趙純 金凡 安葉 孫志華 鄭懷禮
摘要:研究分析腐殖酸對(duì)水溶液中納米TiO2穩(wěn)定性的影響,探究混凝劑投加量、pH、鈣離子對(duì)混凝?超濾工藝去除水中腐殖酸納米TiO2復(fù)合污染物的影響。結(jié)果表明,納米TiO2與腐殖酸在水溶液中發(fā)生的靜電吸附以及配位反應(yīng),將引起納米TiO2有效粒徑的減小,靜電斥力增強(qiáng),膠體分散更均勻,體系穩(wěn)定性增加,易于遷移,從而給飲用水安全帶來(lái)威脅。在單因素影響實(shí)驗(yàn)中,實(shí)驗(yàn)結(jié)果顯示,混凝劑濃度為0.46 mmol/L,pH值在7~8之間(即弱堿性)時(shí),能有效去除復(fù)合污染物,此時(shí),膜通量較高,膜污染較輕,而水中鈣離子的存在會(huì)加重膜污染。
關(guān)鍵詞:納米TiO2;腐殖酸;混凝;超濾;膜污染
中圖分類號(hào):X703.1
Abstract: The effect of humic acid (HA) on the stability of nano-TiO2 was analyzed, and the effects of coagulant dosage, pH and calcium(Ⅱ) concentration on the removal efficiency of HA- TiO2 composite pollutants by the coagulation-ultrafiltration process were investigated. The results showed that the electrostatic adsorption and coordination reaction occurred between nano-TiO2 and HA in the aqueous solution, which caused the decrease of effective particle size of nano-TiO2, the enhancement of electrostatic repulsion, more uniform dispersion of colloid, the increase of system stability and easy migration. These posed a threat to the safety of drinking water. The optimum parameter for HA-TiO2 composite pollutants removal was that the coagulant concentration is 0.46 mmol/L, and the initial pH value is between 7 and 8,the higher membrane flux and lighter membrane fouling was achieved under this condition. The calcium ion in the solution will lead to the increase of membrane fouling.
Keywords: nano-titanium dioxide; humic acid; coagulation; ultrafiltration; membrane fouling
近年來(lái),隨著居民生活質(zhì)量的提高,飲用水安全問(wèn)題備受關(guān)注,研究日趨深入。納米材料作為一種廣泛應(yīng)用于化工制造、個(gè)人護(hù)理及食品工業(yè)等的新材料,進(jìn)入天然水體后,天然有機(jī)物質(zhì)(NOM,如腐植酸、富里酸等)與納米粒子間的相互作用可能改變其毒性和穩(wěn)定性,對(duì)其在環(huán)境中的遷移和轉(zhuǎn)化有重要影響,給飲用水安全帶來(lái)威脅[1-3]。學(xué)者們考察了納米材料本身的性質(zhì),以及環(huán)境溶液的化學(xué)性質(zhì)和物理因素對(duì)納米材料在水體中的沉積、聚集及其潛在危害的影響,而關(guān)于納米材料與NOM在水溶液中形成的復(fù)合污染物的研究卻很少[4-5]。因此,研究NOM與納米顆粒在水中的相互作用具有實(shí)際價(jià)值。
傳統(tǒng)的水處理工藝對(duì)納米顆粒的去除并不理想,而超濾因能有效截留水中膠體、懸浮物、細(xì)菌等,在納米顆粒去除方面展現(xiàn)出優(yōu)勢(shì),但卻面臨膜污染等問(wèn)題[6]。不過(guò),將超濾與其他技術(shù)(混凝[7-8]、吸附[9-10]、預(yù)氧化[11-12]等)相結(jié)合,能有效減輕膜污染,其中,混凝?超濾因具有成本低、操作簡(jiǎn)單、處理效果好等優(yōu)點(diǎn)而得到廣泛應(yīng)用。納米顆粒經(jīng)過(guò)混凝后凝聚,用膜過(guò)濾有很好的去除效果,且與傳統(tǒng)的過(guò)濾方法相比,膜濾對(duì)水中的納米顆粒表現(xiàn)出更好的去除效果[13-14]。
選取腐殖酸(HA)和納米二氧化鈦(納米TiO2)作為研究對(duì)象,對(duì)納米TiO2與腐殖酸之間的相互作用進(jìn)行簡(jiǎn)單分析,探究混凝劑投加量、溶液pH及鈣離子濃度對(duì)混凝?超濾工藝(C-UF)去除HA和納米TiO2復(fù)合污染物(HA-T)的影響。
1實(shí)驗(yàn)材料與方法
1.1實(shí)驗(yàn)材料
實(shí)驗(yàn)所涉及的材料及藥品信息具體見(jiàn)表1。
1.2 實(shí)驗(yàn)方法
1.2.1 聚合硫酸鐵配制? 混凝劑聚合硫酸鐵(PFS)為實(shí)驗(yàn)室所制備[15],PFS母液配制濃度為2.857 mol/L,有效濃度為80%,稀釋20倍,制得混凝劑PFS濃度為:C0=0.114 mol/L。
1.2.2原水配制? 配制1.0 g/L HA儲(chǔ)備液:將1.0 g HA和0.40 g NaOH溶解于1 000 mL超純水中,室溫(25 ℃)下攪拌24 h,用0.45 μm濾膜過(guò)濾后于4 ℃環(huán)境中保存?zhèn)溆谩?/p>
配制1.0 g/L 納米TiO2儲(chǔ)備液:將0.10 g TiO2固體粉末溶解于100 mL超純水中,并在超聲機(jī)內(nèi)(40 KHz)超聲0.5 h以上,使其均勻分散,然后于4 ℃環(huán)境中保存?zhèn)溆谩?/p>
2.3膜表面濾餅層形態(tài)分析
對(duì)實(shí)驗(yàn)后的濾膜進(jìn)行SEM掃描,可以更加直觀地觀察膜表面濾餅層微觀形態(tài)。圖7(a)為原始濾膜表面,干凈光滑;圖7(b)為最優(yōu)條件下(pH=8,混凝劑投加量為0.46 mmol/L,不添加Ca2+)濾膜表面濾餅層,可觀察到其交連的大分子骨架結(jié)構(gòu),孔隙率高,膜堵塞情況較輕;圖7(c)為將pH值調(diào)整為4時(shí)濾膜表面濾餅層,表面絮體密實(shí),骨架結(jié)構(gòu)分布不均勻,孔隙率低;圖7(d)為80 mg/L Ca2+時(shí)濾膜表面濾餅層,其他條件同圖7(b),與圖7(b)的大分子骨架結(jié)構(gòu)明顯不同,絮體結(jié)構(gòu)致密,孔隙小,說(shuō)明Ca2+的存在會(huì)加重膜污染。根據(jù)XDLVO理論,pH值、PFS濃度、Ca2+濃度對(duì)膜表面的污染程度主要取決于污染物與膜材料、離子等相互作用的自由能,調(diào)低pH值、投加陽(yáng)離子等措施都將導(dǎo)致自由能減少,膜污染加重[22-23]。
3結(jié)論
1)水溶液中納米TiO2與HA會(huì)發(fā)生靜電吸附以及配位反應(yīng),使納米TiO2水溶液體系的有效粒徑減小,靜電斥力變大,納米TiO2穩(wěn)定性增強(qiáng),膠體分散更均勻,易于遷移。
2)混凝劑投加量、pH值、Ca2+濃度都是影響C-UF工藝處理效果的重要因素。PFS濃度為0.46 mmol/L,弱堿性(pH值7~8)時(shí),不添加鈣離子,處理效果較好;其中,混凝劑投加量過(guò)低或過(guò)高,原水pH過(guò)低或過(guò)高,都會(huì)對(duì)C-UF工藝處理HA-T復(fù)合污染物產(chǎn)生不利影響,使超濾膜過(guò)濾通量減小,加重膜污染。
3)當(dāng)混凝機(jī)理為以網(wǎng)捕卷掃、吸附架橋?yàn)橹?,以電性中和為輔時(shí),膜污染較輕,膜通量較高。
參考文獻(xiàn)
[1] CHEN Q Q, YIN D Q, ZHU S J, et al. Adsorption of cadmium(II) on humic acid coated titanium dioxide [J]. Journal of Colloid and Interface Science, 2012, 367(1): 241-248.
[2] WANG Y, XUE N, CHU Y B, et al. CuO nanoparticle–humic acid (CuONP–HA) composite contaminant removal by coagulation/ultrafiltration process: The application of sodium alginate as coagulant aid [J]. Desalination, 2015, 367: 265-271.
[3] GHAEMI N, MADAENI S S, DARAEI P, et al. Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: Application of new functionalized Fe3O4 nanoparticles [J]. Chemical Engineering Journal, 2015, 263: 101-112.
[4] 魯晶, 劉冬梅, 劉世光, 等. 納米TiO2顆粒與腐殖酸和SDBS的相互作用機(jī)制[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào), 2015, 47(8): 21-24.LU J, LIU D M, LIU S G, et al. Interaction mechanisms of the TiO2 nanoparticles with humic acid and SDBS [J]. Journal of Harbin Institute of Technology, 2015, 47(8): 21-24.(in Chinese)
[5] LI L, SILLANP?? M, RISTO M. Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters [J]. Environmental Pollution, 2016, 219: 132-138.
[6] 范小江, 張錫輝, 蘇子杰, 等. 超濾技術(shù)在我國(guó)飲用水廠中的應(yīng)用進(jìn)展[J]. 中國(guó)給水排水, 2013, 29(22): 64-70.FAN X J, ZHANG X H, SU Z J, et al. Application of ultrafiltration technology in drinking water treatment plants in China [J]. China Water & Wastewater, 2013, 29(22): 64-70.(in Chinese)
[7] FENG R Q, YUE Q Y, GAO B Y, et al. Effect of pH on floc properties and membrane fouling in coagulation–ultrafiltration hybrid process with different Al-based coagulants [J]. Desalination and Water Treatment, 2016, 57(54): 26041-26049.
[8] DONG H Y, GAO B Y, YUE Q Y, et al. Floc properties and membrane fouling of different monomer and polymer Fe coagulants in coagulation-ultrafiltration process: The role of Fe (III) species [J]. Chemical Engineering Journal, 2014, 258: 442-449.
[9] 董秉直, 張慶元, 馮晶, 等. 粉末活性炭預(yù)處理對(duì)超濾膜通量的影響[J]. 環(huán)境科學(xué)學(xué)報(bào), 2008, 28(10): 1981-1987.DONG B Z, ZHANG Q Y, FENG J, et al. Influence of powered activated carbon (PAC) pretreatment on ultrafiltration membrane flux[J]. Acta Scientiae Circumstantiae, 2008, 28(10): 1981-1987.(in Chinese)
[10] 馮萃敏, 張欣蕊, 孫麗華, 等. PAC-UF工藝的膜污染特性及膜污染物質(zhì)研究[J]. 給水排水, 2015, 51(3): 125-131.FENG C M, ZHANG X R, SUN L H, et al. Study on the characteristics of membrane fouling and the composition of matters for membrane fouling in PAC-UF process [J]. Water & Wastewater Engineering, 2015, 51(3): 125-131.(in Chinese)
[11] 陳衛(wèi), 袁哲, 徐林, 等. 高錳酸鉀預(yù)氧化對(duì)有機(jī)物構(gòu)型與超濾膜污染的影響[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2012, 43(1): 389-394.CHEN W, YUAN Z, XU L, et al. Effect of KMnO4 pre-oxidation on organic configuration and ultrafiltration membrane fouling [J]. Journal of Central South University, 2012, 43(1): 389-394.(in Chinese)
[12] 俞海祥, 伊學(xué)農(nóng), 楊光煒, 等. 臭氧超濾去除微污染水中農(nóng)藥殘留物[J]. 水處理技術(shù), 2015, 41(12): 110-113.YU H X, YI X N, YANG G W, et al. Ozone cooperated with ultrafiltration for the removal of pesticide residues from slight-polluted water[J]. Technology of Water Treatment, 2015, 41(12): 110-113.(in Chinese)
[13] MENG F G, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material [J]. Water Research, 2009, 43(6): 1489-1512.
[14] ZHANG Y, CHEN Y S, WESTERHOFF P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles[J]. Water Research, 2009, 43(17): 4249-4257.
[15] 喬永生, 沈臘珍, 李曉琛, 等. Fe3 O4/SiO2復(fù)合粒子的制備及對(duì)Cd2+ 的吸附性能研究[J]. 中北大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 36(3): 343-347,353.QIAO Y S, SHEN (L|X)(Z), LI X C, et al. Preparation of Fe3 O4/SiO2 composite particles for cadmium(II) adsorption from aqueous solution [J]. Journal of North University of China (Natural Science Edition), 2015, 36(3): 343-347,353.(in Chinese)
[16] 羅敏. 紫外分光光度法測(cè)定聚酯纖維中二氧化鈦含量[J]. 應(yīng)用化工, 2006, 35(2): 144-146.LUO M. Determination of titanium dioxide content in polyester fiber by UV-spectrophotometry [J]. Applied Chemical Industry, 2006, 35(2): 144-146.(in Chinese)
[17] ERHAYEM M, SOHN M. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles[J]. Science of the Total Environment, 2014, 470/471: 92-98.
[18] 劉媛媛, 潘綱. 吸附模式對(duì)有機(jī)物光催化降解的影響 1.H-酸在TiO2表面的吸附模式[J]. 環(huán)境化學(xué), 2006, 25(1): 1-5.LIU Y Y, PAN G. EFFECT OF ADSORPTION MODES ON THE PHOTOCATALYTIC DEGRADATION OF ORGANIC MATTERS 1. ADSORPTION MODES OF H-ACID ON TiO2 [J]. Environmental Chemistry, 2006, 25(1): 1-5.(in Chinese)
[19] ZHU M, WANG H T, KELLER A A, et al. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths [J]. Science of the Total Environment, 2014, 487: 375-380.
[20] LUO M X, HUANG Y X, ZHU M, et al. Properties of different natural organic matter influence the adsorption and aggregation behavior of TiO2 nanoparticles [J]. Journal of Saudi Chemical Society, 2018, 22(2): 146-154.
[21] ERHAYEM M, SOHN M. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter [J]. Science of the Total Environment, 2014, 468/469: 249-257.
[22] 張冬, 董岳, 周東菊, 等. 基于XDLVO理論的超濾膜污染機(jī)理研究[J]. 中國(guó)給水排水, 2016, 32(21): 66-70.ZHANG D, DONG Y, ZHOU D J, et al. Study on fouling behavior of ultrafiltration membrane based on XDLVO theory [J]. China Water & Wastewater, 2016, 32(21): 66-70.(in Chinese)
[23] WANG J W, MO Y B, MAHENDRA S, et al. Effects of water chemistry on structure and performance of polyamide composite membranes [J]. Journal of Membrane Science, 2014, 452: 415-425.
(編輯:王秀玲)