田大剛 楊小雙 陳子強 陳在杰 林艷 王鋒
摘要:【目的】改良三系雜交秈稻強勢恢復(fù)系閩恢3301的稻瘟病抗性,以提高其在生產(chǎn)中的應(yīng)用價值。【方法】以75-1-127和C101A51為稻瘟病主效基因Pi9和Pi2的供體親本,以閩恢3301為受體親本,通過雜交、多代回交和自交,結(jié)合分子標記輔助選擇和田間選擇的方法,將供體親本的Pi9和Pi2基因?qū)腴}恢3301中,改良其稻瘟病抗性。利用21個福建近年流行的稻瘟菌菌株及其混合菌液對閩恢3301改良系進行人工接種抗性鑒定,并連續(xù)兩年在上杭茶地病圃進行田間自然誘發(fā)抗性鑒定。將閩恢3301改良系和閩恢3301分別與三系不育系薈豐A和廣8A及兩系不育系GRD-7S進行測配,考察其農(nóng)藝性狀,以閩恢3301為父本的雜交組合為對照。【結(jié)果】通過利用Pi2/9分子標記對抗病基因進行跟蹤選擇,最終獲得含Pi9和Pi2的閩恢3301改良系(閩恢3301-Pi9和閩恢3301-Pi2)各20份。除閩恢3301-Pi9對SH17004菌株表現(xiàn)為中感外,閩恢3301-Pi9對其他20個稻瘟病菌株及于2016和2017年在田間自然誘發(fā)鑒定中均表現(xiàn)出抗病,且閩恢3301-Pi2對21個稻瘟病菌株及于2016和2017年在田間自然誘發(fā)鑒定中均表現(xiàn)出抗病或高抗,二者抗性達到甚至超過兩供體親本75-1-127和C101A51的抗性水平,但閩恢3301對7個稻瘟病菌株表現(xiàn)感病,對1個菌株表現(xiàn)中感,對其他菌株則表現(xiàn)中抗或抗病,且田間自然誘發(fā)鑒定中均表現(xiàn)高感,說明閩恢3301-Pi9和閩恢3301-Pi2抗性水平得到有效提高。除RGD-7S×閩恢3301-Pi9和RGD-7S×閩恢3301-Pi2組合的單株產(chǎn)量分別極顯著(P<0.01)高于相應(yīng)的對照組合外,其他以閩恢3301改良株系為父本的雜交組合在株高、穗長、分蘗數(shù)、千粒重、單株產(chǎn)量和結(jié)實率上無顯著差異(P>0.05),表明閩恢3301-Pi2和閩恢3301-Pi9在培育稻瘟病抗性雜交水稻組合上具有廣闊的應(yīng)用前景?!窘Y(jié)論】閩恢3301-Pi9和閩恢3301-Pi2抗性得到有效提高的同時在農(nóng)藝性狀和配合力等方面保持了閩恢3301及其組合的主要特性,說明利用Pi9和Pi2基因可有效改良閩恢3301的稻瘟病抗性,不僅拓寬了稻瘟病抗譜,還不影響閩恢3301的配合力,二者可作為新的水稻材料進行推廣應(yīng)用。
關(guān)鍵詞: 閩恢3301;稻瘟病;抗性;分子標記輔助選擇;Pi9;Pi2;農(nóng)藝性狀
中圖分類號: S511.203.51? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2019)08-1665-06
Improving resistance of Minhui 3301 to rice blast
by molecular marker-assisted selection
TIAN Da-gang1, YANG Xiao-shuang1,2, CHEN Zi-qiang1, CHEN Zai-jie1,
LIN Yan, WANG Feng 1*
(1Biotechnology Research Institute, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Genetic Engineering for Agriculture, Fuzhou? 350003, China; 2College of Plant Protection, Fujian Agriculture
and Forestry University, Fuzhou? 350002, China)
Abstract:【Objective】This study aimed to improve the blast resistance of the hybrid indica rice strong restorer line,Minhui 3301,and increase its application value in production. 【Method】75-1-127 and C101A51 were donor parents for rice blast major genes Pi9 and Pi2, and Minhui 3301 was as receptor parent. The genes Pi9 and Pi2 from donor lines 75-1-127 and C101A51 were respectively introduced into Minhui 3301 to improve its resistance to blast by crossbreeding, backcrossing, self-breeding assisted by molecular marker and field selection method. The artificial inoculation resistance assay was conducted using 21 rice blast strains epidemic in Fujian in recent years and their mixed strain liquid on Minhui 3301 improved line, and naturally induction resistance in field was also investigated in diseased fields in Chadi, Shanghang for two consecutive years. Minhui 3301 improved line and Minhui 3301 were crossed with two three-line sterile lines (Huifeng A and Guang 8A) and a two-line sterile line(GRD-7S) respectively to investigate the main agronomic traits. The hybrid combinations with Minhui 3301 as male parent were as control. 【Result】In the present study,with Pi2/9 molecular marker trace selection for disease resistance genes, 20 improved lines harboring Pi9 and 20 improved lines harboring Pi2 were respectively generated by marker-assisted selection,named Minhui 3301-Pi9 and Minhui 3301-Pi2. Apart from Minhui 3301-Pi9 presented moderate susceptibility to SH17004 strain, it presented resistance to all the other 20 tested blast strains as well as the field natural induction identification in 2016 and 2017. Minhui 3301-Pi2 displayed resistant or highly resistant to 21 strains in the field natural induction identification in 2016 and 2017. The resistance of the two was even higher than the two donor parents 75-1-127 and C101A51.? However,Minhui 3301 were susceptible to seven strains and? moderately susceptible to one strain,and were moderately resistant or resistant to other strains and were highly susceptible to natural induction identitfcation in field. It indicated that Minhui 3301-Pi2 and Minhui 3301-Pi9 improved resistance to blast. Investigation of agronomic characteristics showed that there were no significant differences in plant height,panicle length,tiller number, weight of 1000-grain, yield per plant and seed setting rate in various hybrid combinations(P>0.05), except for yield per plant of GD-7S×Minhui 3301-Pi2 and RGD-7S×Minhui 3301-Pi9 were extremely higher than the corresponding control combinations(P<0.01), indicating Minhui 3301-Pi2 and Minhui 3301-Pi9 had broad prospect in breeding hybrid rice combination with rice blast resistance. 【Conclusion】Minhui 3301-Pi9 and Minhui 3301-Pi2 obtained in the present study have similar characteristics as Minhui 3301 and its combinations in agronomic traits and combining ability,but confer higher level and broader-spectrum resistance against blast. It indicates that Pi9 and Pi2 genes can improve the blast resistance of Minhui 3301. They broaden the resistant spectrum of rice blast, and do not affect the combining ability of Minhui 3301, therefore the two can be promoted as new rice materials.
Key words: Minhui 3301; rice blast; resistance; molecular marker-assisted selection; Pi9; Pi2; agronomic traits
0 引言
【研究意義】稻瘟病是世界上對水稻危害最嚴重的真菌性病害,一般導(dǎo)致水稻減產(chǎn)10%~30%,嚴重時甚至造成絕收(Skamnioti and Gurr,2009;Helliwell et al.,2013)。近年來,隨著雜交稻親本的遺傳基礎(chǔ)變窄及栽培中氮肥的不合理施用,稻瘟病害呈逐年遞增趨勢,給水稻生產(chǎn)帶來了極大威脅(宋成艷等,2014),利用抗病基因改良品種抗性是水稻抗病防治最經(jīng)濟、有效的方法(Ashkani et al.,2015,2016;Tanweer et al.,2015)。由于稻瘟病菌無毒效應(yīng)因子的高度變異,使含單一抗性基因的品種在短時間內(nèi)喪失抗性(Zhu et al.,2000)。因此,改良現(xiàn)有水稻品種對稻瘟病的抗性,對水稻生產(chǎn)具有重要意義?!厩叭搜芯窟M展】前人研究發(fā)現(xiàn),抗稻瘟病基因Pi9和Pi2是位于水稻第6號染色體短臂Pi2/9基因座上的廣譜抗性基因(Zhou et al.,2006;Deng et al.,2017),其中,Pi9基因來自于小粒野生稻(Oryza minuta),對13個國家的43個稻瘟病菌株均表現(xiàn)出高抗性(Liu et al.,2002a);Pi2基因來自于Co39近等系,對從菲律賓不同地區(qū)和我國13個水稻主產(chǎn)區(qū)收集的792個稻瘟病菌株均表現(xiàn)出較高的抗性(Liu et al.,2002b)。因此,Pi2和Pi9基因用于改良品種抗性方面具有良好的應(yīng)用前景。如陳志偉等(2004)將Pi2基因?qū)胝渖?7B后獲得的改良品系對稻瘟病抗性顯著提高;倪大虎等(2005)、陳建民等(2009)分別將Pi9基因?qū)胨净謴?fù)系M12和閩恢3139后也獲得了稻瘟病抗性顯著提高的改良品系。此外,還有部分學(xué)者利用分子標記輔助選擇將Pi2或Pi9基因與其他抗病基因同時聚合到一個品種中,極大提高了水稻品種對稻瘟病的抗性及持久性(陳紅旗等,2008;柳武革等,2008;Luo and Yin,2013;田大剛等,2014)。但Tian等(2016)利用Pi2和Pi9基因的功能標記分析我國434份水稻種質(zhì)及育種材料,發(fā)現(xiàn)這兩個抗病基因并未在我國種植品種中大規(guī)模應(yīng)用,表明二者對改良水稻抗性具有較大的應(yīng)用潛力。【本研究切入點】閩恢3301是福建省農(nóng)業(yè)科學(xué)院生物技術(shù)研究所育成的三系雜交秈稻強勢恢復(fù)系,以其配制的20個優(yōu)勢組合如天優(yōu)3301、II優(yōu)3301、谷優(yōu)3301和花2優(yōu)3301等均通過了國家或省級審定,但近年來閩恢3301的稻瘟病抗性呈逐年下降趨勢。經(jīng)本課題組前期研究發(fā)現(xiàn),閩恢3301不含有Pi2和Pi9基因(Tian et al.,2016),利用這兩個廣譜高抗的基因改良閩恢3301的稻瘟病抗性具有較大的生產(chǎn)應(yīng)用價值,但目前未見相關(guān)研究報道?!緮M解決的關(guān)鍵問題】以75-1-127和C101A51為稻瘟病主效基因Pi9和Pi2的供體親本,以閩恢3301為受體親本,通過雜交、多代回交和自交,結(jié)合分子標記輔助選擇和田間選擇的方法,將供體親本的Pi9和Pi2基因?qū)腴}恢3301中,改良其稻瘟病抗性,采用人工接種法和田間自然誘發(fā)法對改良的閩恢330進行稻瘟病抗病性評價,篩選出對稻瘟病具有廣譜抗性的改良株系,并分別與3個不育系配制雜交組合,考察各組合的相關(guān)農(nóng)藝性狀,最終篩選出具有閩恢3301遺傳背景且可用于水稻生產(chǎn)的優(yōu)良株系,為利用分子標記輔助選擇改良現(xiàn)有水稻品種的稻瘟病抗性提供理論依據(jù)。
1 材料與方法
1. 1 試驗材料
供試水稻品種為Pi9基因供體親本75-1-127、Pi2基因供體親本C101A51和受體親本閩恢3301,其中,75-1-127的抗性基因Pi9來源于野生稻(O. minuta),C101A51的抗性基因Pi2來源于Co39近等系。以上材料均由福建省農(nóng)業(yè)科學(xué)院生物技術(shù)研究所提供。三氯甲烷(分析純)、異戊醇(分析純)、75%(v/v)乙醇溶液和10 g/L瓊脂糖溶液等均由福建省農(nóng)業(yè)科學(xué)院生物技術(shù)研究所提供,雙組分簡單型PCR反應(yīng)系統(tǒng)購自天根生化科技(北京)有限公司。主要儀器設(shè)備:PCR擴增儀(美國Bio-Rad公司)、凝膠成像系統(tǒng)(美國Bio-Rad公司)和電泳儀(美國Bio-Rad公司)等。
1. 2 Pi2/9分子標記檢測
用于檢測Pi2/9分子標記的引物為Pi2/9-F:5'-T TTGTTACTAGAATCGCTCCAT-3'和Pi2/9-R:5'-GA TTAGTGAGATCCATTGTTCC-3'(Tian et al.,2019)。所有引物均由福州鉑尚生物有限公司合成。PCR反應(yīng)體系和擴增程序參照Qu等(2006)、鄭家團等(2009)的方法。
1. 3 構(gòu)建分子標記輔助選擇群體
于2013年4月在海南省三亞市藤橋育種基地分別以75-1-127和C101A51為供體親本,閩恢3301為受體親本雜交獲得F1代雜交種。利用Pi2/9分子標記從中篩選出含抗病基因的單株,并與受體親本閩恢3301連續(xù)多代回交獲得BC5F1種子。2015年冬季于海南省三亞市藤橋育種基地種植BC5F1,選擇基因型純合且農(nóng)藝性狀和稻瘟病抗性與受體親本一致的株系,自交兩次,獲得BC5F3株系(圖1)。
1. 4 抗性鑒定
人工接種鑒定:于2016年從福建稻瘟病發(fā)病嚴重區(qū)(上杭縣茶地鄉(xiāng)、南靖縣、廈門市、德化縣、清流縣、將樂縣、寧化縣、寧德市、武夷山和建陽市)分離獲得21個稻瘟病菌株。于水稻苗期采用人工噴霧的方法接種21個稻瘟病菌株及其混合菌株。稻瘟病菌株的培養(yǎng)、產(chǎn)孢、接種及抗性調(diào)查等均參考Tian等(2019)的方法。
田間自然誘發(fā)鑒定:于2016─2017年在福建上杭茶地病圃進行田間抗性鑒定,分別于分苗期、分蘗盛期和抽穗結(jié)實期3個時期進行,種植期間通過重施氮肥,增加田間濕度創(chuàng)造發(fā)病條件。采用GB/T 15790—2009國家標準進行調(diào)查和分級,得出綜合抗性水平,最終篩選出抗稻瘟病的改良株系。
1. 5 農(nóng)藝性狀考察
以三系不育系薈豐A、廣8A和兩系不育系RGD-7S作母本,分別與閩恢3301改良株系和閩恢3301配制雜交組合,以閩恢3301為父本的雜交組合為對照。該試驗在福州壽山育種基地進行。按水稻正常種植季節(jié)播種插秧,株行距21 cm×21 cm,每小區(qū)種植100株,設(shè)3次重復(fù)。正常防治病蟲害,常規(guī)水肥管理??挤N時取每小區(qū)中間地段整齊一致的5個單株,測量自然不發(fā)病條件下各雜交組合的株高及考察穗數(shù)、穗長、分蘗數(shù)、結(jié)實率、千粒重和單株產(chǎn)量等農(nóng)藝性狀。
1. 6 統(tǒng)計分析
采用SPSS 19.0對農(nóng)藝性狀數(shù)據(jù)進行統(tǒng)計分析。
2 結(jié)果與分析
2. 1 Pi2/9標記在供受體間的多態(tài)性分析及基因純合株系篩選結(jié)果
利用Pi2/9-F和Pi2/9-R引物對75-1-127、C101A51和閩恢3301進行多態(tài)性分析,結(jié)果顯示,從75-1-127、C101A51和閩恢3301擴增的片段大小為164、147和174 bp(圖2-A和圖2-B),表明Pi2/9標記在供受體親本間具有明顯的多態(tài)性,可應(yīng)用于相應(yīng)抗性基因的輔助篩選。在連續(xù)多代回交、自交過程中,利用該標記對抗病基因進行跟蹤選擇,最終獲得含Pi9和Pi2基因的純合BC5F3代株系各20份,分別將其命名為含Pi9閩恢3301改良系(閩恢3301-Pi9)和含Pi2閩恢3301改良系(閩恢3301-Pi2)(圖2-A和圖2-B)。
2. 2 閩恢3301改良系的稻瘟病抗性鑒定結(jié)果
由表1可知,人工接種后,75-1-127和C101A51對21個稻瘟病菌株及其混合菌株均表現(xiàn)為抗病,但二者于2016和2017年在福建上杭茶地病圃的田間自然誘發(fā)鑒定中抗性表現(xiàn)略有不同,其中,75-1-127在2016和2017年分別表現(xiàn)為抗病和中抗,而C101A51均表現(xiàn)為中抗,二者綜合抗性水平均為抗病,表明Pi9和Pi2基因可用于上杭地區(qū)的稻瘟病抗性改良。
由表1還可知,閩恢3301對7個稻瘟病菌株(SM17211、SH17004、NH13093、NH17267、SM17192、NH15039和SM17191)表現(xiàn)感病,對NH17026菌株表現(xiàn)中感,對其他菌株則表現(xiàn)中抗或抗病,但閩恢3301于2016和2017年連續(xù)兩年的田間自然誘發(fā)鑒定中均表現(xiàn)高感;除閩恢3301-Pi9對SH17004表現(xiàn)為中感外,閩恢3301-Pi9對其他稻瘟病菌株及于2016和2017年在田間自然誘發(fā)鑒定中均表現(xiàn)抗病,且閩恢3301-Pi2對21個稻瘟病菌株及于2016和2017年在田間自然誘發(fā)鑒定中均表現(xiàn)抗病或高抗。可見,與閩恢3301相比,閩恢3301-Pi9和閩恢3301-Pi2抗性得到有效提高,其抗性達到甚至超過供體親本75-1-127和C101A51的抗性水平。通過比較閩恢3301-Pi9和閩恢3301-Pi2抗性發(fā)現(xiàn),雖然Pi9和Pi2基因均能明顯提高閩恢3301的抗性水平,但Pi2基因的提高效果更明顯。
2. 3 閩恢3301改良系與不育系所配雜交組合的農(nóng)藝性狀表現(xiàn)
用三系不育系薈豐A、廣8A和兩系不育系RGD-7S作母本,分別與閩恢3301-Pi2、閩恢3301-Pi9和閩恢3301配制9個雜交組合,測定自然不發(fā)病條件下各組合的株高、穗長、分蘗數(shù)、千粒重、單株產(chǎn)量和結(jié)實率等農(nóng)藝性狀,結(jié)果如表2所示。除RGD-7S×閩恢3301-Pi9和RGD-7S×閩恢3301-Pi2組合的單株產(chǎn)量分別極顯著(P<0.01)高于相應(yīng)的對照組合(CK3)外,其他以閩恢3301改良系為父本的雜交組合在株高、穗長、分蘗數(shù)、千粒重、單株產(chǎn)量和結(jié)實率上與相應(yīng)的對照組合(CK1和CK2)均無顯著差異(P>0.05),說明稻瘟病抗性改良并未影響閩恢3301的配合力,閩恢3301-Pi2和閩恢3301-Pi9在培育稻瘟病抗性雜交水稻上具有廣闊的應(yīng)用前景。
3 討論
Pi2/9基因座上的Pi2和Pi9基因是我國東北各地區(qū)抗性最好、抗譜最廣的抗源基因(王倩等,2011),但目前這兩個基因尚未在生產(chǎn)中廣泛應(yīng)用,具有很好的應(yīng)用前景(Tian et al.,2016)。本研究利用稻瘟病菌株抗性較好的Pi2和Pi9供體親本C101A51和75-1-127對閩恢3301進行抗性改良,獲得了這兩種抗性基因的改良系,即閩恢3301-Pi9和閩恢3301-Pi2,二者對稻瘟病菌株抗性水平得到有效提高,其抗性達到甚至超過供體親本75-1-127和C101A51的抗性水平。此外,本研究以這兩種抗性基因改良系為父本,分別與三系不育系薈豐A、廣8A和兩系不育系RGD-7S雜交,結(jié)果發(fā)現(xiàn),除RGD-7S×閩恢3301-Pi9和RGD-7S×閩恢3301-Pi2組合的單株產(chǎn)量分別極顯著高于相應(yīng)的對照組合(CK3)外,其余以閩恢3301改良系父本的雜交組合的株高、穗長、分蘗數(shù)、千粒重、單株產(chǎn)量和結(jié)實率與以閩恢3301為父本的對照雜交組合間無顯著差異,說明稻瘟病抗性改良并未影響閩恢3301的配合力。因此,這兩份改良系可在實際生產(chǎn)中混合使用以提高改良系的生產(chǎn)應(yīng)用范圍。前人研究也發(fā)現(xiàn),通過混合種植攜帶不同抗性基因的近等系可對稻瘟病產(chǎn)生高抗效果(Zhu et al.,2000;Abe,2004;Thakur et al.,2013),其原因在于利用不同品種在抗病性上的異質(zhì)性或多樣化以減弱單一品種對病原物小種群體的選擇壓力,有利于品種與菌群間形成平衡,以限制病原菌暴發(fā)(Tack et al.,2012),進一步明確了抗性基因型不同的品種與病原菌互作可產(chǎn)生抗性反應(yīng)(Gallet et al.,2014)。
分子標記輔助育種應(yīng)考慮目的基因和遺傳背景的分子標記檢測(Hittalmani et al.,2000;Gouda et al.,2013)。本研究在抗病基因回交轉(zhuǎn)移時,通過Pi2/9標記檢測結(jié)合對回交后代農(nóng)藝性狀的比較選擇,在農(nóng)藝性狀與受體親本一致時再自交2次,得到目的基因和遺傳背景純合的株系,結(jié)果表明本研究的試驗方案具有很好的可行性,且本研究供受體親本間均為秈型常規(guī)品種,遺傳距離相對較小,經(jīng)過5 次定向回交后和兩次自交獲得的純合株系,其農(nóng)藝性狀已與輪回親本基本一致。此外,雖然本研究證實稻瘟病抗性改良未影響閩恢3301的配合力,但是否影響其他重要病蟲害抗性,尚有待研究。因此,在今后進行抗稻瘟病品種選育時,還應(yīng)兼顧重要病蟲害抗性及稻米品質(zhì),注重分子標記選擇與常規(guī)育種手段的結(jié)合,力爭使抗性、產(chǎn)量與品質(zhì)達到同步改良。
4 結(jié)論
閩恢3301-Pi9和閩恢3301-Pi2抗性得到有效提高的同時在農(nóng)藝性狀和配合力等方面保持了閩恢3301及其組合的主要特性,說明利用Pi9和Pi2基因可有效改良閩恢3301的稻瘟病抗性,不僅拓寬了稻瘟病抗譜,還不影響閩恢3301的配合力,二者可作為新的水稻材料進行推廣應(yīng)用。
參考文獻:
陳紅旗,陳宗祥,倪深,左示敏,潘學(xué)彪,朱旭東. 2008. 利用分子標記技術(shù)聚合3個稻瘟病基因改良金23B的稻瘟病抗性[J]. 中國水稻科學(xué),22(1):23-27. [Chen H Q,Chen Z X,Ni S,Zuo S M,Pan X B,Zhu X D. 2008. Pyramiding three genes with resistance to blast by marker-assisted selection to improve rice blast resistance of Jin 23B[J]. Chinese Journal of Rice Science,22(1):23-27.]
陳建民,付志英,權(quán)寶權(quán),田大剛,李剛,王鋒. 2009. 分子標記輔助培育雙抗稻瘟病和白葉枯病雜交稻恢復(fù)系[J]. 分子植物育種,7(3):465-470. [Chen J M,F(xiàn)u Z Y,Quan B Q,Tian D G,Li G,Wang F. 2009. Breeding hybrid rice restoring line with double resistance to rice blast and bacterial blight by marker-assisted selection[J]. Molecular Plant Breeding,7(3):465-470.]
陳志偉,鄭燕,吳為人,趙長江. 2004. 抗稻瘟病基因Pi-2(t)緊密連鎖的SSR標記的篩選與應(yīng)用[J]. 分子植物育種,2(3):321-325. [Chen Z W,Zheng Y,Wu W R,Zhao C J. 2004. Screening and application of an SSR markers closely linked to Pi-2(t),a gene resistant to rice blast[J]. Molecular Plant Breeding,2(3):321-325.]
柳武革,王豐,金素娟,朱小源,李金華,劉振榮,廖亦龍,朱滿山,黃慧君,符福鴻,劉宜柏. 2008. 利用分子標記輔助選擇聚合Pi-1和Pi-2基因改良兩系不育系的稻瘟病抗性[J]. 作物學(xué)報,34(7):1128-1136. [Liu W G,Wang F,Jin S J,Zhu X Y,Li J H,Liu Z R,Liao Y L,Zhu M S,Huang H J,F(xiàn)u F H,Liu Y B. 2008. Improvement of rice blast resistance in TGMS line by pyramiding of Pi-1 and Pi-2 through molecular marker-assisted selection[J]. Acta Agronomica Sinica,34(7):1128-1136.]
倪大虎,易成新,李莉,汪秀峰,王文相,楊劍波. 2005. 利用分子標記輔助選擇聚合水稻基因Xa21和Pi9(t)[J]. 分子植物育種,3(3):329-334. [Ni D H,Yi C X,Li L,Wang X F,Wang W X,Yang J B. 2005. Pyramiding Xa21 and Pi9(t) in rice by marker-assisted selection[J]. Molecular Plant Breeding,3(3):329-334.]
宋成艷,王桂玲,劉乃生,周雪松,陳書強,陸文靜. 2014. 不同施氮方式對黑龍江省水稻主栽品種稻瘟病發(fā)生的影響[J]. 北方水稻,44(4):19-22. [Song C Y,Wang G L,Liu N S,Zhou X S,Chen S Q,Lu W J. 2014. The effects of different nitrogen applications on the occurrence of rice blast on main cultivar rice in Heilongjiang Province[J]. North Rice,44(4):19-22.]
田大剛,陳在杰,陳子強,林艷,周元昌,陳松彪,王鋒. 2014. 分子標記輔助選育聚合抗稻瘟病基因和抗白葉枯病基因的水稻改良新恢復(fù)系[J]. 分子植物育種,12(5):843-852. [Tian D G,Chen Z J,Chen Z Q,Lin Y,Zhou Y C,Chen S B,Wang F. 2014. Developing improved lines of three rice restorers pyramided resistant gene to blast and bacterial blight by marker-assisted selection[J]. Molecular Plant Breeding,12(5):843-852.]
王倩,李祥曉,王疏,周永力,徐建龍,黎志康. 2011. 水稻分子育種親本材料在東北地區(qū)的稻瘟病抗性評價[J]. 分子植物育種,9(4):432-437. [Wang Q,Li X X,Wang S,Zhou Y L,Xu J L,Li Z K. 2011. Screening and evaluation of rice germplasm resources resistant to rice blast pathogen derived from north-eastern region[J]. Molecular Plant Breeding,9(4):432-437.]
鄭家團,涂詩航,張建福,鄭軼,趙開軍,張水金,謝華安. 2009. 含白葉枯病抗性基因Xa23水稻恢復(fù)系的分子標記輔助選育[J]. 中國水稻科學(xué),23(4):437-439. [Zheng J T,Tu S H,Zhang J F,Zheng Y,Zhao K J,Zhang S J,Xie H A. 2009. Breeding of restorer lines of hybrid rice with bacterial blight resistance gene Xa23 by using mar-ker-assisted selection[J]. Rice Science,23(4):437-439.]
Abe S. 2004. Breeding of a blast resistant multiline variety of rice,Sasanishiki BL[J]. Japan Agricultural Research Quarterly,38(3):149-154.
Ashkani S,Rafii M Y,Shabanimofrad M,Ghasemzadeh A,Ravanfar S A,Latif M A. 2016. Molecular progress on the mapping and cloning of functional genes for blast di-sease in rice(Oryza sativa L.):Current status and future considerations[J]. Critical Reviews in Biotechnology,36(2):353-367.
Ashkani S,Yusop M R,Shabanimofrad M,Azadi A,Latif M A. 2015. Allele mining strategies:Principles and utilisation for blast resistance genes in rice(Oryza sativa L.)[J]. Current Issues in Molecular Biology,17(1):57-74.
Deng Y,Zhai K,Xie Z,Yang D,Zhu X,Liu J,Wang X,Qin P,Yang Y,Zhang G,Li Q,Zhang J,Wu S,Milazzo J,Mao B,Wang E,Xie H,Tharreau D,He Z. 2017. Epige-netic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science,355(6328):962-965.
Gallet R,Bonnot F,Milazzo J,Tertois C,Adreit H,Ravigné V,Tharreau D,F(xiàn)ournier E. 2014. The variety mixture strategy assessed in a G×G experiment with rice and the blast fungus Magnaporthe oryzae[J]. Front Genet,4:312.
Gouda P K,Saikumar S,Varma C M K,Nagesh K,Thippeswamy S,Shenoy V,Ramesha M S,Shashidhar H E,Ahn S N. 2013. Marker-assisted breeding of Pi-1 and Piz-5 genes imparting resistance to rice blast in PRR78,restorer line of Pusa RH-10 Basmati rice hybrid[J]. Plant Breeding,132(1):61-69.
Helliwell E E,Wang Q,Yang Y. 2013. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani[J]. Plant Biotechnology Journal,11(1):33-42.
Hittalmani S,Parco A,Mew T V,Zeigler R S,Huang N. 2000. Fine mapping and DNA marker-assisted pyrami-ding of the three major genes for blast resistance in rice[J]. Theoretical and Applied Genetics,100(7):1121-1128.
Liu G,Lu G,Zheng L,Wang G L. 2002a. Two broad-spectrum blast resistance genes,Pi9(t) and Pi2(t),are physically linked on rice chromosome 6[J]. Molecular Genetics and Genomics,267(4):472-480.
Liu S P,Li X,Wang C Y,Li X H,He Y Q. 2002b. Improvement of resistance to rice blast in Zhenshan 97 by mole-cular marker-aided selection[J]. Acta Botanica Sinica,45(11):1346-1350.
Luo Y C,Yin Z C. 2013. Marker-assisted breeding of Thai fragrance rice for semi-dwarf phenotype,submergence tolerance and disease resistance to rice blast and bacterial blight[J]. Molecular Breeding,32(3):709-721.
Qu S H,Liu G F,Zhou B,Bellizzi M,Zeng L R,Dai L Y,Han B,Wang G L. 2006. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice[J]. Genetics,172(3):1901-1914.
Skamnioti P,Gurr S J. 2009. Against the grain:safeguarding rice from rice blast disease[J]. Trends in Biotechnology,27(3):141-150.
Tack A J M,Thrall P H,Barrett L G,Burdon J J,Laine A L. 2012. Variation in infectivity and aggressiveness in space and time in wild host-pathogen systems:Causes and consequences[J]. Journal of Evolutionary Biology,25(10):1918-1936.
Tanweer F A,Rafii M Y,Sijam K,Rahim H A,Ahmed F,Latif M A. 2015. Current advance methods for the identification of blast resistance genes in rice[J]. Comptes Rendus Biologies,338(5):321-334.
Thakur S,Gupta Y K,Singh P K,Rathour R,Variar M,Prashanthi S K,Singh A K,Singh U D,Chand D,Rana J C,Singh N K,Sharma T R. 2013. Molecular diversity in rice blast resistance gene Pi-ta makes it highly effective against dynamic population of Magnaporthe oryzae[J]. Functional & Integrative Genomics,13(3):309-322.
Tian D G,Chen Z J,Chen Z Q,Zhou Y C,Wang Z H,Wang F,Chen S B. 2016. Allele-specific marker-based assessment revealed that the rice blast resistance genes Pi2 and Pi9 have not been widely deployed in Chinese indica rice cultivars[J]. Rice,9(1):19.
Tian D G,Guo X R,Zhang Z J,Wang M,Wang F. 2019. Improving blast resistance of the rice restorer line,Hui 316,by introducing Pi9 or Pi2 with marker-assisted selection[J]. Biotechnology & Biotechnological Equipment,33(1):1195-1203.
Zhou B,Qu S,Liu G,2006. The eight amino acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea[J]. Molecular Plant-microbe Interactions,19(11):1216-1228.
Zhu Y Y,Chen H R,F(xiàn)an J H,Wang Y Y,Li Y,Chen J B,F(xiàn)an J X,Yang S S,Hu L P,Leung H,Mew T W,Teng P S,Wang Z H,Mundt C C. 2000. Genetic diversity and disease control in rice[J]. Nature,406:718-722.
(責(zé)任編輯 陳 燕)