国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

核因子-kB信號(hào)通路與自噬在動(dòng)脈粥樣硬化發(fā)生發(fā)展中的相互調(diào)節(jié)作用

2019-10-18 07:25趙嫦清王志明楊麗霞
心腦血管病防治 2019年4期
關(guān)鍵詞:自噬炎癥反應(yīng)動(dòng)脈粥樣硬化

趙嫦清 王志明 楊麗霞

[摘 要] 動(dòng)脈粥樣硬化(atherosclerosis,AS)是一種復(fù)雜的慢性血管炎癥疾病,由多種AS相關(guān)細(xì)胞與其表達(dá)的促炎因子相互作用促進(jìn)其發(fā)生發(fā)展。核因子-kB(NF-kB)信號(hào)通路是由多種細(xì)胞因子介導(dǎo)的經(jīng)典信號(hào)通路,不僅參與炎癥反應(yīng),也調(diào)控細(xì)胞損傷、氧化應(yīng)激、細(xì)胞凋亡等過(guò)程。而自噬是細(xì)胞穩(wěn)態(tài)的溶酶體降解過(guò)程,在一定范圍內(nèi)的自噬激活可調(diào)節(jié)炎癥反應(yīng)。AS多伴有炎癥反應(yīng)并與自噬密切相關(guān),NF-kB的激活可介導(dǎo)自噬,而自噬的過(guò)度激活抑制NF-kB活性。本研究主要對(duì)NF-kB與自噬在AS中的相互關(guān)系做一綜述。

[關(guān)鍵詞] 動(dòng)脈粥樣硬化;炎癥反應(yīng);核因子-kB;自噬;斑塊穩(wěn)定性

中圖分類號(hào):R543? 文獻(xiàn)標(biāo)識(shí)碼:A? 文章編號(hào):1009-816X(2019)04-0355-03

動(dòng)脈粥樣硬化(atherosclerosis,AS)是一種復(fù)雜的慢性血管炎癥疾病,具有經(jīng)典的炎癥變性、滲出及增生等特點(diǎn)。炎癥反應(yīng)貫穿動(dòng)脈粥樣硬化病變的各個(gè)階段,可能是多種致動(dòng)脈粥樣硬化機(jī)制的共同環(huán)節(jié)和通路。其整個(gè)過(guò)程涉及到炎癥因子的刺激、血管內(nèi)皮細(xì)胞(ECs)損傷、平滑肌細(xì)胞(VSMCs)增殖遷移及巨噬細(xì)胞浸潤(rùn)等[1]。而核因子-kB(NF-kB)信號(hào)通路及自噬均參與AS發(fā)生、發(fā)展的多個(gè)過(guò)程。

1 NF-kB信號(hào)通路與AS

NF-kB是一類廣泛存在于真核細(xì)胞胞質(zhì)中,與一種抑制蛋白(IkB)結(jié)合存在,當(dāng)應(yīng)激和損傷狀態(tài)時(shí)腫瘤壞死因子(TNF-α)、脂多糖(LPS)等促炎因子能與細(xì)胞膜TNF受體結(jié)合,最先激活I(lǐng)KKα和IKKβ,導(dǎo)致NF-kB與IkB解離,NF-kB得以活化,活化的NF-kB進(jìn)入細(xì)胞核,作用于相應(yīng)基因的啟動(dòng)子,作為調(diào)節(jié)炎癥反應(yīng)、氧化應(yīng)激和免疫的主要核轉(zhuǎn)錄因子[2]。NF-kB信號(hào)通路是一種炎癥通路,在動(dòng)脈粥樣硬化部位和斑塊中可發(fā)現(xiàn)活化的NF-kB,而在正常血管中很少檢測(cè)到其表達(dá)[3]。鄭學(xué)忠等[4]的研究顯示,NF-kB信號(hào)通路在AS中參與氧化應(yīng)激、炎癥反應(yīng)、ECs損傷、VSMCs的增殖、巨噬細(xì)胞浸潤(rùn)等。炎癥細(xì)胞向血管壁的浸潤(rùn)需先與內(nèi)皮細(xì)胞粘附,此過(guò)程涉及大量粘附分子的產(chǎn)生,進(jìn)一步引起內(nèi)皮細(xì)胞的損傷,大量研究顯示該過(guò)程均有NF-kB信號(hào)通路激活。DebRoy等[5]在LPS介導(dǎo)的ECs中發(fā)現(xiàn),基質(zhì)相互作用分子(STIM1)能調(diào)節(jié)ECs外鈣離子內(nèi)流,使ECs的通透性增加。LPS誘導(dǎo)后可致STIM1表達(dá)增加,而抑制NF-kB通路后,STIM1的表達(dá)則明顯降低,并證明了NF-kB信號(hào)通路的激活可促使NF-kB與STIM1啟動(dòng)子的結(jié)合,從而增加STIM1的表達(dá)而引起ECs的損傷。Shen等[6]的研究中表明,Ang Ⅱ通過(guò)AT1受體激活NF-kB信號(hào)通路而誘導(dǎo)VSMC表型由靜止型轉(zhuǎn)化為增殖型。既往研究亦證實(shí)NF-kB的激活可促使ECs、VSMCs、巨噬細(xì)胞的浸潤(rùn)[7]。

2 自噬與AS

自噬即細(xì)胞的自我吞噬,是細(xì)胞穩(wěn)態(tài)的溶酶體降解途徑。自噬作為炎癥的負(fù)調(diào)節(jié)劑,可通過(guò)清除受損的細(xì)胞器和抑制促炎復(fù)合物的形成,減緩炎癥反應(yīng)。很多學(xué)者認(rèn)為自噬的受損和缺乏而激活炎性體是加劇動(dòng)脈粥樣硬化進(jìn)程的原因之一[8]。既往的實(shí)驗(yàn)研究發(fā)現(xiàn),自噬核心基因的消融加劇了鼠動(dòng)脈粥樣硬化;然而自噬同樣調(diào)節(jié)炎癥反應(yīng)、ECs損傷、VSMC增殖遷移和巨噬細(xì)胞浸潤(rùn)。

3 NF-kB信號(hào)通路與自噬

在動(dòng)脈粥樣硬化中,NF-kB信號(hào)通路作為一種炎癥通路,與自噬之間存在正負(fù)反饋調(diào)節(jié),共同調(diào)節(jié)斑塊穩(wěn)定性。

3.1 NF-kB信號(hào)通路正向調(diào)節(jié)自噬水平:NF-kB可以正向調(diào)節(jié)AS中自噬水平。在一項(xiàng)關(guān)于小鼠紋狀體細(xì)胞的研究中發(fā)現(xiàn),p53是NF-kB的靶基因,NF-kB的核轉(zhuǎn)位上調(diào)p53的表達(dá),抑制NF-kB核轉(zhuǎn)位可下調(diào)p53的表達(dá)[9]。最近的研究發(fā)現(xiàn),p53上調(diào)表達(dá)能通過(guò)激活其下游基因(DRAM)從而激活自噬,進(jìn)一步說(shuō)明NF-kB的激活上調(diào)自噬水平。同時(shí)在神經(jīng)元中也發(fā)現(xiàn),激活谷氨酸受體可誘發(fā)IkBα的降解而激活NF-kB,引發(fā)神經(jīng)元自噬。近年Xie等[10]在野百合堿誘導(dǎo)的大鼠肺動(dòng)脈高壓(PAH)模型中也發(fā)現(xiàn),NF-kB可誘導(dǎo)自噬激活引起高脂血癥介導(dǎo)的心臟重塑,而抑制NF-kB或自噬可防止右心室收縮壓(RVSP)、右心室肥厚指數(shù)(RVHI)的增加和肺動(dòng)脈重塑,這些結(jié)果表明抑制NF-κB或自噬可阻止PAH的發(fā)展??傊?,NF-kB信號(hào)通路在心血管中正向調(diào)節(jié)自噬水平,減緩AS進(jìn)展。

3.1.1 NF-kB信號(hào)通路激活自噬減輕炎癥反應(yīng):近年Xia等[11]發(fā)現(xiàn),PM2.5在小鼠主動(dòng)脈內(nèi)皮細(xì)胞中可通過(guò)FHL2(四個(gè)半LIM結(jié)構(gòu)域2)激活NF-kB信號(hào)通路,從而激活自噬,導(dǎo)致白介素-6(IL-6)等炎癥因子的表達(dá)降低。同時(shí)也有研究發(fā)現(xiàn),TG2作為TGM2基因編碼的80kDa酶,與癌細(xì)胞密切相關(guān),其過(guò)量表達(dá)可激活NF-kB信號(hào)通路,引起IL-6/STAT3表達(dá)增加,從而激活自噬,抑制IL-2、4等炎癥因子的表達(dá)。當(dāng)抑制TG2或者NF-kB后,IL-6/STAT3的表達(dá)明顯降低,炎癥因子表達(dá)明顯升高[12]。進(jìn)一步證實(shí)NF-kB/IL-6/STAT3/自噬通路的存在。

3.1.2 NF-kB信號(hào)通路激活自噬減輕內(nèi)皮細(xì)胞損傷:NF-kB信號(hào)通路正向調(diào)節(jié)自噬水平,對(duì)ECs也產(chǎn)生一定的影響。Peng等[13]在ApoE-小鼠中發(fā)現(xiàn),甲基胞嘧啶雙加氧酶2(TET2)的過(guò)表達(dá)可通過(guò)降低自噬標(biāo)志Beclin 1啟動(dòng)子的甲基化水平,增加ECs自噬通量,下調(diào)炎癥反應(yīng)。而抑制TET2的表達(dá)導(dǎo)致內(nèi)皮型一氧化氮合酶(eNOS)水平的上調(diào)和內(nèi)皮素-1水平的下調(diào),導(dǎo)致ECs損傷,增加AS的發(fā)生[14]。在Guo等[15]的研究中,自噬可誘導(dǎo)eNOS表達(dá),減少人體中的氧化應(yīng)激,減輕內(nèi)皮損傷,減緩AS進(jìn)程。

3.1.3 NF-kB信號(hào)通路激活自噬減少VSMCs的增殖遷移:VSMCs在AS中也同樣參與自噬過(guò)程。VSMCs可分泌多種細(xì)胞因子,減輕炎癥反應(yīng),其大量增殖遷移可加劇AS進(jìn)程[16]。Grootaer等[17]在VSMCs中發(fā)現(xiàn),脂質(zhì)過(guò)氧化產(chǎn)物4-羥基壬烯醛(4-HNE)可通過(guò)單磷酸腺苷活化蛋白激酶(AMPK)和雷帕霉素靶蛋白(mTOR)獨(dú)立機(jī)制增強(qiáng)自噬,使VSMCs免受4-HNE誘導(dǎo)的細(xì)胞死亡,減少其增殖遷移。Wu等[18]的研究同樣發(fā)現(xiàn),上調(diào)自噬和激活A(yù)MPK/mTOR信號(hào)通路可減少ROS的產(chǎn)生而抑制VSMCs的增殖遷移。

3.1.4 NF-kB信號(hào)通路激活自噬抑制巨噬細(xì)胞浸潤(rùn):最近的研究表明,巨噬細(xì)胞自噬可通過(guò)促進(jìn)膽固醇外流和抑制炎性體激活來(lái)抑制AS的進(jìn)展[19],巨噬細(xì)胞中自噬的缺乏被證明損害膽固醇流出,并可導(dǎo)致IL-1β分泌增加和膽固醇結(jié)晶[20]。Wang等[21]在巨噬細(xì)胞自噬過(guò)程中發(fā)現(xiàn),巨噬細(xì)胞可通過(guò)miR-384-5p介導(dǎo)的Beclin-1調(diào)節(jié)AS進(jìn)展。激活的巨噬細(xì)胞抑制mTOR通路來(lái)穩(wěn)定斑塊,而巨噬細(xì)胞自噬受損刺激其極化為M1型巨噬細(xì)胞。已有研究發(fā)現(xiàn),抑制PI3K/Akt/mTOR通路可誘導(dǎo)自噬,減少斑塊中巨噬細(xì)胞的浸潤(rùn)和炎癥因子的表達(dá)[22]。可見,自噬可抑制巨噬細(xì)胞浸潤(rùn)。

3.2 自噬負(fù)向調(diào)節(jié)NF-kB信號(hào)通路:在AS中NF-kB信號(hào)通路正向調(diào)節(jié)自噬水平的同時(shí),自噬也負(fù)向調(diào)節(jié)NF-kB信號(hào)通路。自噬抑制NF-kB信號(hào)通路可減輕炎癥反應(yīng)、內(nèi)皮細(xì)胞損傷,減弱VSMCs的增殖遷移,減少巨噬細(xì)胞浸潤(rùn)。

3.2.1 自噬抑制NF-kB信號(hào)通路減輕炎癥反應(yīng):近年發(fā)現(xiàn),自噬可特異性降解NF-kB信號(hào)通路中非經(jīng)典途徑中的關(guān)鍵酶(NIK)和I-kB激酶(IKK)水平,從而減輕炎癥反應(yīng),減緩AS進(jìn)程[23]。隨后在AS中研究也發(fā)現(xiàn),自噬激活導(dǎo)致NF-kB信號(hào)通路上游的促炎介質(zhì)的自噬體降解,導(dǎo)致促炎基因表達(dá)減少,從而減輕炎癥反應(yīng)[24]。

3.2.2 自噬抑制NF-kB信號(hào)通路減輕內(nèi)皮細(xì)胞損傷:近年在小鼠肺泡上皮細(xì)胞缺氧復(fù)氧模型中發(fā)現(xiàn),自噬增強(qiáng)可通過(guò)抑制NF-kB信號(hào)通路和調(diào)節(jié)炎癥介質(zhì)的釋放來(lái)減少肺泡上皮細(xì)胞損傷[25]。而在小鼠的腸黏膜上皮細(xì)胞中同樣也發(fā)現(xiàn),缺氧介導(dǎo)自噬的激活,從而降低NF-kB信號(hào)通路的表達(dá),減輕腸黏膜上皮細(xì)胞的損傷[26]??梢娮允煽赏ㄟ^(guò)抑制NF-kB信號(hào)通路減輕內(nèi)皮細(xì)胞損傷。

3.2.3 自噬抑制NF-kB信號(hào)通路減少VSMCs的增殖遷移:Ramadan等[27]在關(guān)于自噬與VSMCs研究中發(fā)現(xiàn),自噬受許多自噬相關(guān)基因(ATG)調(diào)節(jié),其中ATG7是自噬的必需調(diào)節(jié)因子,因?yàn)樗沁^(guò)氧化物酶體和液泡膜融合所必需的,導(dǎo)致自噬體產(chǎn)生。血管緊張素II(AngII)刺激主動(dòng)脈內(nèi)皮細(xì)胞后,ATG7合成增加,VSMCs大部分處于靜止?fàn)顟B(tài),而SiRNA干擾ATG7后,VSMCs表型由靜止型轉(zhuǎn)化成增殖遷移型。也有相繼研究發(fā)現(xiàn)自噬的激活抑制NF-kB信號(hào)通路表達(dá)的同時(shí),也抑制VSMCs的增殖[28]。

3.2.4 自噬抑制NF-kB信號(hào)通路減少巨噬細(xì)胞浸潤(rùn):在AS中,巨噬細(xì)胞的浸潤(rùn)加劇斑塊的不穩(wěn)定性,NF-KB信號(hào)通路調(diào)節(jié)巨噬細(xì)胞水平,自噬同樣也調(diào)節(jié)巨噬細(xì)胞。M1型巨噬細(xì)胞主要分泌IL-1b等促炎因子和細(xì)胞因子,NF-kB信號(hào)通路的激活可促進(jìn)M1型巨噬細(xì)胞的活化,自噬增強(qiáng)抑制了NF-kB信號(hào)通路,而自噬抑制劑(3-MA)作用后增加了M1型巨噬細(xì)胞的活化[29]。在一項(xiàng)關(guān)于黃曲霉素(AFB1)的研究中發(fā)現(xiàn),AFB1作用于巨噬細(xì)胞后,氧自由基和自噬明顯增加,M1型巨噬細(xì)胞量明顯減少[30]。巨噬細(xì)胞中通過(guò)核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體家族含熱蛋白結(jié)構(gòu)域3(NLRP3)炎癥小體的激活調(diào)節(jié)自噬,自噬的激活通過(guò)靶向泛素化來(lái)抑制IL-1β的分泌和促進(jìn)前IL-1β的溶酶體降解[31]。雷帕霉素介導(dǎo)的自噬在巨噬細(xì)胞中通過(guò)減少線粒體活性氧和前IL-1β的釋放,IL-1β的減少降低了IL-1β-p38 MAP激酶(MAPK)-NF-kB途徑的活性。抑制自噬后,巨噬細(xì)胞產(chǎn)生的IL-1β和IL-18明顯減少。間接說(shuō)明雷帕霉素通過(guò)抑制NLRP3的正反饋回路炎性體-p38 MAPK-NF-kB途徑負(fù)向調(diào)節(jié)巨噬細(xì)胞活性[32]。

參考文獻(xiàn)

[1]Tabas I, GarciaCardena G, Owens G K. Recent insights into the cellular biology of atherosclerosis[J]. J Cell Bio,2015,209(1):13.

[2]Yu XH, Zheng XL, Tang CK. Nuclear factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis[J]. Adv Clin Chem,2015,70(4):1-30.

[3]Morita M, Yano S, Yamaguchi T, et al. Advanced glycation end products-induced reactive oxygen species generation is partly through NF-kappa B activation in human aortic endothelial cells[J]. JYDiabetes Complications,2013,27(1):11-15.

[4]鄭學(xué)忠,萬(wàn)怡軒,王清岑,等.NF-κB信號(hào)通路在動(dòng)脈粥樣硬化中的作用及機(jī)制研究進(jìn)展 [J].西南國(guó)防醫(yī)藥,2018,28(3):285-287.

[5]Debroy A, Vogel Stephen M, Soni D, et al. Cooperative signaling via transcription factors NF-κB and AP1/c-Fos mediates endothelial cell STIM1 expression and hyperpermeability in response to endotoxin[J]. J Biol Chem,2015,289(35):24188-24201.

[6]Shen YJ, Zhu XX, Yang X, et al. Cardamonin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and migration by downregulating p38 MAPK, Akt, and ERK phosphorylation[J]. J Nat Med,2014,68(3):623-629.

[7]Tan SZ, Ooi DS, Shen HM, et al. The atherogenic effects of serum amyloid A are potentially mediated via inflammation and apoptosis[J]. J Atheroscler Thromb,2014,21(8):854-867.

[8]Ding Z, Liu S, Wang X, et al. LOX-1, oxidant stress, mtDNA damage, autophagy, and immune response in atherosclerosis[J]. Can J Physiol Pharmacology,2014,92(7):524-530.

[9]Wang Y, Dong XX, Cao Y, et al. p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms[J]. Neurosci,2010,68(12):e452.

[10]Xie X, Wang G, Zhang D, et al. Activation of peroxisome proliferator-activated receptor γ ameliorates monocrotaline-induced pulmonary arterial hypertension in rats[J]. Biomed Rep,2015,3(4):537-542.

[11]Xia WR, Fu W, Wang Q, et al. Autophagy inducedFHL2Upregulation promotes IL-6 production by activating the NF-κB pathway in mouse aortic endothelial cells after exposure to PM2.5[J]. Inter J Mole Sci,2017,18(7):1484.

[12]Zhang H, Chen Z, Miranda RN, et al. TG2 and NF-kB signaling coordinates the survival of mantle cell lymphoma cells via IL-6-mediated autophagy [J]. Cancer Research,2016,76(21):6410-6423.

[13]Peng J, Yang Q, Li AF, et al. Tet methylcytosine dioxygenase 2 inhibits atherosclerosis via upregulation of autophagy in ApoE-/- mice[J]. Oncotarget,2016,7(47):76423-76436.

[14]Yang Q, Li X, Li R, et al. Low shear stress inhibited endothelial cell autophagy through TET2 downregulation[J]. Ann Bio Eng,2015,44(7):2218-2227.

[15]Guo FX, Li XH, Peng J, et al. Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system[J]. Ann Biomed Eng,2014,42(9):1978-1988.

[16]Ho KJ, Spite M, Owens CD, et al. Aspirin-triggered lipoxin and resolvin E1 modulate vascular smooth muscle phenotype and correlate with peripheral atherosclerosis[J]. Am J Pathol,2010,177(4):2116-2123.

[17]Grootaert M, Roth L, Schrijvers DM, et al. Defective autophagy in atherosclerosis: to die or to senesce?[J]. Oxid Med Cell Longev,2018,2018,(2):1-12.

[18]Wu H, Song A, Hu W, et al. The Anti-atherosclerotic effect of paeonol against vascular smooth muscle cell proliferation by up-regulation of autophagy via the AMPK/mTOR signaling pathway[J]. Front Pharmacol,2017,8(1):948.

[19]Yu MI, Hwang S, Cadwell K. Autophagy and inflammation [J]. Clin Trans Med,2017,6(1):24.

[20]Suzuki E, Maverakis E, Sarin R, et al. T cell-independent mechanisms associated with neutrophil extracellular trap formation and selective autophagy in IL-17A-mediated epidermal hyperplasia[J]. J Immuno,2016,197(11):4403.

[21]Wang B,Yuan Z, Dong H, et al. Macrophage autophagy regulated by miR-384-5p-mediated control of Beclin-1 plays a role in the development of atherosclerosis[J]. Am J Transl Res,2016,8(2):606-614.

[22]Zhai C, Cheng J, Mujahid H, et al. Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque[J]. Plos One,2014,9(3):e90563.

[23]Pawlowska E, Szczepanska J, Wisniewski K, et al. NF-κB-mediated inflammation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Does autophagy play a role?[J]. Int J Mol Sci,2018,19(4):1-12.

[24]Williamsbey Y, Boularan C, Vural A, et al. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy[J]. Plos One,2014,9(6):e97957.

[25]Xia WR, Fu W, Wang Q, et al. Autophagy induced FHL2 upregulation promotes IL-6 production by activating the NF-κB pathway in mouse aortic endothelial cells after exposure to PM2.5[J]. Int J Mol Sci,2017,18(7):1484.

[26]Cosinroger J, Simmen S, Melhem H, et al. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation[J]. Nature Communications,2017,8(1):98.

[27]Ramaan A, Singh K, Quan A, et al. Abstract 15196: autophagy regulates vascular smooth muscle cell phenotypic switching: translational implications for aneurysm formation[J]. Circulation,2013,128(22):A15196.

[28]Li QS, Kang J, Xiong XJ, et al. Protoporphyrin IX-mediated sonodynamic therapy promotes autophagy in vascular smooth muscle cells[J]. Oncology Letters,2017,14(2):2097-2102.

[29]Aflaki E, Moaven N, Borger D K, et al. Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages[J]. Aging Cell,2016,15(1):77-88.

[30]An YN, Shi XC, Tang XD, et al. Aflatoxin B1 induces reactive oxygen species-mediated autophagy and extracellular trap formation in macrophages[J]. Front Cell Infect Microbiol,2017,7(2):53.

[31]Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction[J]. Nature Immunology,2012,13(3):255-263.

[32]Ko JH, Yoon SO, Lee HJ, et al. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy-and p62-dependent manners[J]. Oncotarget,2017,8(25):40817-40831.

猜你喜歡
自噬炎癥反應(yīng)動(dòng)脈粥樣硬化
益氣扶正法在膿毒癥患者中的治療及對(duì)血清核因子—κB活性變化的影響研究
自噬在糖尿病腎病發(fā)病機(jī)制中的作用
擴(kuò)大的血管周圍間隙與腦小血管病變關(guān)系的臨床研究
山楂水煎液對(duì)高脂血癥大鼠早期動(dòng)脈粥樣硬化形成過(guò)程的干預(yù)機(jī)制
右美托咪定對(duì)膿毒癥患者圍術(shù)期血漿中細(xì)胞因子的影響
亞精胺誘導(dǎo)自噬在衰老相關(guān)疾病中的作用
中西醫(yī)結(jié)合治療重度燒傷膿毒癥的效果研究
研究谷氨酰胺對(duì)嚴(yán)重膿毒癥患者炎癥反應(yīng)以及免疫功能的影響
自噬在不同強(qiáng)度運(yùn)動(dòng)影響關(guān)節(jié)軟骨細(xì)胞功能中的作用
扶沟县| 沙田区| 肇源县| 灯塔市| 陈巴尔虎旗| 壤塘县| 济南市| 三江| 武义县| 巴塘县| 旅游| 密山市| 莱州市| 黄梅县| 六枝特区| 左权县| 元氏县| 新宾| 札达县| 天柱县| 祁阳县| 舒城县| 疏勒县| 罗定市| 铜川市| 文登市| 徐汇区| 日喀则市| 玉林市| 二连浩特市| 台安县| 广汉市| 利辛县| 绥宁县| 莎车县| 桦甸市| 湘潭市| 林州市| 公安县| 连云港市| 大宁县|