郭二軍
摘 ?要: 傳統(tǒng)的圖像匹配融合方法在匹配多重紋理圖像時,很容易出現(xiàn)誤差匹配,融合后的圖像清晰度不高,輪廓不鮮明,針對上述問題,在云平臺網(wǎng)絡上研究了一種新的多重紋理圖像匹配融合方法。首先,計算多重紋理圖像的匹配代價,分析圖像像素的相似度和特異性,構(gòu)建動態(tài)規(guī)劃路徑,在不同網(wǎng)絡結(jié)構(gòu)下匹配多重紋理圖像;然后,建立樹狀圖對圖像進行融合;最后,利用視察矯正方法將匹配融合得到的誤差點消除。為驗證該方法的工作效果,與傳統(tǒng)匹配融合方法進行實驗對比,結(jié)果表明,給出的方法能夠清晰地得到像素點云,使融合后的圖像輪廓鮮明,畫質(zhì)清晰,適用于圖像重構(gòu)。
關鍵詞: 云平臺; 網(wǎng)絡圖像; 多重紋理圖像; 圖像匹配; 圖像融合; 融合方法
中圖分類號: TN911.73?34; TP391.41 ? ? ? ? ? ? ? ? 文獻標識碼: A ? ? ? ? ? ? ? ?文章編號: 1004?373X(2019)19?0059?05
Abstract: The traditional image matching and fusion methods are prone to error matching when matching of multi?texture images is conducted. The fused image is not clear and its contour is not clear. To solve the above problems, a new multi?texture image matching and fusion method is studied on cloud platform network. Firstly, the matching cost of multi?texture image is calculated, the similarity and specificity of image pixels are analyzed, the dynamic programming path is constructed, and the multi?texture image is matched under the condition of different network structures. Then, the tree image is established for image fusion. Finally, the error points obtained by matching fusion are eliminated with inspection correction method. In order to verify the effectiveness of this method, some experiments are carried out for comparison with traditional matching and fusion methods. The results show that the proposed method can obtain the pixel point?cloud clearly, which makes the fused image contour distinct and quality clear, and is suitable for image reconstruction.
Keywords: cloud platform; network image; multi?texture image; image matching; image fusion; fusion method
圖像紋理是能夠表述圖像表面和結(jié)構(gòu)的基本屬性,通過圖像的平均亮度、最大亮度、最小亮度、圖像尺寸、圖形形狀來描述[1]。紋理元素隨機建立空間關系,經(jīng)過一段時間,圖像紋理之間的基元呈現(xiàn)相關性關系。多重紋理圖像的匹配融合在創(chuàng)建逼真的三維模型中發(fā)揮著重要的作用,在廣告、動畫、視頻等領域有著廣闊的發(fā)展空間。目前研究的網(wǎng)絡多重紋理圖像匹配融合技術多是利用人機交互界面,雖然取得的圖像精度很高,但是操作過程復雜,自動化效果差,在規(guī)劃時僅能使用一條掃描線,很容易出現(xiàn)匹配錯誤,尤其是對于一些紋理不夠充分或者是局部區(qū)域有重復特征的圖像,目前方法的缺點更加明顯[2]。
相較普通圖像而言,多重紋理圖像結(jié)構(gòu)復雜,匹配融合更加困難。本文在云平臺網(wǎng)絡中分別對多重紋理圖像的匹配方法和融合方法進行研究,內(nèi)部設立了立體視覺系統(tǒng),利用攝像機鎖定目標,在三維網(wǎng)絡和二維網(wǎng)絡中完成匹配和融合工作,并將多重紋理圖像的信息進行恢復。在平面視覺和立體視覺領域,圖像匹配和融合是最關鍵的兩個步驟[3]。利用匹配得到的視差圖測量物體景深,在不同的約束條件下,有著不同的匹配和融合方法,分別是針對小區(qū)域進行匹配和融合以及針對全局進行匹配和融合[4]。多重紋理圖像的小區(qū)域匹配融合工作要比全局匹配融合工作簡單,產(chǎn)生的誤差也小。本文引入圖像重構(gòu)算法,研究像素點與像素點之間的相似性,分析圖像自身的特異性,使匹配的圖像梯度不斷加大,利用視差圖矯正誤差匹配點和誤差融合點。
DENG Bo, MAO Hongyu, WANG Xiaofeng, et al. Emulation method for the fusion of virtual and physical networks supported by cloud platform [J]. Journal of Chinese computer systems, 2018, 39(3): 478?483.
[2] 沈蒙,程國華,祝烈煌.支持隱私保護的加密遙感圖像融合算法[J].中國科學:信息科學,2017,47(2):736?751.
SHEN Meng, CHENG Guohua, ZHU Liehuang. Privacy?preserving encrypted image fusion algorithm for remote sensing [J]. Scientia sinica informationis, 2017, 47(2): 736?751.
[3] 石祥濱,鐘劉倍,張德園.Hadoop環(huán)境下圖像內(nèi)容檢索方法的研究[J].沈陽航空航天大學學報,2017,34(3):63?69.
SHI Xiangbin, ZHONG Liubei, ZHANG Deyuan. Research on the method of retrieval of image content based on Hadoop [J]. Journal of Shenyang Aerospace University, 2017, 34(3): 63?69.
[4] 趙妍,蘇玉召.融合物聯(lián)網(wǎng)云平臺的智慧城市研究[J].教育教學論壇,2017(23):80?81.
ZHAO Yan, SU Yuzhao. Intelligent city research on the integration of internet of things cloud platform [J]. Education teaching forum, 2017(23): 80?81.
[5] 李冰.顏色紋理形狀特征分層融合圖像檢索方法研究[J].西南師范大學學報(自然科學版),2017,42(1):54?59.
LI Bing. On Technology of computerimage retrieval based on multi feature fusion [J]. Journal of Southwest China Normal University (Natural science edition), 2017, 42(1): 54?59.
[6] 潘紅艷.分層多特征融合圖像檢索方法研究[J].無線互聯(lián)科技,2018,15(10):68?70.
PAN Hongyan. Research on stratified multi features fusion based on image retrieval method [J]. Wireless internet technology, 2018, 15(10): 68?70.
[7] 汪玉美,陳代梅,趙根保.基于目標提取與拉普拉斯變換的紅外和可見光圖像融合算法[J].激光與光電子學進展,2017,54(1):98?106.
WANG Yumei, CHEN Daimei, ZHAO Genbao. Image fusion algorithm of infrared and visible images based on target extraction and laplace transformation [J]. Laser & optoelectronics progress, 2017, 54(1): 98?106.
[8] 張曉聞,靳雁霞,銀莉,等.融合粒子群與拓撲相似性的圖像匹配算法研究[J].微電子學與計算機,2017,34(3):95?99.
ZHANG Xiaowen, JIN Yanxia, YIN Li, et al. Matching algorithm of the image based on particle swarm optimization and topological similarity [J]. Microelectronics & computer, 2017, 34(3): 95?99.
[9] 王旭東,王曉衛(wèi),李明哲.基于DM642嵌入式圖像融合處理系統(tǒng)硬件設計[J].電子設計工程,2017,25(18):172?177.
WANG Xudong, WANG Xiaowei, LI Mingzhe. Hardware design of embedded video fusion processing system based on DM642 [J]. Electronic design engineering, 2017, 25(18): 172?177.
[10] 藺素珍,韓澤.基于深度堆疊卷積神經(jīng)網(wǎng)絡的圖像融合[J].計算機學報,2017,40(11):2506?2518.
LIN Suzhen, HAN Ze. Images fusion based on deep stack convolutional neural network [J]. Chinese journal of computer, 2017, 40(11): 2506?2518.
[11] 趙玲娜,花向紅,劉闖,等.基于激光反射率的點云與圖像自動融合[J].測繪工程,2017,26(8):29?34.
ZHAO Lingna, HUA Xianghong, LIU Chuang, et al. Auto?fusion of point clouds and image based on laser reflectance [J]. Engineering of surveying and mapping, 2017, 26(8): 29?34.
[12] 孫志田,張建梅,霍麗芳.基于最小生成樹的圖像融合算法[J].計算機仿真,2017,34(3):277?279.
SUN Zhitian, ZHANG Jianmei, HUO Lifang. Image fusion based on minimum spanning tree [J]. Computer simulation, 2017, 34(3): 277?279.
[13] 汪強,尹峰,劉鋼欽.基于小波的彩色圖像融合技術[J].計算機仿真,2017,34(11):201?204.
WANG Qiang, YIN Feng, LIU Gangqin. The Color image fusion algorithm using wavelet transform [J]. Computer simulation, 2017, 34(11): 201?204.