-iab-418發(fā)夾缺失的突變果蠅是不育的,并且由于卵子從卵巢通過(guò)生殖道的通道有缺陷,也不能產(chǎn)卵。缺失dme-miR-282會(huì)導(dǎo)致果蠅的存活率和產(chǎn)卵量下降,這是由于神經(jīng)缺陷導(dǎo)致的卵巢細(xì)胞凋亡活性升高所致[37]。

在白紋伊蚊中,aal-miR-286b在胚胎期高度表達(dá),而它的缺失會(huì)導(dǎo)致孵化率延遲,表明它在胚胎發(fā)生中的重要作用[26]。研究表明,在桑蠶中,bmo-miR-1a-3P可能通過(guò)與其3′-UTR內(nèi)靶位點(diǎn)結(jié)合下調(diào)bmVMP23,它是一種可能有助于卵子的結(jié)構(gòu)及其完整性的卵黃膜蛋白[38]。在東亞飛蝗中,Argonaute-I缺失的成體雌蟲(chóng)卵黃原蛋白(Vg)的表達(dá)明顯下降,它是一種重要的卵黃蛋白前體(YPP),對(duì)卵母細(xì)胞成熟和卵巢發(fā)育有重要影響[39]。

在非自生型蚊子中已經(jīng)證明一些miRNA能發(fā)揮作用,這些miRNA可以調(diào)控與血液供養(yǎng)與繁殖有關(guān)的事件。研究表明,譜系特異性miRNA-miR-1174主要在埃及伊蚊和岡比亞蚊這兩種吸血蚊的后中腸中表達(dá)[40]。從缺失miR-1174的埃及伊蚊和岡比亞蚊中可推斷出,miR-1174對(duì)糖的吸收、體液的排泄、血糖的攝入和消化以及卵子的發(fā)育都至關(guān)重要。Ame-miR-1174靶向高度保守的絲氨酸羥甲基轉(zhuǎn)移酶(SHMT),表明家族特異性miRNA具有調(diào)節(jié)保守功能,影響家族特異性事件的能力。在埃及伊蚊中,aae-miR-8通過(guò)靶向分泌Wg的相互作用分子(swim)調(diào)控生殖過(guò)程。它由血液餐后脂肪體所誘導(dǎo),在無(wú)翅信號(hào)通路中起作用[41]。在第一個(gè)miR-SP與Gal4-UAG聯(lián)合的埃及伊蚊的應(yīng)用體系中,脂肪體特異性aae-miR-8的耗竭導(dǎo)致與卵子發(fā)育和沉積相關(guān)的缺陷,這可能是由于YPPs分泌缺陷所致。在伊蚊中,蚊子特異性的miR-1891在血餐(blood meal)相關(guān)事件中起重要作用[26]。aal-miR-1890的缺失會(huì)導(dǎo)致成蟲(chóng)的繁殖力下降,這表明其在血液消化與卵子發(fā)育中起作用。

miRNAs參與由細(xì)胞質(zhì)遺傳引起的母體效應(yīng)已經(jīng)被證實(shí)。miRNA是母系沉積在未受精的果蠅卵母細(xì)胞中的[42]。保守的miR-34在果蠅和斑馬魚(yú)中是母系遺傳,在未受精的斑馬魚(yú)卵母細(xì)胞中的dre-miR-34下調(diào)會(huì)導(dǎo)致神經(jīng)生長(zhǎng)異常。大多數(shù)母系遺傳的miRNA在果蠅的早期發(fā)育過(guò)程中,在其3個(gè)末端高度腺苷酸化,促進(jìn)母體到合子轉(zhuǎn)變期間的下調(diào)[43]。

1.5? 宿主-病原體的相互作用和免疫

已證實(shí)有一些miRNA能在昆蟲(chóng)宿主-病原體的相互作用及免疫中發(fā)揮作用。研究顯示,miR-8無(wú)效的突變體果蠅表現(xiàn)出異常的菌肽表達(dá)及死亡率增加[44]。miRNA(dme-miR-8)通過(guò)靶向Toll免疫通路中的多種效應(yīng)因子(包括Toll和Dorsal以及胰島素信號(hào)通路的一個(gè)成員——U-shaped),在維持內(nèi)穩(wěn)態(tài)免疫中發(fā)揮作用[45]。在甘藍(lán)葉娥(小菜蛾)中,pxy-miR-8通過(guò)靶向Toll免疫通路中的Serpin27來(lái)調(diào)控抗微生物肽的產(chǎn)生以及調(diào)控先天免疫穩(wěn)態(tài)[46]。對(duì)蚊子中的宿主-病原體相互作用的研究因其作為疾病媒介的醫(yī)學(xué)重要性而受到極大關(guān)注[47]。埃及伊蚊中的aae-miR-375是由血餐引起的,并以兩種免疫相關(guān)的基因(cactus和REL1)為靶標(biāo)[48]。將內(nèi)共生細(xì)菌沃爾巴克氏體轉(zhuǎn)入蚊子被認(rèn)為是一種對(duì)抗由蚊子引發(fā)疾病的生物預(yù)防策略,因?yàn)樗梢愿蓴_病毒的復(fù)制。沃爾巴克氏體在埃及伊蚊感染后可以操縱miRNA,增強(qiáng)其本身的穩(wěn)定性。在被傳染沃爾巴克氏體的蚊子細(xì)胞內(nèi),Ago-I轉(zhuǎn)移到細(xì)胞核這一過(guò)程被截?cái)啵且驗(yàn)檎{(diào)控Ago-I分布的重要基因——aae-miR-98的增加,它可以調(diào)控輸入蛋白β-4[49]。細(xì)胞核中Ago-I的缺失將會(huì)影響miRNA的運(yùn)輸,反而會(huì)增強(qiáng)沃爾巴克氏體的穩(wěn)定性。感染了沃爾巴克氏體的埃及伊蚊表現(xiàn)出蚊子特有的aae-miR-2940表達(dá)方式[50-52]。金屬蛋白酶基因(m41 FtsH)[50]、DNA甲基轉(zhuǎn)移酶基因(AaDnmt2)[51]及精氨酸甲基轉(zhuǎn)移酶3基因(AaArgM3)[53]最近被確定為aae-miR-2940的靶點(diǎn)。登革病毒(DENV)誘導(dǎo)AaDnmt2表達(dá),而感染沃爾巴克氏體的蚊子通過(guò)aae-miR-2940來(lái)抑制AaDnmt2[51]。aae-miR-2940可以穩(wěn)定金屬蛋白酶(m41 FtsH),其缺失會(huì)導(dǎo)致金屬蛋白酶水平降低并限制西羅河病毒(WNV)的復(fù)制。AaDnmt2的過(guò)表達(dá)限制沃爾巴克氏體的復(fù)制[50,53]。雖然AaArgM3的沉默已被證實(shí)對(duì)登革熱病毒(DENV)的復(fù)制沒(méi)有影響,但蚊子細(xì)胞內(nèi)沃爾巴克氏體復(fù)制數(shù)量卻減少了[52]。研究表明,金屬蛋白酶m41 FtsH是WNV高效復(fù)制所必需的。

對(duì)miRNA抗病毒免疫更深層次的研究表明,伊蚊中的aal-miR-252是DENV包膜蛋白的抑制劑,而這種蛋白又是細(xì)胞附著和病毒進(jìn)入細(xì)胞所必需的[54]。宿主miRNA-aal-miR-281與病毒基因組之間的相互作用表明aal-miR-252可能在伊蚊中起抗病毒調(diào)節(jié)作用。在同一物種中豐富的中腸特異性,miRNA aal-miR-281促進(jìn)DEMV的復(fù)制,在雌蚊體內(nèi)抑制這種mRNA導(dǎo)致了DENV-2豐度的降低[55]。該miRNA也被證明具有潛在的靶向DENV基因組SLA 5′-UTR區(qū)域的能力,表明宿主miRNA與DENV基因組之間存在相互作用,DENV利用宿主miRNA進(jìn)行復(fù)制。此外,在埃及伊蚊和伊蚊的唾液中檢測(cè)到了31種未被鑒定的新型miRNA[56]。CHIKV感染對(duì)唾液中miRNA表達(dá)的影響導(dǎo)致埃及伊蚊和伊蚊中分別有59種和30種已知miRNA表達(dá)上調(diào)。

miRNA除了能調(diào)控抗病毒免疫外,在瘧疾感染中也發(fā)揮了一定的作用。近年來(lái)的研究表明,aga-miR-305參與了抗瘧原蟲(chóng)防御功能以及對(duì)蚊子腸道微生物群的調(diào)控[57]。aga-miR-305受到抑制可以增強(qiáng)對(duì)惡性瘧原蟲(chóng)感染的抵抗力并使中腸道微生物群受到抑制;aga-miR-305模擬物增加了對(duì)抗瘧原蟲(chóng)感染的敏感性并導(dǎo)致中腸道微生物群的擴(kuò)張。

2? 小結(jié)

研究表明,miRNA在調(diào)節(jié)昆蟲(chóng)生理方面的重要性包括蛻皮、變態(tài)、神經(jīng)元發(fā)育、行為、卵子發(fā)生、胚胎發(fā)生以及宿主與病原體的相互作用。隨著研究非模式微生物中miRNA所需的生物信息學(xué)技術(shù)和遺傳學(xué)工具的改進(jìn),開(kāi)始對(duì)這些昆蟲(chóng)中miRNA的作用有了更深入的了解。盡管miRNA在具有成熟的經(jīng)典遺傳學(xué)和轉(zhuǎn)基因工具的模型生物體中得到了深入的研究,但直到近年來(lái)為止很少有人研究miRNA在非果蠅昆蟲(chóng)中的功能。基因組學(xué)工具的限制仍是探索miRNA在非模式生物中功能的重大障礙。然而,Gal4-UAS系統(tǒng)與miR-SP轉(zhuǎn)基因方法聯(lián)合的應(yīng)用為研究miRNA在非果蠅昆蟲(chóng)中的功能提供了新的思路[19,41]。此外,CRISPR-Cas9系統(tǒng)的研究提供了有希望的結(jié)果,該結(jié)果表明可以使用之前不適用于非模式生物的基因工程技術(shù)。

參考文獻(xiàn):

[1] LEE Y,KIM M,HAN J,et al. MicroRNA genes are transcribed by RNA polymerase II[J].EMBO J,2004,23(20):4051-4060.

[2] LEE Y,AHN C,HAN J,et al. The nuclear RNase III drosha initiates microRNA processing[J].Nature,2003,425(6956):415-419.

[3] DENLI A M,TOPS B B,PLASTERK R H,et al. Processing of primary microRNAs by the microprocessor complex[J].Nature,2004,432(7014):231-235.

[4] HUTV?魣GNER G,MCLACHLAN J,PASQUINELLI A E,et al. A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA[J].Science,2001, 293(5531):834-838.

[5] KETTING R F,F(xiàn)ISCHER S E,BERNSTEIN E,et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans[J].Genes Dev,2001,15(20):2654-2659.

[6] KNIGHT S W,BASS B L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans[J].Science,2001,293(5538):2269-2271.

[7] FUKAYA T,IWAKAWA H O,TOMARI Y. MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila[J].Mol Cell,2014,56(1):67-78.

[8] VASUDEVAN S. Posttranscriptional upregulation by microRNAs[J].Wiley Interdiscip Rev RNA,2012,3(3):311-330.

[9] HYUN S,LEE J H,JIN H,et al. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K[J].Cell,2009,139(6):1096-1108.

[10] JIN H,KIM V N,HYUN S. Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila[J].Genes Dev,2012,26(13):1427-1432.

[11] LEE G J,JUN J W,HYUN S. MicroRNA miR-8 regulates multiple growth factor hormones produced from Drosophila fat cells[J].Insect Mol Biol,2015,24(3):311-318.

[12] KIM K,VINAYAGAM A,PERRIMON N. A rapid genome-wide microRNA screen identifies miR-14 as a modulator of Hedgehog signaling[J].Cell Rep,2014,7(6):2066-2077.

[13] NELSON C,AMBROS V,BAEHRECKE E H. miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2[J].Mol Cell,2014,56(3):376-388.

[14] ZHANG W,COHEN S M. The Hippo pathway acts via p53 and microRNAs to control proliferation and proapoptotic gene expression during tissue growth[J].Biol Open,2013,2(8):822-828.

[15] LAM V,TOKUSUMI T,TOKUSUMI Y,et al. Bantam miRNA is important for Drosophila blood cell homeostasis and a regulator of proliferation in the hematopoietic progenitor niche[J]. Biochem Biophys Res Commun,2014,453(3):467-472.

[16] FORONDA D,WENG R,VERMA P,et al. Coordination of insulin and Notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut[J].Genes Dev,2014,28(21):2421-2431.

[17] APARICIO R,SIMOES DA SILVA C J,et al. MicroRNA miR-7 contributes to the control of Drosophila wing growth[J].Dev Dyn,2015,244(1):21-30.

[18] JIANG J,GE X,LI Z,et al. MicroRNA-281 regulates the expression of ecdysone receptor (EcR) isoform B in the silkworm,Bombyx mori[J].Insect Biochem Mol Biol,2013,43(8):692-700.

[19] LING L,GE X,LI Z,et al. MicroRNA Let-7 regulates molting and metamorphosis in the silkworm,Bombyx mori[J].Insect Biochem Mol Biol,2014,53:13-21.

[20] LOYA C M,MCNEILL E M,BAO H,et al. miR-8 controls synapse structure by repression of the actin regulator enabled[J].Development,2014,141(9):1864-1874.

[21] KARRES J S,HILGERS V,CARRERA I,et al. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila[J].Cell,2007,131(1):136-145.

[22] RUBIO M,MONTAEZ R,PEREZ L,et al. Regulation of atrophin by both strands of the mir-8 precursor[J].Insect Biochem Mol Biol,2013,43(11):1009-1014.

[23] CHEN J,LIANG Z,LIANG Y,et al. Conserved microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in response to 20-hydroxyecdysone signaling in the brown planthopper,Nilaparvata lugens[J].Insect Biochem Mol Biol,2013,43(9):839-848.

[24] ZHANG Y L,HUANG Q X,YIN G H,et al. Identification of microRNAs by small RNA deep sequencing for synthetic microRNA mimics to control Spodoptera exigua[J].Gene,2015,557(2):215-221.

[25] WANG Y L,YANG M L,JIANG F,et al. MicroRNA-dependent development revealed by RNA interference-mediated gene silencing of LmDicer1 in the migratory locust[J].Insect Sci,2013,20(1):53-60.

[26] PUTHIYAKUNNON S,YAO Y,LI Y,et al. Functional characterization of three MicroRNAs of the Asian tiger mosquito, Aedes albopictus[J].Parasit vectors,2013,6(1):230.

[27] QUAH S,HUI J H,HOLLAND P W. A burst of miRNA innovation in the early evolution of butterflies and moths[J].Mol Biol Evol,2015,32(5):1161-1174.

[28] YANG M,WEI Y,JIANG F,et al. MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts[J].PLoS genet,2014,10(2):e1004206.

[29] WANG C,F(xiàn)ENG T,WAN Q,et al. miR-124 controls Drosophila behavior and is required for neural development[J].Int J Dev Neurosci,2014,38:105-112.

[30] CRISTINO A S,BARCHUK A R,F(xiàn)REITAS F C,et al. Neuroligin-associated microRNA-932 targets actin and regulates memory in the honeybee[J].Nat Commun,2014,5:5529.

[31] FAGEGALTIER D,KNIG A,GORDON A,et al. A genome-wide survey of sexually dimorphic expression of Drosophila miRNAs identifies the steroid hormone-induced miRNA let-7 as a regulator of sexual identity[J].Genetics,2014,198(2):647-668.

[32] WENG R,CHIN J S,YEW J Y,et al. miR-124 controls male reproductive success in Drosophila[J].Elife,2013,2:e00640.

[33] FRICKE C,GREEN D,SMITH D,et al. MicroRNAs influence reproductive responses by females to male sex peptide in Drosophila melanogaster[J].Genetics,2014,198(4):1603-1619.

[34] GUO X,SU S,SKOGERBOE G,et al. Recipe for a busy bee:microRNAs in honey bee caste determination[J].PLoS one,2013,8(12):e81661.

[35] KUGLER J M,VERMA P,CHEN Y W,et al. miR-989 is required for border cell migration in the Drosophila ovary[J].PLoS one,2013,8(7):e67075.

[36] GARAULET D L,CASTELLANOS M C,BEJARANO F,et al. Homeotic function of Drosophila Bithorax-complex miRNAs mediates fertility by restricting multiple Hox genes and TALE cofactors in the CNS[J].Dev Cell,2014,29(6):635-648.

[37] VILMOS P,BUJNA A,SZUPERK M,et al. Viability,longevity,and egg production of Drosophila melanogaster are regulated by the miR-282 microRNA[J].Genetics,2013,195(2):469-480.

[38] CHEN A,XIA D,QIU Z,et al. Expression of a vitelline membrane protein,BmVMP23,is repressed by bmo-miR-1a-3p in silkworm,Bombyx mori[J].FEBS Lett,2013,587(7):970-975.

[39] SONG J,GUO W,JIANG F,et al. Argonaute 1 is indispensable for juvenile hormone mediated oogenesis in the migratory locust,Locusta migratoria[J].Insect Biochem Mol Biol,2013,43(9):879-887.

[40] LIU S,LUCAS K J,ROY S,et al. Mosquito-specific microRNA-1174 targets serine Hydroxy methyl transferase to control key functions in the gut[J].Proc Natl Acad Sci USA,2014,? 111(40):14460-14465.

[41] LUCAS K J,ROY S,HA J,et al. MicroRNA-8 targets the wingless signaling pathway in the female mosquito fat body to regulate reproductive processes[J].Proc Natl Acad Sci USA,2015, 12(5):1440-1445.

[42] SONI K,CHOUDHARY A,PATOWARY A,et al. miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio[J].Nucleic Acids Res,2013,41(8):4470-4480.

[43] LEE M,CHOI Y,KIM K,et al. Adenylation of maternally inherited microRNAs by wispy[J].Mol Cell,2014,56(5):696-707.

[44] CHOI I K,HYUN S. Conserved microRNA miR-8 in fat body regulates innate immune homeostasis in Drosophila[J].Dev Comp Immunol,2012,37(1):50-54.

[45] LEE G J,HYUN S. Multiple targets of the microRNA miR-8 contribute to immune homeostasis in Drosophila[J].Dev Comp Immunol,2014,45(2):245-251.

[46] ETEBARI K,ASGARI S. Conserved microRNA miR-8 blocks activation of the toll pathway by upregulating Serpin 27 transcripts[J].RNA Biol,2013,10(8):1356-1364.

[47] LUCAS K J,MYLES K M,RAIKHEL A S. Small RNAs:A new frontier in mosquito biology[J].Trends parasitol,2013,29(6):295-303.

[48] HUSSAIN M,WALKER T,ONEILL S L,et al. Blood meal induced microRNA regulates development and immune associated genes in the dengue mosquito vector,Aedes aegypti[J].Insect Biochem Mol Biol,2013,43(2):146-152.

[49] HUSSAIN M,ONEILL S L,ASGARI S. Wolbachia interferes with the intracellular distribution of Argonaute 1 in the dengue vector Aedes aegypti by manipulating the host microRNAs[J].RNA Biol,2013,10(12):1868-1875.

[50] HUSSAIN M,F(xiàn)RENTIU F D,MOREIRA L A,et al. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti[J].Proc Natl Acad Sci USA,2011,108(22):9250-9255.

[51] ZHANG G,HUSSAIN M,ONEILL S L,et al. Wolbachia uses a host microRNA to regulate transcripts of a methyl transferase,contributing to dengue virus inhibition in Aedes aegypti[J].Proc Natl Acad Sci USA,2013,110 (25):10276-10281.

[52] ZHANG G,HUSSAIN M,ASGARI S. Regulation of arginine methyl transferase 3 by a wolbachia induced microRNA in Aedes aegypti and its effect on wolbachia and dengue virus replication[J].Insect Biochem Mol Biol,2014,53:81-88.

[53] SLONCHAK A,HUSSAIN M,TORRES S,et al. Expression of mosquito microRNA Aae-miR-2940-5p is down regulated in response to west Nile virus infection to restrict viral replication[J].J Virol,2014,88(15):8457-8467.

[54] YAN H,ZHOU Y,LIU Y,et al. miR-252 of the Asian tiger mosquito Aedes albopictus regulates dengue virus replication by suppressing the expression of the dengue virus envelope protein[J].J Med Virol,2014,86(8):1428-1436.

[55] ZHOU Y,LIU Y,YAN H,et al. miR-281,an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication[J].Parasit vectors,2014,7(1):488.

[56] MAHARAJ P D,WIDEN S G,HUANG J,et al. Discovery of mosquito saliva microRNAs during CHIKV infection[J].PLoS Negl Trop Dis,2015,9(1):e0003386.

[57] DENNISON N J,BENMARZOUK-HIDALGO O J,DIMOPOULOS G. MicroRNA-regulation of Anopheles gambiae immunity to plasmodium falciparum infection and midgut microbiota[J].Dev Comp Immunol,2015,49(1):170-178.

猜你喜歡
昆蟲(chóng)調(diào)控發(fā)育
RFID昆蟲(chóng)閱讀放大鏡
玩具世界(2022年3期)2022-09-20 01:48:20
借昆蟲(chóng)上課
甘肅教育(2020年2期)2020-09-11 08:01:48
如何調(diào)控困意
經(jīng)濟(jì)穩(wěn)中有進(jìn) 調(diào)控托而不舉
我最喜歡的昆蟲(chóng)——知了
孩子發(fā)育遲緩怎么辦
中華家教(2018年7期)2018-08-01 06:32:38
昆蟲(chóng)的冬天
順勢(shì)而導(dǎo) 靈活調(diào)控
刺是植物發(fā)育不完全的芽
SUMO修飾在細(xì)胞凋亡中的調(diào)控作用
玉屏| 油尖旺区| 鲜城| 无棣县| 梨树县| 安吉县| 深圳市| 兰溪市| 富民县| 开江县| 平潭县| 德江县| 仪征市| 虎林市| 香格里拉县| 龙海市| 安陆市| 辉县市| 平阳县| 印江| 柳江县| 德昌县| 郑州市| 方山县| 桂阳县| 香河县| 双峰县| 宁强县| 唐河县| 临泽县| 阆中市| 阿荣旗| 岳阳县| 兰西县| 南部县| 贵定县| 塔城市| 油尖旺区| 东丽区| 马公市| 怀仁县|