国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

糖脂代謝病的發(fā)病機制:多重打擊學說

2019-09-10 07:22華爽呂明慧劉倩穎何興祥榮向路葉得偉郭姣
世界中醫(yī)藥 2019年3期
關鍵詞:脂肪組織瘦素性反應

華爽 呂明慧 劉倩穎 何興祥 榮向路 葉得偉 郭姣

摘要?血糖異常、血脂異常、非酒精性脂肪肝、超重、高血壓、動脈粥樣硬化性心腦血管病等代謝性疾病發(fā)病率居高不下,是世界性難題。臨床流行病學研究目前已證實,2型糖尿病、高脂血癥等代謝性疾病常合并發(fā)生,但目前對導致上述代謝異常發(fā)生的分子機制尚未闡明,并制約了綜合防控療效優(yōu)良的創(chuàng)新藥物和診療手段的研發(fā)。郭姣教授率團隊基于大樣本臨床流行病學、轉化研究數(shù)據(jù),提出“糖脂代謝病”創(chuàng)新理論,認為上述代謝異常以糖、脂代謝紊亂為特征,發(fā)病過程由遺傳、環(huán)境、精神等多種因素參與,以神經(jīng)-內(nèi)分泌失調(diào)、胰島素抵抗、氧化應激、炎性反應、腸道菌群失調(diào)為核心病理,以高血糖、血脂失調(diào)、非酒精性脂肪肝、超重、高血壓及動脈粥樣硬化等單一或合并出現(xiàn)為主要臨床表現(xiàn)特點。本文綜合神經(jīng)-內(nèi)分泌-免疫紊亂、胰島素抵抗、氧化應激、炎性反應、腸道菌群失調(diào)等環(huán)節(jié)與糖脂代謝異常及其誘發(fā)多器官病變的病理機制的研究進展,提出糖脂代謝病發(fā)病機制的“多重打擊學說”。該學說對于揭示多種代謝異常發(fā)生的核心、共性分子機制及從病證結合角度闡釋中醫(yī)證候的生物學本質具有重要意義。

關鍵詞?糖脂代謝病;發(fā)病機制;神經(jīng)-內(nèi)分泌軸;胰島素抵抗;氧化應激;代謝性炎性反應;腸道菌群失調(diào)

The Multiple-hit Pathogenesis of Glucolipid Metabolic Disorders

Hua Shuang1,2,3,Lyu Minghui1,2,3,Liu Qianying1,2,3,He Xingxiang2,Rong Xianglu1,2,3,Ye Dewei1,2,3,Guo jiao1,2,3

(1 Joint Laboratory between Guangdong and Hong Kong on Metabolic Diseases,Guangdong Pharmaceutical University,280 Waihuan Road East,Guangzhou Higher Education Mega,Guangzhou 510006,China; 2 Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine,Guangdong Pharmaceutical University,280 Waihuan Road East,Guangzhou Higher Education Mega,Guangzhou 510006,China; 3 Institute of Traditional Chinese medicine,Guangdong Pharmaceutical University,280 Waihuan Road East,Guangzhou Higher Education Mega,Guangzhou 510006,China)

Abstract?The high prevalence and incidence of hyperglycemia,dyslipidemia,nonalcoholic fatty liver disease,obesity,hypertension,atherosclerosis and its related cardiovascular diseases has emerged as one of leading causes of morbidity and mortality worldwide.Epidemiological data well established that two or several above-mentioned metabolic disorders usually co-exist in obese subjects.However,the mechanisms underlying the co-existence of these metabolic disorders have not been well characterized currently,exerting negative effect on the development of new drugs and therapeutic approaches for these diseases.Based on the data from epidemiological and translational studies,Professor Jiao Guo and research team proposed a novel concept “Glucolipid Metabolic Disorders”(GLMD),which highlights the disorders in the metabolism of glucose and lipid as the key player in the pathogenesis of metabolic disorders.Genetic,environmental,and mental factors work together to contribute the development of GLMD.The dysfunction in neuroendocrine axis,insulin resistance,oxidative stress,metabolic inflammation,and alteration in gut microbiota represent the key mechanisms corresponding to the progression of these metabolic disorders.This article summarizes the recent findings in the relationship among these mechanisms and the development of GLDM and proposes the multiple-hit hypothesis for the pathogenesis of GLMD.This hypothesis is of significant importance for the clarification of the biological essence of Zheng in Traditional Chinese Medicine.

Key Words?Pathogenesis; Dysfunction in neuroendocrine axis; Insulin resistance; Oxidative stress;Metabolic inflammation;Altered gut microbiota

中圖分類號:R228;R259;R589.2文獻標識碼:Adoi:10.3969/j.issn.1673-7202.2019.03.023

目前,多種糖脂代謝異常相關性疾病,包括2型糖尿病、血脂異常、高血壓、非酒精性脂肪肝以及與其相關的多種心血管并發(fā)癥已躋身于流行病行列,嚴重威脅人類健康。但目前對于糖脂代謝異常性疾病的臨床診療面臨以下難點問題:1)治療策略僅關注單一發(fā)病環(huán)節(jié)、單一靶點;2)診療模式多采用分科診治,導致多種代謝異常狀態(tài)和藥物療效的隨訪信息難以完整采集,疾病預后難獲全面評估;3)心血管事件等嚴重并發(fā)癥的防控療效欠佳。

疾病核心病理機制及關鍵介導分子的研究是新型診療策略及創(chuàng)新藥物研發(fā)的重要基礎。探索糖脂代謝相關疾病的核心發(fā)病機制,并制定有效防控策略成為當前醫(yī)學研究的重大問題。郭姣教授率團隊瞄準該病葡萄糖和脂類代謝異常的核心病理環(huán)節(jié),對于該病的西醫(yī)發(fā)病機制研究現(xiàn)狀凝練出了3個關鍵與熱點問題:1)多個代謝器官和組織(包括肝臟、胰腺和脂肪)的代謝功能作為整體進行認識和研究;2)應重視神經(jīng)-內(nèi)分泌軸對于糖脂代謝的系統(tǒng)性調(diào)控功能;3)介導糖脂代謝過程中器官串擾和組織對話的新型因子的功能和分子機制尚未完全闡明。針對以上關鍵問題,郭姣教授基于文獻整理和前期臨床研究,針對葡萄糖和脂類代謝異常這一核心病理機制,創(chuàng)新性提出“糖脂代謝病”創(chuàng)新理論,認為其是一種以糖、脂代謝紊亂為特征,由遺傳、環(huán)境、精神等多種因素參與的疾病,其以神經(jīng)內(nèi)分泌失調(diào)、胰島素抵抗、氧化應激、炎性反應、腸道菌群失調(diào)為核心病理,以高血糖、血脂失調(diào)、非酒精性脂肪肝、超重、高血壓及動脈粥樣硬化等單一或合并出現(xiàn)為主要臨床表現(xiàn)特點,需要整體認識和一體化防控[1]。

目前,借助宏基因組學、代謝組學等多組學技術、模式動物表型鑒定等生物醫(yī)藥領域前沿技術在糖脂代謝病基礎、轉化和臨床研究中的廣泛、深入應用,逐步揭示出糖脂代謝病是由于神經(jīng)-內(nèi)分泌對于糖脂代謝的調(diào)控功能異常誘發(fā)的、由多個代謝器官功能異常參與的復雜性、系統(tǒng)性疾病。郭姣教授提出,在糖脂代謝病發(fā)生過程中,神經(jīng)-內(nèi)分泌紊亂、胰島素抵抗、氧化應激、慢性炎性反應和腸道菌群失調(diào)等核心病理環(huán)節(jié)網(wǎng)絡交織,形成多重打擊(Multiple Hits),共同參與糖脂代謝病的發(fā)生和進展。

1?神經(jīng)-內(nèi)分泌軸功能紊亂

機體通過神經(jīng)、內(nèi)分泌兩大系統(tǒng)調(diào)節(jié)神經(jīng)遞質、激素和細胞因子釋放,大腦中的特定神經(jīng)元可感知代謝底物的變化,并通過與進入腦內(nèi)的瘦素、胰島素及其他細胞因子交互作用,構成精密的調(diào)節(jié)網(wǎng)絡,維持機體糖類和脂類代謝穩(wěn)態(tài)。

臨床研究和模式動物的研究結果均證實,中樞神經(jīng)系統(tǒng)在調(diào)控能量和葡萄糖代謝穩(wěn)態(tài)中發(fā)揮關鍵作用[2]。大腦中的多個功能區(qū)域,特別是下丘腦,通過感知和整合來自外周組織的信號和代謝的生理變化而對機體的能量代謝發(fā)揮系統(tǒng)性調(diào)控作用。伸長細胞、瘦素和5-羥色胺是參與神經(jīng)內(nèi)-分泌軸調(diào)控糖脂代謝的關鍵細胞和信號傳遞分子。

1.1?伸長細胞?伸長細胞(Tanycytes,TAs)是一種特殊的室管膜膠質細胞,主要位于下丘腦正中隆起(ME)、第三腦室腹側和弓狀核附近的室周器[3-4]。內(nèi)酰胺酶是一種在膠質細胞中特異產(chǎn)生的多肽家族,可與苯二氮艸卓受體結合[5]。伸長細胞通過分泌內(nèi)酰胺酶介導中樞系統(tǒng)對葡萄糖攝取的感應[6]。在輻照誘發(fā)的伸長細胞損傷的小鼠模型中,體重、能量消耗和機體活動等系統(tǒng)性能量代謝指標發(fā)生顯著改變[7]。

1.2?瘦素?瘦素的典型反應神經(jīng)元包括下丘腦弓狀核的AgRP/NPY和POMC。瘦素抑制促食型AgRP/NPY神經(jīng)元,激活厭食性POMC神經(jīng)元,從而誘發(fā)攝食調(diào)節(jié)信號傳遞到二級神經(jīng)元;當阻斷AgRP/NPY神經(jīng)元后,小鼠體質量顯著增加[8]。選擇性阻斷腦腹內(nèi)側核(VMH)上SF1神經(jīng)元的瘦素受體導致肥胖易感性顯著升高[9]。下丘腦瘦素受體缺失的基因修飾動物出現(xiàn)高血糖、高胰島素血癥、易饑和肥胖等多種代謝異常表型,也說明下丘腦瘦素受體在維持葡萄糖代謝穩(wěn)態(tài)中發(fā)揮重要作用[10-11]。

1.3?5-羥色胺?5-羥色胺通過多種5-羥色胺受體(5-HTRs)調(diào)控葡萄糖和脂類代謝,例如激活5-HT2CR,上調(diào)POMC神經(jīng)元的表達,在調(diào)劑胰島素敏感性和肝內(nèi)葡萄糖代謝穩(wěn)態(tài)中發(fā)揮關鍵作用[12]。5-羥色胺受體5-HT2CR和5-HT1BR在調(diào)節(jié)機體系統(tǒng)性代謝狀態(tài)中發(fā)揮重要作用。5-HT2CR激活POMC神經(jīng)細胞亞群時會受到局部抑制,而5-HT1BR可以解除該種抑制,提示5-HT2CR激動劑與5-HT1BR激動劑可作為治療肥胖癥的潛在藥物[13]。動物研究結果顯示,5-羥色胺的神經(jīng)元激活能夠完全恢復瘦素受體失活轉基因老鼠的代謝表型,說明5-羥色胺在介導瘦素調(diào)節(jié)食欲和能量代謝的功能中發(fā)揮重要作用[14-15]。

2?胰島素抵抗

胰島素抵抗(Insulin Resistance,IR)是指外周組織(主要為骨骼肌、肝臟和脂肪組織)對內(nèi)源性或外源性胰島素的敏感性和反應性降低,導致生理劑量的胰島素調(diào)控葡萄糖代謝等多種生理效應減弱或發(fā)生障礙[16]。IR主要發(fā)生在骨骼肌細胞、脂肪細胞和肝細胞,其在血管內(nèi)皮和胰島β細胞也可發(fā)生[17],IR涉及多個分子和信號傳遞機制,包括胰島素及其拮抗物、胰島素受體底物、磷脂酰肌醇-3激酶(PI-3K)途徑、葡萄糖轉運子基因及蛋白質、促分裂原活化蛋白激酶(MAPK)等[18]。目前已證實,IR與原發(fā)性高血壓、冠心病、高脂血癥等多種糖脂代謝異常密切關聯(lián),是導致上述疾病的共同病理基礎[19-21]。

2.1?高血糖?在輕度IR中,由胰腺β細胞增加胰島素分泌及隨后導致的代償性高胰島素血癥可維持正常血糖。然而在2型糖尿病早期發(fā)病階段即出現(xiàn)輕度IR狀態(tài)。胰腺β細胞通過增加胰島素分泌維持血糖的正常水平,產(chǎn)生代償性高胰島素血癥。隨著IR狀態(tài)的持續(xù),超過胰腺β細胞通過代償性增加分泌調(diào)控血糖穩(wěn)態(tài)的閾值時,出現(xiàn)葡萄糖不耐受(Glucose Intolerance)和高血糖[22]。此外,持續(xù)的高血糖進一步降低機體胰島素敏感性(葡萄糖毒性),從而引發(fā)惡性循環(huán)[23]。高胰島素血癥會通過干擾多個代謝器官(包括脂肪組織、肝臟和骨骼?。┑囊葝u素信號通路,加重IR[24]。因此,在糖脂代謝病中,由于IR而導致的高胰島素血癥和高血糖,會負反饋使IR加劇,形成惡性循環(huán)。

2.2?高脂血癥?正常情況下,胰島素通過抑制脂蛋白脂肪酶阻止脂肪組織脂解(Lypolysis)在調(diào)控機體脂代謝中發(fā)揮重要作用。在IR狀態(tài)下,胰島素抑制脂肪分解的作用顯著減弱,導致大量游離脂肪酸(Free Fatty Acids)釋放到體循環(huán)中[25]。游離脂肪酸的增加導致肝細胞內(nèi)甘油三酯的合成和釋放增多,引起低密度脂蛋白增多,高密度脂蛋白減低,形成高甘油三酯血癥[26]。同時,游離脂肪酸的增加通過脂質毒性(Lipotaxicity)抑制外周組織對葡萄糖的攝取,產(chǎn)生IR。上述環(huán)節(jié)形成正反饋環(huán)路,加速糖脂代謝病的發(fā)生和進展[27]。

2.3?高血壓?IR和高胰島素血癥通過誘發(fā)機體鈉鹽代謝障礙間接調(diào)控高血壓的發(fā)生。生理狀態(tài)下,胰島素可增強鈉鹽的重吸收,該作用在IR條件下顯著增強。臨床研究發(fā)現(xiàn),IR患者腎臟近端腎小管的鈉重吸收率較正常組顯著升高[28]。此外,胰島素可促進血管平滑肌細胞增殖和血管緊張素Ⅱ產(chǎn)生,而血管緊張素Ⅱ是醛固酮合成的主要刺激因子[29]。另一方面,胰島素可能通過刺激一氧化氮釋放而起到血管擴張作用在IR狀態(tài)下減弱[30-31]。因此,IR在調(diào)控血管功能穩(wěn)態(tài)和高血壓的發(fā)生中發(fā)揮重要作用。

3?氧化應激

氧化應激(Oxidative stress)也稱為活性氧-抗氧化失衡,由機體產(chǎn)生的自由活性氧簇(Reactive Oxygen Species,ROS)超過自身的抗氧化能力而導致,自由活性氧簇生成過多或抗氧化系統(tǒng)功能障礙是氧化應激發(fā)生的主要原因[27]。ROS包括超氧陰離子(O2-)、羥自由基(OH-)和過氧化氫(H2O2)等,其中O2-具有較高活性和細胞毒性,主要由好氧型微生物產(chǎn)生[32]。如果細胞抗氧化系統(tǒng)不能夠抑制ROS,好氧型微生物與細胞大分子發(fā)生反應,導致脂質過氧化,引起細胞DNA損傷、影響核酸修飾及蛋白質的產(chǎn)生[33]。同時ROS在損傷細胞時產(chǎn)生的氧化或硝化物會降低體內(nèi)各種因子的生物活性,影響細胞信號傳遞及其他細胞功能,引發(fā)多種炎性反應,導致IR、血管內(nèi)皮細胞損傷,進而引起心腦及外周血管疾病和糖脂代謝疾病等[34-36]。

3.1?氧化應激與肥胖狀態(tài)下脂肪組織功能失常?肥胖狀態(tài)下脂肪組織過度增生促進氧化應激,進而導致IR等多種代謝紊亂。動物實驗和臨床研究結果均表明,脂肪和碳水化合物攝入過多后,線粒體中電子傳遞鏈的飽和,導致FFA產(chǎn)生增加,誘發(fā)ROS產(chǎn)生[37]。反過來,氧化應激可刺激脂肪細胞的增殖、分化和成熟,及脂肪細胞的大小增加脂肪的積累[38-39]。在肥胖狀態(tài)下,脂肪組織是機體產(chǎn)生ROS的主要來源。脂肪蓄積誘導的氧化應激可導致抵抗素、內(nèi)脂素、脂聯(lián)素、瘦素、PAI-1、腫瘤壞死因子-α和白細胞介素-6等多種脂肪細胞因子的合成失調(diào),引發(fā)糖脂代謝病發(fā)生[27]。

3.2?氧化應激與葡萄糖代謝異常、IR?氧化應激通過氧化生物分子和刺激各種應激敏感細胞內(nèi)通路如c-Jun、N-末端激酶、ERK1/2和NF-κB等多種轉錄因子與應激激酶,產(chǎn)生慢性低度炎性反應,進而導致IR[40-41]。Song D等證實人體抗氧化機制可阻斷氧化應激,并抑制IR及其不良代謝后果,同樣,果糖喂養(yǎng)的大鼠在服用抗氧化劑后會減少氧化應激的產(chǎn)生并抑制IR[42]。值得注意的是,IR又通過質子電化學梯度產(chǎn)生過量的自由基和超氧化物,進而摧毀多種組織的抗氧化防御能力[43-44],同時也會影響具有抗氧化防御功能的葡萄糖轉運體-GLUT1和去氫抗壞血酸的表達,加重氧化應激[45]。

4?代謝性炎性反應

由于機體是一個免疫和代謝系統(tǒng)高度整合的復雜系統(tǒng),免疫功能和糖脂代謝過程在多個層面相互影響[46]。目前已證實,慢性、低度和系統(tǒng)性炎性反應是糖脂代謝病的重要特征,也是影響糖脂代謝病發(fā)生和進展的核心機制之一[47]。炎性反應因子及細胞通過廣泛交織的免疫網(wǎng)絡,參與調(diào)節(jié)肝、脂肪、肌肉、胰腺等組織器官的糖、脂代謝功能。脂肪細胞增生、肥大,導致脂肪組織的內(nèi)分泌功能異常,促使其表達的諸多脂肪因子譜發(fā)生改變,引起眾多免疫細胞和促炎因子增加,進而激活炎性反應信號通路,誘導大量炎性反應遞質的產(chǎn)生,使機體長期處于慢性炎性反應狀態(tài),從而導致IR、多種代謝異常及糖脂代謝病的發(fā)生[46-48]。

4.1?天然免疫與代謝性炎性反應

機體天然免疫反應(Innate Immunity)由多種免疫細胞所介導,包括巨噬細胞、中性粒細胞、NK細胞和樹突狀細胞[49]。大量臨床及動物研究證據(jù)提示,天然免疫反應應答誘發(fā)的代謝性炎性反應與糖脂代謝病的發(fā)生關系非常密切[47-50]。

4.1.1?巨噬細胞?巨噬細胞(Macrophages)又被稱為F4/80+CD11b+細胞,是一種重要的天然免疫細胞,它不僅吞噬非自身抗原和細胞碎片,而且作為專業(yè)抗原提呈細胞,與樹突狀細胞一起,激活適應性免疫系統(tǒng)的T淋巴細胞。在肥胖狀態(tài),巨噬細胞在脂肪組織中浸潤或膨脹[51],這些細胞數(shù)量和功能的改變會影響脂肪組織炎性反應和全身胰島素敏感性[52-53]。

4.1.2?嗜酸性粒細胞?嗜酸性細胞(Eosinophils)僅占循環(huán)白細胞的1%~3%,主要參與吞噬并殺死細菌和其他病原體如寄生蟲[54]。WuD等,發(fā)現(xiàn)小鼠嗜酸性粒細胞水平和肥胖呈負相關,嗜酸性粒細胞可分泌IL-4和IL-13促進M2型巨噬細胞在脂肪組織中極化,極化后的M2型巨噬細胞可誘導炎性反應抑制因子的表達,從而減輕IR[55]。

4.1.3?肥大細胞?肥大細胞(Mast cells)可分泌大量的促炎性反應因子和免疫調(diào)節(jié)因子(如組胺)、細胞因子和趨化因子,在過敏反應和組織穩(wěn)態(tài)、重塑中起重要作用[56]。Liu J等研究表明,肥大細胞在肥胖小鼠的脂肪組織中增加,同時在高脂飲食十二周后,肥大細胞基因敲除的KitW-sh/W-sh小鼠體重增加減緩,葡萄糖穩(wěn)態(tài)提高,能量消耗增多[57-58]。并且,肥大細胞與組織蛋白酶、細胞外基質蛋白水解酶、微血管生長等有關,參與動脈粥樣硬化發(fā)病[59-60]。

4.2?脂肪組織代謝性炎性反應?脂肪堆積導致炎性反應可能機制包括以下幾個方面:1)腸道:肥胖會增加腸道通透性,導致腸道革蘭氏陽性細菌的細胞壁外膜脂多糖(Lipopolysaccharides,LPS)循環(huán)水平升高,腸源性脂多糖(LPS)通過激活模式識別受體(Pattern Recognition Receptors,PRR)如脂肪細胞中的TLR 4受體,引發(fā)炎性反應級聯(lián)反應[61]。2)脂肪酸:飲食或肥胖導致游離脂肪酸水平升高,后者通過適配蛋白Fetuin A與TLR 4和TLR 2間接結合,從而激活NF-κB和JNK 1促進炎性反應[62-63]。3)組織缺氧:隨著脂肪組織的不斷擴張和發(fā)展,脂肪組織的相對低灌注或耗氧量的增加,導致脂肪細胞缺氧,并通過誘導HIF1基因而引發(fā)炎性反應[64]。4)機械壓力:脂肪細胞通過多種途徑與其細胞外基質(Extracellular Matrix,ECM)相互作用,調(diào)控肥胖發(fā)展[65]。在ECM固定的環(huán)境中,脂肪細胞擴張可以增加機械壓力。MMP14、MMP12等膠原酶以及膠原基因缺失,對脂類合成、能量代謝有重要影響,參與肥胖誘發(fā)的脂肪組織的持續(xù)、低水平炎性反應[66-68]。

4.3?肝臟代謝性炎性反應與非酒精性脂肪肝?動物實驗和臨床研究均證實,非酒精性脂肪肝的肝組織中促炎基因表達增加。庫普弗細胞(Kupffer Cell)作為肝臟駐留的巨噬細胞,參與了肥胖激活的肝臟促炎性反應通路[69-70]。肥胖狀態(tài)下,腫瘤壞死因子TNF-α和白細胞介素誘導Kupffer細胞激活和募集的肝巨噬細胞浸潤,產(chǎn)生多種局部性的炎性趨化因子和細胞因子,抑制糖原合成,引起肝細胞IR[71]。非酒精性脂肪肝會因為一系列炎性反應通路激活和纖維化,進展成非酒精性脂肪性肝炎(Nonalcoholic Steatohepatitis,NASH)甚至肝硬化[72]。

5?腸道菌群失調(diào)

腸道菌群對于機體的糖脂代謝具有重要影響,可通過調(diào)節(jié)炎性反應、免疫系統(tǒng)等影響糖脂代謝。在健康狀態(tài)下,腸道菌群通過發(fā)酵腸中不可消化的膳食成分為宿主提供營養(yǎng)和能量,并與宿主的新陳代謝和免疫系統(tǒng)保持平衡[73-74]。

飲食是腸道菌群組成的重要因素,人體難以消化的碳水化合物經(jīng)細菌代謝分解成單糖、多糖和其他碳氫化合物,包括支鏈脂肪酸、氨、膽堿、硫化氫、胺、酚類、吲哚和巰基[75],其中膽堿、短鏈脂肪酸(SCFAs)和丁酸鹽尤為重要。膽堿水平的改變通過毒性甲胺的作用促進非酒精性脂肪肝的發(fā)生,同時膽堿水平也與心血管疾病相關化合物如致動脈粥樣硬化的三甲胺-N-氧化物(Trimethylamine-N-oxide,TMAO)的合成密切相關[76]。丁酸鹽能刺激脂肪細胞產(chǎn)生瘦素及腸黏膜L細胞分泌GLP 1[77]。短鏈脂肪酸(SCFAs)由細菌雙糖化酶發(fā)酵纖維時產(chǎn)生,SCFAs可以激活位于腸內(nèi)分泌細胞的G蛋白偶聯(lián)受體GPR41和GPR43傳導信號[78]。GPR41基因敲除小鼠與野生型普通微生物組小鼠相比較脂肪會減少,而無菌野生型小鼠和GPR41基因敲除小鼠脂肪水平相當,這些研究表明,SCFAs受體在脂肪沉積中具有重要作用[79]。

6?討論

目前對于血糖異常、血脂異常、非酒精性脂肪肝、超重、高血壓、動脈粥樣硬化性心腦血管病等代謝性疾病的發(fā)病機制研究取得了顯著進展,但上述疾病發(fā)病率仍居高不下,綜合防控率不佳仍是世界性難題。

郭姣教授綜合文獻研究和團隊前期臨床、基礎和轉化研究結果,提出糖脂代謝病發(fā)生機制的“多重打擊”學說(Multiple-hit Hypothesis)。認為神經(jīng)-內(nèi)分泌-紊亂、IR、氧化應激、炎性反應、腸道菌群失調(diào)是糖脂代謝病發(fā)生的主要病理機制。上述關鍵機制和環(huán)節(jié)相互影響,呈網(wǎng)絡交織,共同作用導致糖脂代謝性疾病的發(fā)生和進展。該學說從病理生理學角度解釋糖脂代謝病是由于神經(jīng)-內(nèi)分泌對于糖脂代謝的調(diào)控功能異常誘發(fā)的、由多個代謝器官功能異常參與的復雜性、系統(tǒng)性疾病,對于揭示多種代謝異常發(fā)生的核心、共性分子機制及從病證結合角度闡釋中醫(yī)證候的生物學本質具有重要意義。同時,“多重打擊”學說為糖脂代謝病的整體認識和一體化防控策略奠定了基礎。

參考文獻

[1]郭姣,肖雪,榮向路,等.糖脂代謝病與精準醫(yī)學[J].世界科學技術-中醫(yī)藥現(xiàn)代化,2017,19(1):50-54.

[2]Matu J,Gonzalez JT,Ispoglou T,et al.The effects of hypoxia on hunger perceptions,appetite-related hormone concentrations,and energy intake:A systematic review and meta-analysis[J].Appetite,2018,125:98.

[3]Pan W,Adams JM,Allison MB,et al.Essential role for hypothalamic calcitonin receptor-expressing neurons in the control of food intake by leptin[J].Endocrinology,2018,159(4):1860-1872.

[4]Wright H,Li X,F(xiàn)allon NB,et al.Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity[J].European Journal of Neuroscience,2016,43(9):1181-1189.

[5]Lewis JE,Ebling FJJFiN.Tanycytes As Regulators of Seasonal Cycles in Neuroendocrine Function[J].Frontiers in Neurology,2017,8(2):79.

[6]Lanfray D,Arthaud S,Ouellet J,et al.Gliotransmission and brain glucose sensing:critical role of endozepines[J].Diabetes,2013,62(3):801-810.

[7]Lee DA,Bedont JL,Thomas P,et al.Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche[J].Nature Neuroscience,2012,15(5):700-702.

[8]Chen SR,Chen H,Zhou JJ,et al.Ghrelin Receptors Mediate Ghrelin-Induced Excitation of AgRP/NPY But Not POMC Neurons[J].Journal of Neurochemistry,2017,142(4):510-520.

[9]Dhillon H,Zigman JM,Ye C,et al.Leptin Directly Activates SF1 Neurons in the VMH,and This Action by Leptin Is Required for Normal Body-Weight Homeostasis[J].Neuron,2006,49(2):191-203.

[10]Giudici KV,Martini LAJAoHB.Comparison between body mass index and a body shape index with adiponectin/leptin ratio and markers of glucose metabolism among adolescents[J].Annals of Human Biology,2017,44(6):489-494.

[11]Abraham MA,Rasti M,Bauer PV,et al.Leptin enhances hypothalamic lactate dehydrogenase A(LDHA)-dependent glucose sensing to lower glucose production in high-fat-fed rats[J].J Biol Chem,2018,293(11):4159-4166.

[12]Burke LK,Doslikova B,D'Agostino G,et al.Sex difference in physical activity,energy expenditure and obesity driven by a subpopulation of hypothalamic POMC neurons[J].Molecular Metabolism,2016,5(3):245-252.

[13]Doslikova B,Garfield AS,Shaw J,et al.5-HT2C Receptor Agonist Anorectic Efficacy Potentiated by 5-HT1B Receptor Agonist Coapplication:An Effect Mediated via Increased Proportion of Pro-Opiomelanocortin Neurons Activated[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2013,33(23):9800-9804.

[14]Yadav VK,Oury F,Suda N,et al.A serotonin-dependent mechanism explains the leptin regulation of bone mass,appetite,and energy expenditure[J].Cell,2009,138(5):976-989.

[15]Barbora D,Garfield AS,Jill S,et al.5-HT2C receptor agonist anorectic efficacy potentiated by 5-HT1B receptor agonist coapplication:an effect mediated via increased proportion of pro-opiomelanocortin neurons activated[J].Journal of Neuroscience,2013,33(23):9800-9804.

[16]Samuel VT,Shulman GI.The pathogenesis of insulin resistance:integrating signaling pathways and substrate flux[J].J Clin Invest,2016,126(1):12-22.

[17]Dontsov AV,Vasil'Eva LVJKM.Insulin resistance associated with metabolic syndrome as an indicator of cardiovascular risk[J].Klinicheskaia Meditsina,2016,94(3):189.

[18]Seino Y,Nanjo K,Tajima N,et al.Report of the Committee on the classification and diagnostic criteria of diabetes mellitus[J].Journal of Diabetes Investigation,2010,55(1):65-85.

[19]Bartonjames C,Clayborn B,Adamspaul C,et al.Risk Factors for Insulin Resistance,Metabolic Syndrome,and Diabetes in 248 HFE C282Y Homozygotes Identified by Population Screening in the HEIRS Study[J].Metabolic Syndrome and Related Disorders,2016,14(2):94-101.

[20]Tan C,Sasagawa Y,Mori MJJoG,et al.The association between insulin resistance,metabolic syndrome,and ischemic heart disease among Rumoi residents[J].Journal of General and Family Medicine,2017,18(6):360-364.

[21]Brown AE,Walker MJCCR.Genetics of Insulin Resistance and the Metabolic Syndrome[J].Current Cardiology Reports,2016,18(8):1-8.

[22]Geijselaers SLC,Sep SJS,Claessens D,et al.The Role of Hyperglycemia,Insulin Resistance,and Blood Pressure in Diabetes-Associated Differences in Cognitive Performance—The Maastricht Study[J].Diabetes Care,2017,40(11):dc170330.

[23]Kaneto H,Matsuoka TA,Kimura T,et al.Appropriate therapy for type 2 diabetes mellitus in view of pancreatic β-cell glucose toxicity:"the earlier,the better"[J].Journal of Diabetes,2016,8(2):183-189.

[24]Morita I,Tanimoto K,Akiyama N,et al.Chronic hyperinsulinemia contributes to insulin resistance under dietary restriction in association with altered lipid metabolism in Zucker diabetic fatty rats[J].American Journal of Physiology-Endocrinology And Metabolism,2017,312(4):E264-E272.

[25]Zhang N,Zhang N,Song L,et al.Adipokines and free fatty acids regulate insulin sensitivity by increasing microRNA-21 expression in human mature adipocytes[J].Molecular Medicine Reports,2017,16(2):2254-2258.

[26]Yang-Xue L,Ting-Ting H,Yang L,et al.Insulin resistance caused by lipotoxicity is related to oxidative stress and endoplasmic reticulum stress in LPL gene knockout heterozygous mice[J].Molecular Medicine Reports,2015,239(1):276-282.

[27]Yazc D,Sezer H.Insulin Resistance,Obesity and Lipotoxicity[J].Oxygen Transport to Tissue XXXIII,2017,960:277-304.

[28]Pasquale S,Antonio B,F(xiàn)erruccio G,et al.Abnormalities of renal sodium handling in the metabolic syndrome.Results of the Olivetti Heart Study[J].Journal of Hypertension,2006,24(8):1633-1639.

[29]Tuck ML,F(xiàn)arida B,Pirooz E,et al.Insulin stimulates endogenous angiotensin II production via a mitogen-activated protein kinase pathway in vascular smooth muscle cells[J].Journal of Hypertension,2004,22(9):1779-1785.

[30]Laakso M,Edelman SV,Brechtel G,et al.Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man.A novel mechanism for insulin resistance[J].Journal of Clinical Investigation,1990,85(6):1844.

[31]Laakso M,Edelman SV,Brechtel G,et al.Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM[J].Diabetes,1992,41(9):1076.

[32]Newsholme P,Cruzat VF,Keane KN,et al.Molecular mechanisms of ROS production and oxidative stress in diabetes[J].Biochem J,2016,473(24):4527-4550.

[33]Chattopadhyay M,Khemka VK,Chatterjee G,et al.Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects[J].Molecular and Cellular Biochemistry,2015,399(1-2):95-103.

[34]Carrier A,Signaling R.Metabolic Syndrome and Oxidative Stress:A Complex Relationship[J].Antioxidants & Redox Signaling,2017,26(9):429.

[35]Varghese JF,Patel R,Ucs YJCCR.Novel insights in the metabolic syndrome-induced oxidative stress and inflammation-mediated atherosclerosis[J].Current Cardiology Reviews,2017,13(1):4-14.

[36]Frühbeck,Gema,Catalán,et al.Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome[J].Sci Rep,2017,7(1):6619.

[37]Aroor A R,Demarco V G.Oxidative Stress and Obesity:The Chicken or the Egg?[J].Diabetes,2014,63(7):2216-2218.

[38]Boyer F,Vidot J B,Dubourg A G,et al.Oxidative Stress and Adipocyte Biology:Focus on the Role of AGEs[J].Oxidative Medicine & Cellular Longevity,2015,2015(6778):5348-5373.

[39]Chimin P,Andrade ML,Belchior T,et al.Adipocyte mTORC1 deficiency promotes adipose tissue inflammation and NLRP3 inflammasome activation via oxidative stress and de novo ceramide synthesis[J].Journal of Lipid Research,2017,58(9):1797-1807.

[40]Klaunig JE,Wang Z,Pu X,et al.Oxidative stress and oxidative damage in chemical carcinogenesis[J].Toxicologic Pathology,2010,38(1):96.

[41]Ginsberg H N.Insulin resistance and cardiovascular disease[J].Journal of Clinical Investigation,2000,14(2):453-458.

[42]Song D,Hutchings S,Pang CCY.Chronic-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats[J].European Journal of Pharmacology,2005,508(1):205-210.

[43]Nishikawa T,Edelstein D,Du X L,et al.Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J].Nature,2000,404(6779):787-790.

[44]Valko M,Leibfritz D,Moncol J,et al.Free radicals and antioxidants in normal physiological functions and human disease[J].International Journal of Biochemistry and Cell Biology,2007,39(1):44-84.

[45]Gonzalez-Menendez P,Hevia D,Alonso-Arias R,et al.GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress[J].Redox Biology,2018,17:112-127.

[46]Cooke AA,Connaughton RM,Lyons CL,et al.Fatty acids and chronic low grade inflammation associated with obesity and the metabolic syndrome[J].European Journal of Pharmacology,2016,785:207-214.

[47]Welty F K,Alfaddagh A,Elajami T K.Targeting Inflammation in Metabolic Syndrome[J].Translational Research,2015,167(1):257-280.

[48]Domingueti C P,Dusse,Luci Maria Sant’Ana,et al.Diabetes Mellitus:The Linkage Between Oxidative Stress,Inflammation,Hypercoagulability and Vascular Complications[J].Journal of Diabetes and its Complications,2015,30(4):738-45.

[49]Kovalenko E I,Streltsova M A.Adaptive features of natural killer cells,lymphocytes of innate immunity[J].Russian Journal of Bioorganic Chemistry,2016,42(6):590-605.

[50]Wada J,Makino H.Innate immunity in diabetes and diabetic nephropathy[J].Nature Reviews Nephrology,2016,12(1):13-26.

[51]Franken L,Schiwon M,Kurts C.Macrophages:sentinels and regulators of the immune system[J].Cellular Microbiology,2016,18(4):475-487.

[52]Kim J,Chung K,Choi C,et al.Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice[J].Molecular Therapy Nucleic Acids,2016,5(1):e280.

[53]Kang YE,Kim JM,Joung KH,et al.The Roles of Adipokines,Proinflammatory Cytokines,and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction[J].PLOS ONE,2016,11(4):e0154003.

[54]Diny NL,Rose NR,iháková DJFiI.Eosinophils in Autoimmune Diseases[J].Frontiers in Immunology,2017,8:484.

[55]Davina W,Ari B M,Hong-Erh L,et al.Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis[J].Science,2011,332(6026):243-247.

[56]Dwyer D F,Barrett N A,Austen K F.Expression profiling of constitutive mast cells reveals a unique identity within the immune system[J].Nature Immunology,2016,17(7):878.

[57]Grimbaldeston MA,Chen C-C,Piliponsky AM,et al.Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo[J].The American Journal of Pathology,2005,167(3):835-848.

[58]Liu J,Divoux AJ.Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice[J].Nature Medicine,2009,15(8):940-945.

[59]Kupreishvili K,F(xiàn)uijkschot W,Vonk A,et al.Mast cells are increased in the media of coronary lesions in patients with myocardial infarction and may favor atherosclerotic plaque instability[J].Journal of Cardiology,2016,69(3):548-554.

[60]Loste A,Clément M,Delbosc S,et al.Role of IgE antibodies and mast cells in atherosclerosis[J].Atherosclerosis,2017,263:e9.

[61]J A,C C,A W,et al.Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes:molecular mechanisms and probiotic treatment[J].EMBO Molecular Medicine,2011,3(9):559-572.

[62]Hang S,Maia V K,Karen I,et al.TLR4 links innate immunity and fatty acid-induced insulin resistance[J].Journal of Clinical Investigation,2006,116(11):3015-3025.

[63]Shen X,Yang L,Yan S,et al.Fetuin A promotes lipotoxicity in β cells through the TLR4 signaling pathway and the role of pioglitazone in anti-lipotoxicity[J].Molecular & Cellular Endocrinology,2015,412:1-11.

[64]Lee YS,Kim JW,Osborne O,et al.Increased adipocyte O2 consumption triggers HIF-1±,causing inflammation and insulin resistance in obesity[J].Cell,2014,157(6):1339-1352.

[65]Sun K,Kusminski CM,Scherer PE.Adipose tissue remodeling and obesity[J].Journal of Clinical Investigation,2011,121(6):2094.

[66]Khan T,Muise ES,Iyengar P,et al.Metabolic Dysregulation and Adipose Tissue Fibrosis:Role of Collagen VI[J].Molecular & Cellular Biology,2009,29(6):1575-1591.

[67]Martinezsantibanez G,Singer K,Cho KW,et al.Obesity-induced remodeling of the adipose tissue elastin network is independent of the metalloelastase MMP-12[J].Adipocyte,2015,4(4):264-272.

[68]Mori H,Bhat R,Bruni-Cardoso A,et al.New insight into the role of MMP14 in metabolic balance[J].PeerJ,2016,4(7):e2142.

[69]Cai D,Yuan M,F(xiàn)rantz DF,et al.Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB[J].Nature Medicine,2005,11(2):183-190.

[70]Ferrere G,Leroux A,Wrzosek L,et al.Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice[J].PLOS ONE,2016,11(1):e0146177.

[71]Odegaard JI,Ricardogonzalez RR,Red EA,et al.Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance[J].Cell Metabolism,2008,7(6):496-507.

[72]Koyama Y,Brenner DAJJoCI.Liver inflammation and fibrosis[J].The Journal of clinical investigation,2017,127(1):55.

[73]Rooks MG,Garrett WSJNRI.Gut microbiota,metabolites and host immunity[J].Nature Reviews Immunology,2016,16(6):341.

[74]Thaiss CA,Zmora N,Levy M,et al.The microbiome and innate immunity[J].Nature,2016,535(7610):65.

[75]Macfarlane G,Macfarlane S.Bacteria,Colonic Fermentation,and Gastrointestinal Health[J].Journal of Aoac International,2012,95:50-60.

[76]Bennett B,Vallim TD,Wang Z,et al.Trimethylamine-N-Oxide,a Metabolite Associated with Atherosclerosis,Exhibits Complex Genetic and Dietary Regulation[J].Cell Metabolism,2013,17(1):49-60.

[77]Buck S S,Abdullah S,Toshiyuki M,et al.Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor,Gpr41[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(43):16767-16772.

[78]Tazoe H,Otomo Y,Kaji I,et al.Roles of short-chain fatty acids receptors,GPR41 and GPR43 on colonic functions[J].Journal of Physiology & Pharmacology,2008,59 Suppl 2(Suppl 2):251-262.

[79]Samuel BS,Abdullah S,Toshiyuki M,et al.Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor,Gpr41[J].Proceedings of the National Academy of Sciences,2008,105(43):16767-16772.

猜你喜歡
脂肪組織瘦素性反應
三七總皂苷對小鼠巨噬細胞炎性反應的影響
男人像燈泡 女人像熨斗
脂肪有時可助免疫
魚類瘦素的研究進展
胖孩子脂肪組織6歲時已現(xiàn)病理變化
瘦素與運動
女性的性反應能力
延吉市| 伊通| 正镶白旗| 乐陵市| 宣武区| 柘城县| 台东县| 罗田县| 甘德县| 阳曲县| 淮安市| 宁远县| 武汉市| 耒阳市| 平顶山市| 建始县| 咸宁市| 濮阳县| 锦州市| 南宫市| 田阳县| 杨浦区| 隆尧县| 灵山县| 莱西市| 孝感市| 安庆市| 班玛县| 浦东新区| 喀什市| 抚远县| 阿坝县| 闽清县| 益阳市| 桂平市| 金阳县| 黄陵县| 共和县| 邛崃市| 龙山县| 泰和县|