胡鈞浛 王汝良 胡霖霖
摘 ?要: 本文使用計算流體力學(xué)(CFD)的方法對顱內(nèi)動脈瘤夾閉手術(shù)前后以及正常血管進(jìn)行數(shù)值模擬。通過使用Mimics、3-matic對CT數(shù)據(jù)進(jìn)行重建,再使用Ansys進(jìn)行網(wǎng)格劃分、求解計算,獲得模擬夾閉手術(shù)前后的心動周期不同時刻的血流速度、壁切應(yīng)力、壁壓力數(shù)值。數(shù)值模擬改變血流動力學(xué)的方式可以對動脈瘤治療前及治療后的狀況進(jìn)行評估。動脈瘤處的低壁切應(yīng)力和低速區(qū)域與動脈瘤破裂有關(guān)。
關(guān)鍵詞: 顱內(nèi)動脈瘤;計算流體力學(xué);血流動力學(xué);夾閉手術(shù)
中圖分類號: TP319 ? ?文獻(xiàn)標(biāo)識碼: A ? ?DOI:10.3969/j.issn.1003-6970.2019.06.009
本文著錄格式:胡鈞浛,王汝良,胡霖霖,等. 顱內(nèi)動脈瘤夾閉手術(shù)的數(shù)值模擬與臨床應(yīng)用研究[J]. 軟件,2019,40(6):4043+63
【Abstract】: Computational fluid mechanics(CFD) method was used to simulate intracranial aneurysms before and after operation and normal blood vessels. Through the reconstruction of CT data using Mimics and 3-matic, and then using Ansys for mesh division and calculation, the blood flow velocity, wall shear stress, and wall pressure values at different times of the cardiac cycle before and after the simulated clamping operation are obtained. Numerical simulations of changes in hemodynamics can assess the status of aneurysms before and after treatment. The low wall shear stress and the low velocity area at the aneurysm are related to the rupture of the aneurysm.
【Key words】: Intracranial aneurysm; Computational fluid mechanics; Hemodynamics; Folding surgery
0 ?引言
顱內(nèi)動脈瘤(intracranial aneurysm,IA)是顱內(nèi)動脈管壁上局部的、球囊樣的異常膨出[1]。顱內(nèi)動脈瘤在普通人群的患病率為3-5%,在診斷后5年內(nèi),總體破裂風(fēng)險為1.2%[2-4]。血流動力學(xué)對顱內(nèi)動脈瘤的形成和發(fā)展過程中起到了非常重要的作用[5,6],可以通過改變血流動力學(xué)來限制動脈瘤的繼續(xù)發(fā)展甚至破裂。計算流體力學(xué)(computational fluid dynamics,CFD)對血流動力學(xué)的研究取得重大進(jìn)展[7-9]。本研究將應(yīng)用計算流體力學(xué)的方法對一例顱內(nèi)動脈瘤進(jìn)行模擬夾閉手術(shù)并將其與夾閉手術(shù)前和同一位置的正常血管的血流動力學(xué)進(jìn)行對比。
1 ?材料與方法
1.1 ?原始數(shù)據(jù)采集
采集牡丹江醫(yī)學(xué)院附屬紅旗醫(yī)院1例男性顱內(nèi)CTA影像數(shù)據(jù),年齡47歲,采用日本東芝Aquilion64層螺旋CT,掃描參數(shù):管電壓120 KV、管電流 ? 250 mA、掃描矩陣512×512、像素尺寸0.481 mm、掃描層厚0.5 mm,以4.0 mL/s經(jīng)肘靜脈注射造影劑150 mL,要求患者在掃描過程中不做吞咽動作,掃描數(shù)據(jù)以DICOM(Digital imaging and Communica?tions in Medicine)格式儲存。
1.2 ?實驗設(shè)備
戴爾Precision T7810:Xeon E5-2609 v3處理器、16 G內(nèi)存、nVIDIA Quadro2200顯卡。
1.3 ?實驗應(yīng)用軟件
Mimics 20.0;3-matic 12.0;Ansys workbench 18.0。
1.4 ?有限元模型的建立
1.4.1 ?模型的三維重建及修復(fù)
將CTA影像數(shù)據(jù)導(dǎo)入Mimics20.0軟件,采用使用閾值分割(Thresholding)、區(qū)域增長(Region Growing)、蒙板編輯(Edit Masks)等獲得感興趣區(qū)域,去除細(xì)小分支,再通過計算三維工具(Calculate Part)對感興趣區(qū)域進(jìn)行三維重建,在3-matic中對模型進(jìn)行光滑處理,以stl格式保存重建的模型。正常血管為模型Ⅰ,夾閉手術(shù)前為模型Ⅱ,夾閉手術(shù)后為模型Ⅲ。
1.4.2 ?網(wǎng)格劃分及數(shù)值模擬
在Ansys ICEM CFD中對動脈瘤進(jìn)行網(wǎng)格劃分(圖1)。
將血流設(shè)定為牛頓流體且為層流,設(shè)置血液密度為1060 kg/m3,粘度為0.0035Pas[10,11]。設(shè)定動脈瘤壁為剛性,血液和血管壁面無滑動及滲透。入口給與脈動速度(圖2),出口處的壓力設(shè)定為0。
血流速度為脈動血流,心動周期均為0.8 s,步長為0.01 s,總共計算200步。計算兩個周期,以0.88 s、1 s、1.1 s時刻的結(jié)果進(jìn)行分析。
2 ?數(shù)值模擬結(jié)果分析
2.1 ?血流速度
圖3是三個模型分別在0.88 s、1 s、1.1 s三個時刻的血流速度流線圖。從模型Ⅱ中可以看出,載瘤動脈中心血流速度不斷降低,血流狀態(tài)為層流。血液在動脈瘤中形成渦流,隨著血流速度的降低,瘤腔內(nèi)的血流反而增多,遠(yuǎn)離瘤腔中心部位的血流速度更低。模型Ⅲ與模型Ⅱ相比,原瘤腔部位的血流已經(jīng)消失。模型Ⅱ、Ⅲ與模型Ⅰ相比,同一時刻的血流速度要高。
2.2 ?壁切應(yīng)力
圖4是三個模型分別在0.88 s、1 s、1.1 s三個時刻的壁切應(yīng)力圖。三種模型的壁切應(yīng)力隨著血流速度的降低均有所下降。模型Ⅱ的瘤壁始終保持在低壁切應(yīng)力狀態(tài),瘤頸部的壁切應(yīng)力隨血流速度的降低逐漸降低。模型Ⅱ和模型Ⅲ比較,除了動脈瘤部分外未發(fā)生明顯變化。模型Ⅰ整體的壁切應(yīng)力低于模型Ⅱ和模型Ⅲ。
2.3 ?壁壓力
圖5是三個模型分別在0.88 s、1 s、1.1 s三個時刻的壁壓力圖。在0.88 s,模型Ⅱ和模型Ⅲ入口處的壓力明顯高于模型Ⅰ。模型Ⅱ和模型Ⅲ除了動脈瘤部分,各處壓力值也未有沒有變化。模型Ⅱ和模型Ⅲ的壁壓力整體高于模型Ⅰ。
3 ?討論
本文采用數(shù)值模擬的方法對動脈瘤夾閉前、夾閉后以及正常血管的血流動力學(xué)參數(shù)進(jìn)行對比分析。對比后發(fā)現(xiàn),夾閉后動脈瘤內(nèi)沒有血流,夾閉前動脈瘤內(nèi)血流豐富、渦流,但流速較慢。夾閉前后血管的血流速度高于正常血管。夾閉前的動脈瘤壁切應(yīng)力處于低的狀態(tài),壁壓力較高。Lu等人[12]和Xiang[13]等人發(fā)現(xiàn)破裂組的動脈瘤的平均WSS要比未破裂組低。Liu等人[14]的研究中評估了動脈瘤破裂前的血流動力學(xué)特征,發(fā)現(xiàn)了低WSS與未破裂動脈瘤破裂有關(guān)。低WSS同時會導(dǎo)致血管壁發(fā)生變化,從而進(jìn)一步導(dǎo)致了血管壁的破裂[15]。Jou等[16]和Acevedo-Bolton等[17]研究發(fā)現(xiàn)低WSS和動脈瘤生長之間的相關(guān)性。Meng[18]等人研究表明低WSS和高震蕩剪切指數(shù)與大的動脈粥樣硬化性動脈瘤表型的生長和破裂有關(guān),而高WSS和正的WSS梯度與小的或繼發(fā)性囊性動脈瘤表型的生長和破裂有關(guān)。Wang[19]等人建立虛擬支架植入術(shù)CFD仿真模型,模擬了15例動脈瘤支架植入,結(jié)果表明血流速度和WSS在不同類型的動脈瘤均降低。而我們所模擬的是夾閉術(shù),直接讓動脈瘤排除在血液循環(huán)之外,通過將其排除在血液循環(huán)之外,可以避免動脈瘤的繼續(xù)發(fā)展甚至破裂。
4 ?結(jié)論
本研究的目的是探討動脈瘤夾閉術(shù)前后的血流動力學(xué)特征,我們對夾閉術(shù)前后以及正常血管基于CT影像數(shù)據(jù)的進(jìn)行了計算流體力學(xué)模擬。通過數(shù)值模擬改變血流動力學(xué)的方式可以對動脈瘤治療前及治療后的狀況進(jìn)行評估。動脈瘤處的低壁切應(yīng)力和低速區(qū)域與動脈瘤破裂有關(guān)。
參考文獻(xiàn)
[1] Seo, J., et al., A Highly Automated Computational Method for Modeling of Intracranial Aneurysm Hemodynamics. Frontiers in Physiology, 2018. 9: 681.
[2] Bonneville F, Sourour N, Biondi A. Intracranial Aneurysms: an Overview. Neuroimaging Clinics of North America. 2006; 16(3): 371-382.
[3] Keedy A. An overview of intracranial aneurysms. McGill Journal of Medicine. 2006; 9(2): 141-146.
[4] Wermer MJH, Van Der Schaaf IC, Algra A, Rinkel GJE. Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: An updated meta- analysis. Stroke. 2007; 38 (4): 1404-1410.
[5] Lasheras JC. The biomechanics of arterial aneurysms. Annual Review of Fluid Mechanics. 2007; 39: 293-319.
[6] Sforza DM, Putman CM, Cebral JR. Hemodynamics of cerebral aneurysms. Annual Review of Fluid Mechanics. 2009; 41: 91-107.
[7] Miura Y, Ishida F, Umeda Y, Tanemura H, Suzuki H, Matsushima S, et al. Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms. Stroke. 2013; 44(2): 519-521.
[8] Fukazawa K, Ishida F, Umeda Y, Miura Y, Shimosaka S, Matsushima S, et al. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. World Neurosurg. 2015; 83(1): 80-86.
[9] Tsuji M, Ishikawa T, Ishida F, Furukawa K, Miura Y, Shiba M, et al. Stagnation and complex flow in ruptured cerebral aneurysms: a possible association with hemostatic pattern. J Neurosurg. 2016; 3: 1-7.
[10] Hua, Y., J. H. Oh and Y. B. Kim, Influence of Parent Artery Segmentation and Boundary Conditions on Hemodynamic Characteristics of Intracranial Aneurysms. Yonsei Medical Journal, 2015. 56(5): p. 1328.
[11] Paliwal, N., et al., Association between hemodynamic modifications and clinical outcome of intracranial aneurysms treated using flow diverters. Proc SPIE Int Soc Opt Eng, 2017. 10135.
[12] Lu G, Huang L, Zhang XL, Wang SZ, Hong Y, Hu Z, et al. Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation. AJNR American journal of neuroradiology. 2011; 32(7): 1255-61.
[13] Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke; a journal of cerebral circulation. 2011; 42(1): 144-52.
[14] Liu J, Fan J, Xiang J, Zhang Y, Yang X. Hemodynamic characteristics of large unruptured internal carotid artery aneurysms prior to rupture: a case control study. J Neurointerv Surg. 2016; 8: 367-72.
[15] Pentimalli L, Modesti A, Vignati A, Marchese E, Albanese A, Di Rocco F, Coletti A, Di Nardo P, Fantini C, Tirpakova B, Maira G. Role of apoptosis in intracranial aneurysm rupture. J Neurosurg. 2004;101: 1018-25.
[16] Jou LD, Wong G, Dispensa B, et al. Correlation between luminal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am J Neuroradiol 2005;26: 2357-63.
[17] Acevedo-Bolton G, Jou LD, Dispensa BP, et al. Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: technical case report. Neurosurgery 2006;59: E429-30.
[18] Meng H, Tutino VM, Xiang J, Siddiqui A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR. American journal of neuroradiology. 2014; 35: 1254-1262.
[19] Wang, C., et al., Hemodynamic alterations after stent implantation in 15 cases of intracranial aneurysm. Acta Neurochirurgica, 2016. 158(4): p. 811-819.