国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

半解析法求解水柱分離與斷流彌合水錘問題及機(jī)理分析

2019-09-24 11:26丁法龍茅澤育
關(guān)鍵詞:水錘斷流管段

韓 凱,丁法龍,茅澤育

半解析法求解水柱分離與斷流彌合水錘問題及機(jī)理分析

韓 凱,丁法龍,茅澤育※

(清華大學(xué)水利水電工程系,北京 100084)

為了應(yīng)對(duì)長距離輸水工程的水錘防護(hù)問題,分析了空氣閥作用于波狀管線有壓輸水系統(tǒng)發(fā)生水力過渡時(shí)的瞬態(tài)響應(yīng)過程,提出了空穴增長和潰滅時(shí)間、管線最大含氣率、最大壓力峰值等參數(shù)的半解析公式,并由此探討和研究影響空氣閥水錘防護(hù)效果的關(guān)鍵因素。半解析解表明,位于空氣閥下游的管段相對(duì)長度和管線高點(diǎn)的相對(duì)高程對(duì)系統(tǒng)的斷流彌合水錘起了主導(dǎo)作用。將半解析解與特征線法數(shù)值解進(jìn)行了對(duì)比,發(fā)現(xiàn)兩者隨主變量的變化趨勢(shì)一致;分析了半解析解與數(shù)值解產(chǎn)生偏差的原因與半解析公式推導(dǎo)過程中幾個(gè)假設(shè)的關(guān)系。結(jié)果證明,該文提出的半解析公式能夠反映空氣閥作為水錘防護(hù)裝置時(shí),主導(dǎo)斷流彌合水錘壓力峰值的關(guān)鍵因素。該研究可為水錘防護(hù)的相關(guān)研究提供參考。

壓力;模型;空氣閥;半解析方法;液柱分離;斷流彌合;特征線方法

0 引 言

在水力過渡過程中,有壓輸水管線內(nèi)部產(chǎn)生真空,需要通過空氣閥將外界氣體引入管道[1-4]??諝忾y工作時(shí)既要保證吸入足量空氣以緩解負(fù)壓,又必須在真空負(fù)壓消失后盡快將氣體安全地排出管道,從而避免管內(nèi)氣團(tuán)滯留帶來的不利影響[5-7]。相比于調(diào)壓井和空氣罐等水錘防護(hù)裝置,空氣閥設(shè)計(jì)與布置更靈活,經(jīng)濟(jì)性較高,因此在停泵、充放水、流量調(diào)節(jié)等操作引起水錘負(fù)壓時(shí)常被采用[8-10]??諝忾y的布設(shè)位置和孔口尺寸對(duì)有效控制管線內(nèi)的真空條件至關(guān)重要,不當(dāng)設(shè)計(jì)和故障失靈都極有可能引起二次水錘現(xiàn)象,引發(fā)更為嚴(yán)重的后果,但如何規(guī)避這一風(fēng)險(xiǎn)仍然存在較大的爭(zhēng)議[1, 4, 11-12]。

為了限制有壓輸水管道內(nèi)部氣團(tuán)積聚,按照空氣閥的使用指導(dǎo)意見,裝置常被要求布置在管線沿程的所有局部高點(diǎn)[13-14],但這樣的方案經(jīng)常導(dǎo)致安裝過多的空氣閥。因空氣閥需要定期進(jìn)行檢查和維護(hù),過量安裝必然會(huì)增加由于空氣閥故障引起二次水錘的風(fēng)險(xiǎn)[7,15]。因此,無論是從空氣閥的運(yùn)維成本還是從空氣閥故障導(dǎo)致的不利影響考慮,減少冗余的空氣閥布置都具有積極意義。

用數(shù)值方法求解水力過渡過程的動(dòng)力學(xué)方程組及相關(guān)邊界條件是一種較為可靠的方法,因此國內(nèi)外學(xué)者們針對(duì)液柱分離現(xiàn)象和空氣閥開展了大量的數(shù)值研究工作,但數(shù)值方法計(jì)算量巨大;泵站水錘的水動(dòng)力學(xué)特性對(duì)邊界條件又極其敏感,決定不同工程的水錘特性可能存在較大差異,因此針對(duì)某項(xiàng)輸水工程往往需要擬定數(shù)十甚至上百種工況,并進(jìn)行計(jì)算和分析[16-23]。解析公式通過直接求解微分方程得到,變量間關(guān)系簡(jiǎn)捷明了,便于分析計(jì)算,但解析解往往需要一些簡(jiǎn)化條件或僅適用于特定的情況[24],推廣應(yīng)用受一定的限制。不同于數(shù)值方法的“暴力解”,半解析方法不僅物理意義清晰、直觀,而且適用面更廣、更具一般性,也有利于工況擬定和關(guān)鍵參數(shù)開展進(jìn)一步研究,可以大大提高工程計(jì)算效率[25-26]。

從水錘波傳播的基本理論出發(fā),針對(duì)本文設(shè)計(jì)的波狀管線有壓輸水系統(tǒng),建立了發(fā)生水力過渡時(shí)空氣閥引起氣穴增長、潰滅的時(shí)間和與之對(duì)應(yīng)的管道最大含氣率和水錘壓力峰值的半解析公式,并由此探討和研究空氣閥對(duì)系統(tǒng)的瞬態(tài)響應(yīng)特點(diǎn)與輸水管線幾何特性和水力特性的關(guān)系。

1 水錘波傳播過程分析

如圖1所示,該有壓輸水系統(tǒng)主要由上、下游水庫、泵、空氣閥和帶有局部高點(diǎn)的輸水管線構(gòu)成,管道材料、截面形狀和面積沿程不變。將上游水庫A1到局部高點(diǎn)B的長度為1的管段(A1B)定義為上游段,將局部高點(diǎn)B至下游水庫C的長度為2的管段BC)定義為下游段。當(dāng)輸水流量恒定時(shí),忽略局部水頭損失,沿程水頭均勻變化。

注:A1為上游水庫,C為下游水庫;B為局部高點(diǎn),布置有空氣閥;h1與h2為上游端和下游端的水頭,m;hp為B點(diǎn)的水頭與高程的差值,m;v0為水流流速,v0= q0/A,m·s-1;q0為初始管道流量,m3·s-1;A為管道的截面積,m2;L1與L2為上游段和下游段的管線長度,m。

在=0時(shí)刻,事故停泵引起斷流后,閥門隨即關(guān)閉,在上游端形成一個(gè)大小為Δ1的降壓波。當(dāng)降壓波經(jīng)過1/的時(shí)間傳播到B點(diǎn)時(shí),空氣閥開啟,引入空氣使得B處壓強(qiáng)總維持在大氣壓。一方面,在B處的氣團(tuán)作用下,降壓波的大小從Δ1減弱為h后繼續(xù)向下游傳播;另一方面,水錘波在氣團(tuán)處產(chǎn)生反射,繼而向上游傳播大小為Δ2的增壓波,其中Δ2=Δ1?h。1/時(shí)刻后,A1B段的水流和水錘波將做周期性運(yùn)動(dòng),忽略管道摩擦,B點(diǎn)在上游界面的水流速度up(由A1到B為正向)和水頭up可用圖2表示。

注:hB為局部高點(diǎn)處的水頭,m;Δh1為因停泵在上游端產(chǎn)生的降壓波,m;Δh2為在氣團(tuán)處反射向上游端的增壓波,m;hup為局部高點(diǎn)在上游界面的水頭,m;vup為B點(diǎn)在上游界面的水流速度,m·s-1;t為時(shí)間;a為水錘波波速,m·s-1。

大小為h的降壓波繼續(xù)沿BC段向下游傳播,相應(yīng)的流速從0減小為1

式中和′表示時(shí)間,s,′=1/;1為0<′<2/時(shí)下游管道內(nèi)的流量,m3/s;為重力加速度,m/s2。

′=2/時(shí)刻降壓波抵達(dá)下游水庫后,向上游反射大小為h的增壓波,同時(shí)管道流量變?yōu)?(流向不變),即2/<′<22/期間,2=1?Δq,Δq為不計(jì)摩擦?xí)r下游流量變化值,q+1= qq,m3/s;q為下游管段內(nèi)的階段性流量,=1,2,…,m3/s;′=22/時(shí)刻水錘波再次抵達(dá)B點(diǎn),水錘波在氣團(tuán)處產(chǎn)生反射,繼而向下游傳播大小為Δ2的降壓波,由于不考慮管線摩擦且氣團(tuán)體積相比于管線容積可忽略不計(jì),使22/<′<32/期間3=2?Δq;此過程持續(xù)進(jìn)行。當(dāng)水錘波第次通過下游管段時(shí),管道流量記為q;直到BC段水流正向流動(dòng)停止,即q=0,此為第一階段。由于q>0時(shí),BC段水體一直流入下游水庫,故外界氣體通過空氣閥持續(xù)進(jìn)入管段,引起管內(nèi)氣穴體積air增長。BC段正向流動(dòng)停止時(shí)氣穴體積air出現(xiàn)最大值,但此時(shí)下游端水頭大于局部高點(diǎn)B處的氣壓,BC段水流開始逆向流動(dòng),air開始減小。逆向流速v+j每隔2/數(shù)值上增加Δv。Δv為下游段水流流速變化值,Δv= Δq/,m/s。此過程一直持續(xù)到管內(nèi)氣體通過空氣閥被完全排出,A1B段水柱和BC段水柱重新彌合,即當(dāng)air=0時(shí)下游段第二階段的流動(dòng)停止。

B處形成的氣團(tuán)隔斷了上、下游管段內(nèi)的水體,因此可以將圖1所示的輸水系統(tǒng)拆解成2個(gè)子系統(tǒng),以便進(jìn)一步分析。根據(jù)前面分析所得的上、下游管段內(nèi)水錘波不同的傳播特性,本文將圖1中的系統(tǒng)按圖3所示拆解成2個(gè)輸水子系統(tǒng),其中:上游段的水錘由=0時(shí)刻的瞬時(shí)關(guān)閥引起,下游段子系統(tǒng)的水錘是由水庫在=1/時(shí)刻水位突然下降h引起。

注:F、E為上、下游子系統(tǒng)中的2個(gè)水庫;hp為局部高點(diǎn)處的高程與該處水頭的差值,m。

2 半解析公式的建立

2.1 光滑管道的半解析公式

大小為Δ1的降壓波在B點(diǎn)削弱為P后,繼續(xù)向下游傳播,下游管段內(nèi)的流量取決于B點(diǎn)的高程

下游管段內(nèi)流量q的變化還與下游管線的長度有關(guān),利用取整函數(shù)INT(),下游管段內(nèi)流量隨時(shí)間變化的函數(shù)q()可表示為

令式(3)等于0,得到下游段水錘波運(yùn)動(dòng)第一階段結(jié)束時(shí)傳播往返次數(shù)和相應(yīng)的氣穴體積增長總歷時(shí)t

假設(shè)管內(nèi)壓力變化時(shí),氣體可以自由出入空氣閥,因?yàn)椴挥?jì)管道摩擦,可認(rèn)為氣穴的增長過程和消減過程在時(shí)間上關(guān)于q=0的時(shí)刻對(duì)稱。由此,氣穴潰滅的歷時(shí)t可認(rèn)為是氣穴體積增長歷時(shí)的2倍,即

圖3所示等效的上游系統(tǒng)中,波的每次往返只引起水流流向周期性地反轉(zhuǎn)。因此,上游段水流流動(dòng)對(duì)空穴體積的影響可以忽略不計(jì)。在下游段水流減速過程中,水體從管道進(jìn)入下游水庫的同時(shí),空氣不斷從空氣閥進(jìn)入管道,于是下游管道的最大空穴體積airmax可表示為

將式(2)至式(4)代入式(7),可得

由式(8)可知,最大空穴體積airmax是關(guān)于波在下游管道的傳播時(shí)間(2/)、橫截面積()、初始管道流量(0)以及B點(diǎn)的相對(duì)高程(Δ2/Δ1)的函數(shù)。實(shí)際工程中、和0一般是確定的,因此airmax與2和Δ2/Δ1直接相關(guān);airmax與2成正比,故當(dāng)BC段管長較大時(shí),更多氣體得以進(jìn)入管道,但airmax與管道體積pipe(m3)的比值卻是恒定的。

假設(shè)氣體的體積流量與水流一致且不存在壓縮,在第二階段末空氣完全排出(air=0)時(shí),空氣閥自動(dòng)關(guān)閉,上下游水柱斷流彌合,產(chǎn)生水錘后同時(shí)向上下游傳播。該水錘壓力是Joukowsky公式計(jì)算值的一半[27],即

式中Δmax為光滑管道內(nèi)上下游水柱斷流彌合產(chǎn)生的水錘壓力,m;up為上游管段的流速,m/s;d為下游管段的流速,m/s。結(jié)合式(4)并根據(jù)圖2考慮上游段對(duì)Δmax作用,可知不計(jì)摩擦?xí)r的最大和最小壓力峰值Δmax,min出現(xiàn)在管線A1B段水流停止運(yùn)動(dòng)(up=0)而內(nèi)壓為±Δ2時(shí),即

2.2 考慮摩擦影響的半解析公式

實(shí)際情況中水錘波在傳播過程中必然會(huì)因管線的摩擦作用而衰減,上游段的流量逐漸減少,上游段水錘波運(yùn)動(dòng)對(duì)管內(nèi)氣穴體積air(m3)和Δmax的作用也會(huì)相應(yīng)減少??紤]摩擦?xí)r,對(duì)t=2(1/)(=0,1,2,3…),上游段的流量變化q可用下面的階躍函數(shù)表示

式中in表示水錘波在B點(diǎn)第一次反射引起的流量,m3/s;h(q)表示流量q引起的沿程水頭損失,m。

顯然上游段不計(jì)摩擦?xí)r的流量變化過程只是式(11)的一個(gè)特例。對(duì)于下游段而言,管道摩擦使得流量變化減慢,從液柱分離到斷流彌合的歷時(shí)增加,airmax也隨之增加。結(jié)合變量Δ來描述流量和氣穴體積的變化,如下

由式(12)可知,考慮摩擦作用時(shí)下游段流量q在水錘波傳播過程中的變化速率不斷變化,此處為了便于分析摩擦力的作用,假定式(13)中流量變化速率恒定,并由此得到關(guān)于上游段流量的衰減系數(shù),如下

式中表示水錘波從=1/開始在上游段傳播的往返次數(shù),q為水錘波第次往返傳播時(shí)的流量,m3/s。

為了估算上游段的水頭變化情況,將式(14)寫成B點(diǎn)水頭的形式,如下

式中h為水錘波第次往返傳播時(shí)的上游管段水頭,m。

如前所述,下游段考慮摩擦?xí)r的流量增量變化更加復(fù)雜,為了便于討論,做以下假設(shè):(1)無論是第一階段的正向流動(dòng),還是第二階段的逆向流動(dòng),流量增量均取平均值Δmean;(2)空穴消失和斷流彌合的時(shí)刻以逆向流量達(dá)到?1計(jì)。根據(jù)第(1)條假設(shè),估算第一階段的流量增量平均值Δ1如下

將式(16)中的Δ1代入式(3),得

氣穴體積增長總歷時(shí)t出現(xiàn)在q()=0時(shí),結(jié)合式(16)、式(17)及式(2),可得t的無量綱形式

同理,可用式(19)估算下游段第二階段的流量增量平均值Δ2

t時(shí)刻至氣穴潰滅的總歷時(shí)t時(shí)刻,q()=0從0增長為-1,故有

斷流彌合的時(shí)刻t出現(xiàn)在q()=?1,根據(jù)式(19)、式(20)及式(2),可得t的無量綱形式

為了估計(jì)斷流彌合時(shí)的上游水頭和流量,有必要對(duì)該時(shí)刻水錘波往返傳播的次數(shù)N進(jìn)行估計(jì),即

N代入式(15)得到斷流彌合時(shí)的水錘壓力

最大空穴體積出現(xiàn)在=t時(shí)刻,相應(yīng)的airmax可用式(17)在對(duì)應(yīng)時(shí)段的積分來表示

將式(2)和式(18)代入式(14),得到下游管道最大含氣率max

式中ΔMax,Min表示考慮管線摩擦?xí)r,上下游斷流彌合產(chǎn)生的最大和最小壓力峰值,m;表示考慮摩擦影響時(shí)下游段水錘波運(yùn)動(dòng)第一階段結(jié)束時(shí)的傳播往返次數(shù)。

圖4是令下游管線相對(duì)長度固定(2/1=10)后,取管線高點(diǎn)不同的相對(duì)高程(Δ2/Δ1)后,計(jì)算得到的tt、max和ΔMax,Min。由圖4a可知,Δ2/Δ1越大,管線摩擦作用(取沿程阻力系數(shù)=0.022)對(duì)氣穴變化的作用更明顯,而且相比于t,t受管線摩擦作用的影響更顯著,這是因?yàn)槟Σ磷饔檬沟孟掠味蔚诙A段的流量增量Δ2大為減小。由圖4b可知,局部高點(diǎn)的高程越高,摩擦作用對(duì)水錘壓力的作用越明顯,管線的體積含氣量也就越大;不同Δ2/Δ1引起斷流彌合壓力峰值大小不同,當(dāng)2/1=10時(shí),最大壓力峰值ΔMax=1.54Δ1發(fā)生在Δ2/Δ1=0.85處。

注:tg為氣穴體積增長總歷時(shí),s;tc為氣穴體積潰滅總歷時(shí),s;f為沿程阻力系數(shù);ΔhMax為考慮摩擦?xí)r的最大壓力峰值,m;ΔhMin為考慮摩擦?xí)r的最小壓力峰值,m。

對(duì)于下游管段不同的相對(duì)長度,斷流彌合產(chǎn)生的壓力峰值出現(xiàn)在不同的高程位置,這一趨勢(shì)可在圖5中體現(xiàn):隨著下游管段相對(duì)長度2/1增大,出現(xiàn)壓力峰值ΔΔMax的相對(duì)高程不斷降低,ΔMax的值也逐漸減?。伙@然這2種降低的趨勢(shì)隨著2/1增大不斷減緩,可見下游管段長度增加,壓力峰值ΔMax的大小和對(duì)應(yīng)的高程位置會(huì)趨于穩(wěn)定。

注:ΔhMax/Δh1表示斷流彌合水錘最大壓力峰值的相對(duì)值;Δh2/Δh1表示出現(xiàn)斷流彌合水錘最大壓力峰值對(duì)應(yīng)的局部高點(diǎn)相對(duì)高程。

3 半解析法的驗(yàn)證與誤差分析

一維非恒定有壓管流的連續(xù)性方程和運(yùn)動(dòng)方程如下[27]

式中為斷面平均流速,m/s;為測(cè)壓管水頭,m;為管軸線上流動(dòng)方向與水平線的夾角,rad,當(dāng)高度沿軸正方向增加時(shí)為正;為沿程阻力系數(shù)。

特征線法(method of characteristics,MOC)是一種通過求解一維非恒定有壓管流連續(xù)性方程和運(yùn)動(dòng)方程及相關(guān)內(nèi)外邊界條件來分析水力過渡過程中各類主要現(xiàn)象的數(shù)值計(jì)算方法,被學(xué)者們廣泛應(yīng)用[17, 28-30]。本文為圖1所示的輸水系統(tǒng)設(shè)計(jì)不同的管線高點(diǎn)高程,建立數(shù)值模型后采用特征線法進(jìn)行求解,并將數(shù)值計(jì)算結(jié)果與本文半解析方法(semi-analytic method,SAM)得到的結(jié)果進(jìn)行對(duì)比,得到圖6。數(shù)值模型的主要參數(shù)如下:管徑= 2 m,初始流量0=1.0 m3/s,波速=1 000 m/s,上游管線長度1=1 km,下游管線長度2=101,沿程阻力系數(shù)為0.022,空氣閥進(jìn)出孔口的直徑與流量系數(shù)分別為0.2 m、0.2 m、0.6和0.6。

如圖6所示,2種計(jì)算方法計(jì)算得到的氣穴增長時(shí)間t、氣穴潰滅時(shí)間t、管道最大含氣率max和斷流彌合壓力峰值ΔMax隨B點(diǎn)相對(duì)高程(Δ2/Δ1)變化的趨勢(shì)一致,且在數(shù)值上差異較小。其中,以半解析方法計(jì)算得到的max在數(shù)值上小于MOC方法計(jì)算得到的結(jié)果,這主要是因?yàn)樵诜治鲞^程中忽略了上游段的儲(chǔ)氣量。2種方法計(jì)算得到的ΔMax存在一定差異,這可能是因?yàn)椴捎眯稳缡剑?7)、式(20)和式(24)的線性函數(shù)來計(jì)算下游管段的流量會(huì)導(dǎo)致下游流量及相應(yīng)斷流彌合水錘偏小,而用MOC計(jì)算水錘壓力時(shí),空氣閥的邊界條件可控制計(jì)算過程中下游流量經(jīng)過反射后按階躍形式變化,而Δ2/Δ1越小,根據(jù)2種方法計(jì)算得到ΔMax的數(shù)值隨著差異越大,這是因?yàn)楣芫€高點(diǎn)越低,下游管段的坡度項(xiàng)sin越大,對(duì)MOC方法求解水錘壓力的影響也就越大。此外,半解析法假定第二階段逆向流量達(dá)到?1時(shí)刻發(fā)生斷流彌合,但實(shí)際當(dāng)逆向流量達(dá)到?1時(shí),管內(nèi)氣體未完全排盡,因此MOC計(jì)算得到發(fā)生斷流彌合時(shí)候的流量會(huì)在?1的基礎(chǔ)上在附加部分流量,這無疑會(huì)使得MOC計(jì)算得到的t和ΔMax稍大于半解析法計(jì)算得到的數(shù)值,圖6表明管線高點(diǎn)越低這一現(xiàn)象越明顯,如Δ2/Δ1=0.9時(shí),2種計(jì)算方法得到的t、t、max、ΔMax相對(duì)誤差是16.1%、12.8%、22.2%、4.9%,而當(dāng)Δ2/Δ1=0.6時(shí),相對(duì)誤差依次為是45.3%、47.4%、55.8%、14.6%。另一個(gè)引起兩者偏差的原因可能是采用式(16)和式(19)對(duì)兩階段的流量增量取了平均值。

圖6 半解析法(SAM)與特征線法(MOC)求解結(jié)果的對(duì)比

雖然在半解析公式推導(dǎo)過程中幾點(diǎn)假設(shè)引起了系統(tǒng)誤差,但半解析解與數(shù)值解呈現(xiàn)了較好的吻合度,證明該半解析方法有助于正確理解空氣閥對(duì)系統(tǒng)的瞬態(tài)響應(yīng)特點(diǎn)與輸水管線幾何特性和水力特性的關(guān)系。

4 結(jié)論與討論

針對(duì)設(shè)計(jì)的波狀管線有壓輸水系統(tǒng),先后從無摩擦和有摩擦2種情況,就氣穴增長與潰滅時(shí)間、管道最大含氣量、氣穴潰滅時(shí)的最大和最小壓力峰值等目標(biāo)參數(shù)推導(dǎo)了半解析公式,并據(jù)此對(duì)空氣閥的水錘防護(hù)機(jī)理進(jìn)行了分析。主要結(jié)論如下:

1)目標(biāo)參數(shù)的半解析公式表明,空氣閥下游管段的相對(duì)長度和管線高點(diǎn)的相對(duì)高程對(duì)系統(tǒng)發(fā)生水力過渡時(shí)的瞬態(tài)響應(yīng)起了主導(dǎo)作用。

2)數(shù)值方法與半解析方法的計(jì)算結(jié)果存在一定的偏離,這可能是在公式推導(dǎo)過程中的幾點(diǎn)假設(shè)引起的系統(tǒng)誤差,可考慮通過后續(xù)的試驗(yàn)引入?yún)?shù)加以修正;但2種方法的結(jié)果隨局部高點(diǎn)相對(duì)高程的變化趨勢(shì)一致,證明根據(jù)半解析公式得出的初步結(jié)論是正確的:管道最大含氣率與水錘波在下游管道的傳播時(shí)間和管線高點(diǎn)的相對(duì)高程正相關(guān)。因此隨著空氣閥安裝高程的增加,尤其是與之對(duì)應(yīng)的下游管段長度較大時(shí),空氣閥采用大口徑進(jìn)氣孔有利于提高其水錘防護(hù)效果。

3)隨管線高點(diǎn)高程的增加,氣穴潰滅時(shí)的逆向流量和流速增大,導(dǎo)致對(duì)應(yīng)的最大壓力峰值增大,但考慮管線摩擦作用時(shí),最大壓力峰值出現(xiàn)在一個(gè)特定高程;峰值壓力及對(duì)應(yīng)高程位置隨下游管段相對(duì)長度的增加而逐漸下降,最終趨于穩(wěn)定。即空氣閥下游管段的長度和粗糙程度決定了最大壓力峰值及其出現(xiàn)的特定管線高程。

本文提出的半解析公式適用于包含一個(gè)空氣閥的波狀管線輸水系統(tǒng),對(duì)于包含存在相互影響的多種水錘防護(hù)裝置的復(fù)雜系統(tǒng),需要在今后的研究中討論。本文提出的半解析公式有助于理解空氣閥在水錘防護(hù)時(shí)的作用機(jī)理,明確應(yīng)該基于那些條件對(duì)空氣閥的尺寸與布設(shè)位置進(jìn)行調(diào)整,為有壓輸水系統(tǒng),特別是那些沿途管線高程起伏波動(dòng)的工程,選擇合適的空氣閥以及削減冗余的空氣閥提供了參考,使有壓輸水系統(tǒng)免受二次水錘和真空負(fù)壓的影響。

[1] Ramezani L, Karney B, Malekpour A. The challenge of air valves: A selective critical literature review[J]. Journal of Water Resources Planning and Management, 2015, 141(10):04015017.

[2] Coronado-Hernandez O E, Fuertes-Miquel V S, Besharat M, et al. Experimental and numerical analysis of a water emptying pipeline using different air valves[J]. Water, 2017, 9(2):98.

[3] Fuertes-Miquel V S, Lopez-Jimenez P A, Martinez-Solano F J, et al. Numerical modelling of pipelines with air pockets and air valves[J]. Canadian Journal of Civil Engineering, 2016, 43(12): 1052-1061.

[4] 劉志勇,劉梅清. 空氣閥水錘防護(hù)特性的主要影響參數(shù)分析及優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(6):85-89.

Liu Zhiyong, Liu Meiqing. Analysis and optimization of main influencing parameters for water-hammer prevention characteristic of air valves[J]. Transactions of The Chinese Society of Agricultural Machinery, 2009, 40(6): 85-89. (in Chinese with English abstract)

[5] 王玲,王福軍,黃靖,等. 安裝有空氣閥的輸水管路系統(tǒng)空管充水過程瞬態(tài)分析[J]. 水利學(xué)報(bào),2017,48(10):1240-1249.

Wang Ling, Wang Fujun, Huang Jing, et al. Filling transient analysis in pipelines with air valves[J]. Journal of Hydraulic Engineering, 2017, 48(10): 1240-1249. (in Chinese with English abstract)

[6] Carlos M, Arregui F J, Cabrera E, et al. Understanding air release through air valves[J]. Journal of Hydraulic Engineering-ASCE, 2011, 137(4): 461-469.

[7] Bergant A, Simpson A R, Tijsseling A S. Water hammer with column separation: A historical review[J]. Journal of Fluids and Structures, 2006, 22(2): 135-171.

[8] 高金良,鄭成志,刁美玲,等. 高起伏長輸管線水錘模擬及防護(hù)方案優(yōu)選[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào),2012,44(8):24-26,38.

Gao Jinliang, Zheng Chengzhi, Diao Meiling, et al. Study on optimal surge protection for high-undulate long-distance water transmission pipeline[J]. Journal of Harbin Institute of Technology, 2012, 44(8): 24-26, 38. (in Chinese with English abstract)

[9] 胡建永,張健,索麗生. 長距離輸水工程中空氣閥的進(jìn)排氣特性研究[J]. 水利學(xué)報(bào),2007(增刊1):340-345.

Hu Jianyong, Zhang Jian, Suo Lisheng. Study on air admission and exhaust characteristics of air valve in long water supply system[J]. Journal of Hydraulic Engineering, 2007(Supp.1): 340-345. (in Chinese with English abstract)

[10] Ramezani L, Karney B. Water column separation and cavity collapse for pipelines protected with air vacuum valves: Understanding the essential wave processes[J]. Journal of Hydraulic Engineering, 2017, 143(2): 04016083.

[11] Lingireddy S, Wood D J, Zloczower N. Pressure surges in pipeline systems resulting from air releases[J]. Journal American Water Works Association, 2004, 96(7): 88-94.

[12] Coronado-Hernandez O E, Fuertes-Miquel V S, Angulo- Hernandez F N. Emptying operation of water supply networks[J]. Water, 2018, 10(1):22.

[13] Howard G. Water Supply Surveillance: A Reference Manual[M]. WEDC, Loughborough University, 2002.

[14] John D M. Awwa manual of water supply practices: M57. 1ST ED[J]. Journal of Phycology, 2011, 47(4): 963-965.

[15] De Aquino G A, De Lucca Y D L, Dalfre J G. The importance of experimental tests on air valves for proper choice in a water supply project[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(8):403.

[16] Jiang D, Ren C, Zhao T Y, et al. Pressure transient model of water-hydraulic pipelines with cavitation[J]. Applied Sciences-Basel, 2018, 8(3):388.

[17] Riasi A, Tazraei P. Numerical analysis of the hydraulic transient response in the presence of surge tanks and relief valves[J]. Renewable Energy, 2017, 107: 138-146.

[18] 富友,蔣勁,李燕輝,等. 改進(jìn)雙流體模型計(jì)算有液柱分離的管路水錘壓力[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):58-65.

Fu You, Jiang Jin, Li Yanhui, et al. Calculation of pipe water hammer pressure with liquid column separation by improved two-fluid model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 58-65. (in Chinese with English abstract)

[19] Zhang B R, Wan W Y, Shi M S. Experimental and numerical simulation of water hammer in gravitational pipe flow with continuous air entrainment[J]. Water, 2018, 10(7):928.

[20] Zhou L, Wang H, Bergant A, et al. Godunov-type solutions with discrete gas cavity model for transient cavitating pipe flow[J]. Journal of Hydraulic Engineering, 2018, 144(5): 04018017.

[21] Geng J, Yuan XL, Li D, et al. Simulation of cavitation induced by water hammer[J]. Journal of Hydrodynamics, 2017, 29(6): 972-978.

[22] Moghaddas S M J. The steady-transient optimization of water transmission pipelines with consideration of water-hammer control devices: A case study[J]. Journal of Water Supply Research and Technology-Aqua, 2018, 67(6): 556-565.

[23] 王振華,馬習(xí)賀,李文昊,等. 基于改進(jìn)4-方程摩擦模型的輸水管道水錘壓力計(jì)算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):114-120.

Wang Zhenhua, Ma Xihe, Li Wenhao, et al. Calculation of water hammer pressure of flow pipeline based on modified four-equation friction model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 114-120. (in Chinese with English abstract)

[24] Fan C Y, Zhang J, Yu X D. Analytical solutions for predicting the maximum pressure drop after pump failure in long-distance water supply project[J]. Water Science and Technology-Water Supply, 2018, 18(6): 1926-1936.

[25] Pandey R K, Mishra H K. Semi-analytic numerical method for solution of time-space fractional heat and wave type equations with variable coefficients[J]. Open Physics, 2017, 15(1): 74-86.

[26] Dai Y, Yan X, Sun C, et al. Semi-analytic numerical method for structure analysis of functionally graded materials[J]. Proceedings of the International Conference on Mechanical Engineering and Mechanics, 2007, 1(2): 1317-1321.

[27] Wylie E B, Streeter V L, Suo L. Fluid Transients in Systems[M]. Englewood Cliffs: Prentice Hall, 1993.

[28] Ghidaoui M S, Ming Z, McInnis D A, et al. A review of water hammer theory and practice[J]. Applied Mechanics Review, 2005, 58(1): 49-76.

[29] Wan W Y, Li F Q. Sensitivity analysis of operational time differences for a pump-valve system on a water hammer response[J]. Journal of Pressure Vessel Technology- Transactions of the Asme, 2016, 138(1):011303.

[30] Meng W W, Cheng Y G, Wu J Y, et al. GPU acceleration of hydraulic transient simulations of large-scale water supply systems[J]. Applied Sciences-Basel, 2019, 9(1):91.

Solving water column separation and cavity collapse for pipelines by semi-analytical method

Han Kai, Ding Falong, Mao Zeyu※

(,,100084,)

For pressurized water supply systems, excessive installation of air valves will inevitably increase the risk of secondary water hammer especially when the air valve fails. Therefore, reducing redundant air valves is of positive significance whether from the maintenance cost on apparatus or from the possible adverse impact caused by the malfunction. Compared to traditional analytical and numerical methods, the semi-analytical method adopted in this paper could not only ensure the clear and intuitive physical meaning of the research results but also expand the application scope of the analytical method, which was also conducive to the further study of key parameters. In this research, it aimed to find out the primary relationship between the function of air valves and the geometry characteristic of the system. Taking a simplified reservoir-pipe-reservoir system with one air valve installed at the elevated point for example, the research initially employed the basic theory of fluid transients to analyze the water hammer wave propagation process. Since the gas inhaled through the air valve separated the water column as the depressurized pressure arrived at the elevated point, the system was divided into 2 subsystems at the point according to their different wave propagation processes. The semi-analytical formulas of the target parameters such as the duration time of cavity growth and collapse, maximum air pocket volume and extreme pressure spike, were firstly proposed in a frictionless condition. Based on the formulas, it studied the key factors affecting the protective effect of the air valve against the water hammer. The semi-analytical solution indicated that the relative length of the downstream pipe section and the relative elevation of the high point played a leading role in the process of cavity growth and collapse. The effect of friction was later taken into the consideration of the semi-analytical expressions serving to reveal its influences on the system. Numerical simulations established on the method of characteristics, which had been proved to a credible and effective numerical method, were then conducted and compared with the semi-analytical solutions to validate the corresponding expressions with and without friction. The outcomes of the 2 approaches presented a consistent variation tendency with the principle variable. However, deviations still existed particularly when the targeted point had a relatively low elevation. The reasons for above deviations were discussed which probably stemmed from some hypotheses during the derivation of semi-analytic formulas, mainly including the omission of gas storage in the upstream section, linear and averaging treatment of the flow variation process in the derivation step. It could also be speculated from the results that the length and roughness of the downstream pipeline determined the maximum pressure spike and the specific pipeline elevation. The semi-analytical formula proposed in this paper was applicable to the containing-one-air-valve pressurized water supply system, and it required to be discussed in the future research for the complex system containing multiple water hammer protection devices with mutual influence. In spite of the limitations, the semi-analytical formulas still reflected the key factors correctly of the air valve as the protection device against water hammer. The findings are helpful to understand the action mechanism of the air valve in the hydraulic transition and provide references for the research of water hammer protection.

pressure; models; air valve; semi-analytical method; water column separation; cavity collapse; method of characteristics

10.11975/j.issn.1002-6819.2019.15.005

TV131.2

A

1002-6819(2019)-15-0033-07

2019-03-24

2019-07-19

國家重點(diǎn)研發(fā)計(jì)劃(2016YFC0402504)

韓 凱,博士生,主要從事水力學(xué)與河流動(dòng)力學(xué)方面研究。Email:hk17@mails.tsinghua.edu.cn

茅澤育,教授,博士生導(dǎo)師,主要從事水力學(xué)與河流動(dòng)力學(xué)方面研究。Email:maozeyu @tsinghua.edu.cn

韓 凱,丁法龍,茅澤育. 半解析法求解水柱分離與斷流彌合水錘問題及機(jī)理分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(15):33-39. doi:10.11975/j.issn.1002-6819.2019.15.005 http://www.tcsae.org

Han Kai, Ding Falong, Mao Zeyu. Solving water column separation and cavity collapse for pipelines by semi-analytical method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 33-39. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.15.005 http://www.tcsae.org

猜你喜歡
水錘斷流管段
高溫氣冷堆核電站蒸汽發(fā)生器可拆管段拆裝系統(tǒng)研究
基于核安全風(fēng)險(xiǎn)管控策略秦山350Mwe機(jī)組一回路死管段研究分析
管段沿線流量簡(jiǎn)化前后水頭和流行時(shí)間差異性分析
高水頭短距離泵站水錘計(jì)算分析
高效節(jié)能水錘泵技術(shù)研究進(jìn)展
全世界超過一半河流每年斷流
水力壓裂壓后停泵井筒內(nèi)水錘信號(hào)模擬
全球超半數(shù)河流每年至少斷流一天
村口的老人
大口徑中途低洼類型的長距離輸水管線水錘防護(hù)策略