魯先龍 乾增珍 楊文智 鄭衛(wèi)鋒
摘 要:嵌巖樁極限端阻力發(fā)揮特征及端阻力系數(shù)取值仍是巖土工程中嵌巖樁應用的重要研究課題之一。本文收集整理了國外不同地區(qū)學者在不同時期、不同巖石性質(zhì)和不同嵌巖條件下所開展的165個嵌巖樁端阻力試驗成果,主要包括嵌巖段巖石類型及其天然單軸抗壓強度、嵌巖直徑與嵌巖深度、嵌巖樁極限端阻力等。定義嵌巖樁極限端阻力與巖石天然單軸抗壓強度的比值為嵌巖樁端阻力系數(shù),分析了樁徑、嵌巖深度、嵌巖深徑比和巖石強度對嵌巖樁極限端阻力和端阻力系數(shù)的影響規(guī)律,建立了嵌巖樁極限端阻力及端阻力系數(shù)與巖石單軸抗壓強度之間的擬合關系式,可為嵌巖樁極限端阻力計算提供借鑒。
關鍵詞:嵌巖樁;端阻系數(shù);嵌巖深徑比;巖石單軸抗壓強度
中圖分類號:TU411? ? 文獻標識碼:A? ? 文章編號:
Abstract: It is an important issue to investigate the characteristics of end-bearing capacity and to determine the end-bearing resistance factor for the application of rock-socketed piles. In this study, the results of 165 compression load tests were collected to examine several issues related to the end-bearing capacity behavior of rock-socket piles. All these load test results were conducted on different rocks with different rock-socket piled conditions by different authors worldwide. Using these load test data, the type and the uniaxial compressive strength of rock in nature, the diameter and the embedment depth of socketed piles, the ultimate end-bearing resistances were compiled. The ratio of ultimate end-bearing capacity to unconfined compressive strength of the rock was defined as the end-bearing resistance factor of rock-socketed piles. Effects of the pile diameter, the pile depth rocked into rock, the ratio of rocketed depth to diameter, and the unconfined compressive strength of the rock on the ultimate end-bearing capacity and the end-bearing resistance factor were comprehensively investigated. An empirical relation between the unconfined compressive strength and the end-bearing capacity as well as the end-bearing resistance factor were suggested, which could be used in the design for rock-socketed piles.
Key words: rock-socket pile; end-bearing resistance factor; ratio of pile rocketed depth to diameter; unconfined compressive strength of rock
嵌巖樁作為承受大型建(構(gòu))筑物荷載的主要基礎型式,已在工程中得到了廣泛應用。然而,由于嵌巖樁具有承載力大、試驗費用高且難以進行破壞性試驗等特點,系統(tǒng)且完整的靜載試驗實測數(shù)據(jù)不多,從而制約了人們對嵌巖樁承載性狀的全面認識[1-2]。目前,各行業(yè)規(guī)范對嵌巖樁承載力計算主要是經(jīng)驗和半經(jīng)驗公式,經(jīng)驗參數(shù)較多[3],設計方法及其參數(shù)取值也不盡相同,其原因主要源于對嵌巖樁荷載傳遞機理與承載性狀認識存在偏差[4]。
我國建筑地基基礎設計規(guī)范[5]認為嵌巖樁是端承樁,按端承樁設計。但國內(nèi)外學術界和工程界都普遍認為,嵌巖樁抗壓承載力主要由基巖上覆土層樁側(cè)阻力、嵌巖段樁側(cè)阻力和樁端阻力3部分組成,這已體現(xiàn)在我國相關規(guī)范[6-9]所給出的嵌巖樁承載力設計方法中。文獻[10]通過收集整理嵌巖樁豎向下壓承載力試驗成果,分析了樁徑、嵌巖深度、嵌巖深徑比和巖石強度對嵌巖樁嵌巖段樁側(cè)極限阻力和巖石極限側(cè)阻力系數(shù)的影響規(guī)律,建立了嵌巖段巖石極限側(cè)阻力系數(shù)與巖石單軸抗壓強度之間的擬合關系式,給出了不同可靠度水平下巖石側(cè)極限阻力系數(shù)取值建議。但大量現(xiàn)場試驗表明[11-14],嵌巖樁在豎向荷載作用下,首先樁體發(fā)生豎向位移,樁體和樁側(cè)巖土體之間發(fā)生相對位移,樁頂荷載通過樁側(cè)巖土體阻力逐漸傳遞至樁端,嵌巖段樁側(cè)阻力一般先于樁端阻力發(fā)揮。嵌巖樁巖石端阻力發(fā)揮過程更加復雜,研究嵌巖樁極限端阻力發(fā)揮特征將具有重要的理論和實踐意義。
本文收集整理了國外學者在不同時期、不同地區(qū)、不同巖石強度和不同嵌巖條件下所完成的165個嵌巖樁豎向下壓承載力試驗成果,分析了樁徑、嵌巖深度、嵌巖深徑比和巖石強度對嵌巖樁極限端阻力和端阻力系數(shù)的影響規(guī)律,建立了嵌巖樁極限端阻力及端阻力系數(shù)與巖石天然單軸抗壓強度之間的擬合關系式,可為嵌巖樁極限端阻力計算提供借鑒。
1 試驗數(shù)據(jù)收集與整理
1.1 數(shù)據(jù)收集
這里需特別說明,本文所引用文獻的試驗工作是不同時期、不同地區(qū)學者,分別在不同巖石類型與強度、不同樁端嵌巖條件下完成的,作者對嵌巖樁極限端阻力的測試方法、極限承載力確定原則等方面也不盡相同。本文分析中均直接采用了原文獻結(jié)果,這種方法分析得到的研究結(jié)論將更具一般性。
1.2 數(shù)據(jù)整理與分析
如表2所示,嵌巖樁抗壓承載性能差異主要由嵌巖段巖體性質(zhì)和樁端嵌巖特征不同引起。樁端嵌巖特征主要包括樁徑、嵌巖深度、嵌巖深徑比。表2中嵌巖段巖石主要包括黏土巖、頁巖、泥頁巖、砂礫巖、石膏巖、石灰石、凝灰?guī)r和角礫巖等多種類型。
我國規(guī)范[49]指出,影響巖體性質(zhì)的因素主要是巖石物理力學性質(zhì)、構(gòu)造發(fā)育情況、荷載(工程荷載和初始應力)、應力應變狀態(tài)、幾何邊界條件、水的賦存狀態(tài)等。在這些因素中,巖石堅硬程度則是反映了巖體基本特性的一個重要因素。這里還需要特別說明的是,規(guī)范[49]中巖石堅硬程度是按巖石飽和單軸抗壓強度大小進行劃分,而本文所引用文獻中的巖石強度σc均為巖石天然單軸抗壓強度,這是二者的不同。
2 巖石極限端阻力與端阻力系數(shù)影響因素
根據(jù)表2所收集與整理的嵌巖樁端阻力試驗數(shù)據(jù),分析樁徑、嵌巖深度、嵌巖深徑比和巖石強度對嵌巖樁極限端阻力和端阻力系數(shù)的影響規(guī)律。
2.1 樁徑
圖1和圖2分別為嵌巖樁極限端阻力及端阻力系數(shù)隨樁徑變化的規(guī)律。圖1和圖2結(jié)果表明,樁徑對嵌巖極限樁端阻力影響并不顯著,嵌巖樁極限端阻力與樁徑之間無明顯相關性。樁端阻力系數(shù)總體隨樁徑增加而呈下降趨勢,當樁徑小于0.5m時尤為明顯,當樁徑大于0.5m后,這種下降趨勢表現(xiàn)得并不顯著。
2.2 嵌巖深度
嵌巖深度不僅影響嵌巖段側(cè)阻力發(fā)揮性狀,對樁端分擔的荷載大小也有較大影響。此外,嵌巖深度也直接關系到嵌巖樁應用的安全性和經(jīng)濟性。嵌巖深度大,雖安全可靠,但施工難度大、費用高。反之,嵌巖深度過小,若樁端巖性差,嵌巖樁承載力和沉降可能不滿足上部結(jié)構(gòu)要求。圖3給出了嵌巖樁極限端阻力隨嵌巖深度變化規(guī)律。
圖3表明,嵌巖樁極限端阻力隨嵌巖深度變化雖有一定離散性,但總體上隨嵌巖深度增加而略有減小,這與Rowe和Armitage[53]研究結(jié)論一致。即在一定嵌巖深度范圍內(nèi),增加嵌巖深度可提高嵌巖樁承載力,但超過一定深度后,嵌巖深度的增加對單樁承載力幾乎沒有影響,即嵌巖樁存在最佳嵌巖深度,這也與我國學者對嵌巖深度普遍看法一致,嵌巖樁存在最佳嵌巖深度,可使嵌巖段樁側(cè)阻力和樁端阻力發(fā)揮最為協(xié)調(diào)和充分。但不同學者對最佳嵌巖深度取值研究結(jié)論也是不一致的。黃求順[12]認為最佳嵌巖深度為3d,而劉興遠等[54]認為一律將嵌巖深度取為3d不合理,應根據(jù)樁端所嵌入巖體狀態(tài)確定。明可前[55]通過試驗認為最佳嵌巖深度為4d。許錫賓等[56]認為硬質(zhì)巖和軟質(zhì)巖最佳嵌巖深度分別取3d和5d較合理。
2.3 嵌巖深徑比
圖4為嵌巖樁極限端阻力隨嵌巖深徑比hr/d的變化規(guī)律。結(jié)果表明,嵌巖樁極限端阻力總體隨嵌巖深徑比的增大而減小,這與史佩棟等[13]統(tǒng)計分析結(jié)果一致。史佩棟等[13]根據(jù)國內(nèi)外150根嵌巖樁下壓實測結(jié)果,繪制了嵌巖樁極限端阻分擔荷載比與樁身嵌巖深徑比hr/d之間的關系曲線。結(jié)果表明,嵌巖樁極限端阻力總體隨嵌巖深徑比的增大而減小,當1.0
我國樁基規(guī)范[6]中嵌巖段側(cè)阻和端阻綜合系數(shù)是隨嵌巖深度變化而變化的,在較小嵌巖深徑比下,嵌巖段總阻力的發(fā)揮程度隨嵌巖深度的增加而增大,而隨著嵌巖深度繼續(xù)增加,嵌巖段總阻力發(fā)揮程度有所變緩,嵌巖樁極限端阻力系數(shù)存在深度效應。圖8給出了嵌巖樁極限端阻力系數(shù)隨嵌巖深徑比變化規(guī)律,也給出了規(guī)范[6]中2類巖石強度條件下,嵌巖樁極限端阻力系數(shù)隨嵌巖深徑比變化曲線。
從圖5可看出,對極軟巖和軟巖(巖石飽和單軸抗壓強度≤15MPa)、較硬巖和硬巖(巖石飽和單軸抗壓強度>30MPa),我國規(guī)范取值總體偏小。同時,圖5中端阻力系數(shù)與嵌巖深徑比之間并無明顯的相關性。而我國規(guī)范[6]中嵌巖樁端阻力系數(shù)取值與嵌巖深徑比相關,隨嵌巖深徑比增加而略有下將,這與收集整理的試驗結(jié)果并不吻合。
2.4 巖石強度
[4] 邢皓楓, 孟明輝, 羅勇, 等. 軟巖嵌巖樁荷載傳遞機理及其破壞特征[J]. 巖土工程學報, 2011, 33(S2): 355-361.XING H F, MENG M H, LUO Y, et al. Load transfer mechanism and failure characteristics of piles embedded in soft rock[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 355-361.(in Chinese)[維普]
[5] 建筑地基基礎設計規(guī)范: GB50007—2011 [S]. 北京:中國建筑工業(yè)出版社,2011. Code for design of building foundation: GB50007—2011 [S]. Beijing: China Architecture and Building Press, 2011. (in Chinese)
[6] 建筑樁基技術規(guī)范: JGJ 94—2008 [S]. 北京:中國建筑工業(yè)出版社,2008. Technical code for building pile foundations: JGJ 94-2008 [S]. Beijing: China Architecture and Building Press, 2008. (in Chinese)
[7] 鐵路橋涵地基和基礎設計規(guī)范:TB 10002.5—2005 [S]. 北京:中國鐵道出版社,2005. Code for design on subsoil and foundation of railway bridge and culvert: TB 10002.5-2005 [S]. Beijing: China Railway Publishing House, 2005. (in Chinese)
[8] 公路橋涵地基與基礎設計規(guī)范:JTG D63—2007 [S]. 北京:人民交通出版社,2007. Code for design of ground base and foundation of highway bridges and culverts: JTG D63-2007 [S]. Beijing: China Communications Press, 2007. (in Chinese)
[9] 港口工程樁基規(guī)范:JTS 167—4—2012 [S]. 北京:人民交通出版社,2012. Code for pile foundation of harbor engineering: JTS 167-4-2012 [S]. Beijing: China Communications Press, 2012. (in Chinese)
[10] 魯先龍, 乾增珍, 楊文智, 等. 嵌巖樁嵌巖段的巖石極限側(cè)阻力系數(shù)[J]. 土木建筑與環(huán)境工程, 2018, 40(6): 29-38.LU X L, QIAN Z Z, YANG W Z, et al. Analysis on ultimate side shear resistance factor of piles socketed into rocks[J]. Journal of Civil,Architectural & Environmental Engineering, 2018, 40(6): 29-38.(in Chinese)
[11] 劉金礪.樁基礎設計與計算.北京:中國建筑工業(yè)出版社,1990.85–95. LIU J L. Design and calculation of pile foundations [M]. Beijing: China Architecture and Building Press, 1990. (in Chinese)
[12] 黃求順.嵌巖樁承載力的試驗研究[C]//中國建筑學會地基基礎學術委員會論文集.太原:山西高校聯(lián)合出版杜,1992: 47–52. HUANG Q S. Load tests on bearing capacity of rock socketed piles. [C]//Proceedings of the Chinese Academy of Architecture Foundation. Taiyuan: Shanxi United University Press. 1992: 47–52.(in Chinese)
[13] 史佩棟,梁晉渝.嵌巖樁豎向承載力的研究 [J]. 巖土工程學報,1994,16(4):32–39. SHI P D, LIANF J Y. Vertical bearing capacity of rock-socketed piles [J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 32–39. (in Chinese)
[14] 劉松玉,季鵬,韋杰.大直徑泥質(zhì)軟巖嵌巖灌注樁的荷載傳遞性狀[J]. 巖土工程學報,1998,20(4):58–61. LIU S Y, JI P,WEI J.. Load transfer behavior of large diameter cast-in-place pile embedded in soft rock [J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 58–61. (in Chinese)
[15] REESE L C, HUDSON W R. Field testing of drilled shafts to develop design methods [R]. Research Report 89-1, Center for Highway Research, The University of Texas at Austin, 1968.
[16] VIJAYVERGIYA V N, HUDSON W R, REESE L C. Load distribution for a drilled shaft in clay shale [R]. Research Report 89-5, Center for Highway Research, The University of Texas at Austin, 1969.
[17] ENGELING D E, REESE L C. Behavior of three instrumented drilled shafts under short term axial loading [R]. Research Report 176-3, Center for Highway Research, The University of Texas at Austin, 1974.
[18] AURORA R P, REESE L C. Aurora, R. P., and Reese L. C. Behavior of axially loaded drilled shafts in clay-shales [R], Research Report 176-4, Center for Highway Research, The University of Texas at Austin, 1976.
[19] WEBB D L. The behaviour of bored piles in weathered diabase [J]. Geotechnique, 1976, 26(1): 63-72.
[20] WILSON L C. Tests of bored and driven piles in Cretaceous mudstone at Port Elizabeth, South Africa[J]. Géotechnique, 1976, 26(1): 5-12.[LinkOut]
[21] GOEKE P M, HUSTAD P A. Instrumented drilled shafts in clay-shale [C]// Proceedings of Symposium on Deep Foundations. Atlanta, GA. 1979: 149-164.
[22] THORNE C P. 1980. The capacity of piers drilled into rock [C]// Proceedings of the International Conference on Structural Foundations on Rock, Sydney, Australia, Vol. 1, 1980: 223–233.
[23] Williams, A. F. The design and performance of piles socketed into weak rock [D]. Ph. D. Thesis, Department of Civil Engineering, Monash University, Clayton, Vic., Australia, 1980.
[24] JUBENVILLE D M, HEPWORTH . Drilled pier foundations in shale [C]// Proceedings of Special National Conference Session A. Denver, Colorado Area, 1981.
[25] GLOS G H, BRIGGS O H J R. Rock sockets in soft rock [J]. Journal of Geotechnical Engineering, 1983, 109(4): 525–535.
[26] HORVATH R G, KENNEY T C, KOZICKI P. Methods of improving the performance of drilled piers in weak rock [R]. Canadian Geotechnical Journal, 1983, 20(4): 758-772.
[27] BAKER, C N J R. Comparison of caisson load tests on Chicago hardpan [C] // Proceedings of Session at the ASCE National Convention, ASCE, Reston, 1985, 99-113.
[28] SEIK, S, O'NEILL, M W, KAPASI K J. Behavior of 45° underream footing in eagle ford shale [R]. Research Report 85-12, University of Houston, December, 1985.
[29] HUMMERT J B, COOLING T L. Drilled pier test, Fort Collins, Colorado. [C]// Proceedings of the Second International Conference on Case Histories in Geotechnical Engineering, Vol. 3. Rolla, Missour: University of Missouri-Rolla. 1998, 1375-1382.
[30] ORPWOOD T G, SHAHEEN A A, KENNETH R P. Pressure-meter evaluation of glacial till bearing capacity in Toronto, Canada [M]. Kulhawy FH, editor. Foundation Engineering: current principles and practice, Vol. 1, Reston, VA, 1989, 16-28.
[31] RADHAKRISHNAN R, LEUNG C F. Load transfer behavior of rock-socketed piles[J]. Journal of Geotechnical Engineering, 1989, 115(6): 755-768.
[32] LEUNG C F, KO H Y. Centrifuge model study of piles socketed in soft rock.[J]. Soils and Foundations, 1993, 33(3): 80-91.[LinkOut]
[33] THOMPSON R W, III. Axial capacity of drilled shafts socketed into soft rock [D]. M.Sc. thesis, Auburn University, Auburn, Ala. 1994.
[34] CARRUBBA P. Skin of large-diameter piles socketed into rock [R]. Canadian Geotechnical Journal. 1997. 34(2): 230-240.
[35] O'NEILL M W. Applications of large-diameter bored piles in the United States [C] // Proceedings of the Third International Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, Ghent, Belgium, 1998, 3-19.
[36] TCHEPAK S. The design and performance of bored pile in Shales for the Australia Stadium Project [C] // Proceedings of the Third International Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, Ghent, Belgium, 1998, 341-348.
[37] OSTERBERG J. Load testing high capacity piles: What have we learned? [C] // Proceedings of the 5th International Conference on Deep Foundation Practice, Singapore, 2001.
[38] GUNNINK B, KIEHNE C. Capacity of drilled shafts in burlington limestone [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 539-545.
[39] ABU-HEJLEH N M, O'NEILL M W, HANNEMAN D, et al. Improvement of the geotechnical axial design methodology for colorado's drilled shafts socketed in weak rocks[J]. Transportation Research Record: Journal of the Transportation Research Board, 2005, 1936(1): 100-107.
[40] BULLOCK, P J. A study of the setup behavior of drilled shafts [R]. Report submitted to the Florida Department of Transportation. University of Florida, Gainesville, Florida, 2003.
[41] MC VAY M, ELLIS K M, VILLEGAS J, KIM S H, LEE S M. Static and dynamic field testing of drilled shafts: Suggested guidelines on their use and for FDOT structures [R]. Report WPI No. BC354-08, FDOT, Department of Civil and Costal Engineering, University of Florida, 2003.
[42] MELLO L G, BILFINGER W, MENDES A S. A case study of rock socketed piles: design, control and construction of bored piles for a bridge foundation in Southeast Brazil [C] // Proceedings of the Fourth International Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, Ghent, Belgium, 2003, 373-377.
[43] MILLER A D. Prediction of ultimate side shear for drilled shafts in Missouri shafts [D]. M.Sc. thesis, University of Missouri, Columbia, 2003.
[44] NAM M S. Improved design for drilled shafts in Rock [R]. Ph.D. thesis, University of Houston, Houston, Tex, 2004.
[45] ABU-HEJLEH N, ATTWOOLL W J. Colorados axial load tests on drilled shafts socketed in weak rocks: Synthesis and future needs [R]. Report CDOT-DTD-R-2005-4m Colorado Department of Transportation, Research Branch, Denver, Colo., 2005.
[46] BASARKAR S S, DEWAIKAR D M. Load transfer characteristics of rocketed piles in Mumbai region [J]. Soils and Foundations, 2006, 46(2): 247–257.
[47] GEO. Foundation design and construction. Geotechnical Control Office, Hong Kong. GEO publication No. 1/2006. 2006.
[48] KULKARNI R U, DEWAIKAR D M. Analysis of rock-socketed piles loaded in axial compression in Mumbai region based on load transfer characteristics[J]. International Journal of Geotechnical Engineering, 2019, 13(3): 261-269.
[49] 工程巖體分級標準:GB/T 50218—2014 [S]. 北京:中國計劃出版社,2014. Standard for engineering classification of rock mass: GB 50021—2001 [S]. Beijing: China Planning Press, 2014. (in Chinese)
[50] ROWE R K, ARMITAGE H H. Theoretical solutions for axial deformation of drilled shifts in rock [J]. Canadian Geotechnical Journal, 1987, 24(1): 114–125.
[51] 劉興遠,鄭穎人,林文修.關于嵌巖樁理論研究的幾點認識[J]. 巖土工程學報,1998,20(5):118–119. LIU X Y, ZHENG Y R, LIN W X. Some understanding on the theories of rock socketed pile foundations[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 118–119. (in Chinese)
[52] 明可前.嵌巖樁受力機理分析[J].巖土力學,1998,19(1):65–69. MING K Q. Analysis of bearing mechanism of soeketed pile [J]. Rock and Soil Mechanics, 1998, 19(1): 65–69. (in Chinese)
[53] 許錫賓, 周亮, 劉濤, 等. 大直徑嵌巖樁單樁承載性能的有限元分析[J]. 重慶交通大學學報(自然科學版), 2010, 29(6): 942-946,977.XU X B, ZHOU L, LIU T, et al. Finite element analysis of load-bearing properties of large diameter rock-socketed single pile[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2010, 29(6): 942-946,977.(in Chinese)[萬方]
[54] TENG W C. Foundation design [M], Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962.
[55] COATES D F. Rock mechanics principles. Energy Mines and Resources, Ottawa, Ont. Monograph, 1967.
[56] ZHANG L Y, EINSTEIN H H. End bearing capacity of drilled shafts in rock[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(7): 574-584.
[57] VIPULANANDAN C., HUSSAIN A, USLUOGULARI O. Parametric study of open core-hole on the behavior of drilled shafts socketed in soft rock [C] // Contemporary Issues in Deep Foundations: Proceedings of Geo-Denver 2007, Denver, Colo., 18–21 February 2007. Geotechnical Special Publication No. 158. [CDROM]. Edited by W. Camp, R. Castelli, D.F. Laefer, and S. Paikowsky. American Society for Civil Engineers, Reston, Va. pp. 1–10.
(編輯:胡玲)