常曉麗 石麗敏 謝俊霞
[摘要]?目的?探討1-甲基-4-苯基吡啶離子(MPP+)對小鼠黑質(zhì)多巴胺能神經(jīng)元興奮性的影響。
方法選用出生15~20 d的C57BL/6小鼠制備腦片,運(yùn)用腦片全細(xì)胞膜片鉗技術(shù)觀察MPP+對黑質(zhì)多巴胺能神經(jīng)元自發(fā)放電及誘發(fā)放電的影響。
結(jié)果當(dāng)小鼠黑質(zhì)腦片灌流10 μmol/L MPP+5 min后,多巴胺能神經(jīng)元自發(fā)放電頻率明顯升高(t=3.443,P<0.05);灌流15 min左右,多巴胺能神經(jīng)元自發(fā)放電頻率顯著減慢(t=4.172,P<0.01);延長灌流時間至25 min左右時,多巴胺能神經(jīng)元的放電活動可被完全抑制。在灌流MPP+5 min后,多巴胺能神經(jīng)元誘發(fā)放電頻率明顯升高(t=4.472,P<0.05),峰電位間隔時間明顯縮短(t=48.390,P<0.01)。
結(jié)論MPP+能夠以時間依賴性的方式抑制正常小鼠黑質(zhì)多巴胺能神經(jīng)元的興奮性。
[關(guān)鍵詞]?1-甲基-4-苯基吡啶;多巴胺能神經(jīng)元;膜片鉗術(shù);小鼠
[中圖分類號]?R338.8
[文獻(xiàn)標(biāo)志碼]?A
[文章編號]??2096-5532(2019)01-0010-04
EFFECT OF 1-METHYL-4-PHENYLPYRIDINIUM ON THE EXCITABILITY OF DOPAMINERGIC NEURONS IN THE SUBSTANTIA NIGRA IN MICE
CHANG Xiaoli, SHI Limin, XIE Junxia
(Department of Physiology, Qingdao University Medical College, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effect of 1-methyl-4-phenylpyridinium (MPP+) on the excitability of dopami-nergic neurons in the substantia nigra in mice.
MethodsBrain slices were prepared with C57BL/6 mice aged 15-20 days, and the whole-cell patch clamp technique was used to observe the effect of MPP+ on spontaneous discharge and evoked discharge of dopaminergic neurons in the substantia nigra.
ResultsAfter the brain slices of the substantia nigra in mice were perfused with 10 μmol/L MPP+ for 5 min, there was a increase in the frequency of spontaneous discharge of dopaminergic neurons, the diffe-rence is statistically significant (t=3.443,P<0.05); after perfusion for 15 min, there was a reduction in the frequency of spontaneous discharge of dopaminergic neurons , the difference is statistically significant ?(t=4.172,P<0.01); after perfusion for 25 min,the discharge of dopaminergic neurons was completely inhibited. After perfusion with MPP+ for 5 min, there was a significant increase in the frequency of evoked discharge of dopaminergic neurons (t=4.472,P<0.05) and a significant reduction in interspike interval (t=48.390,P<0.01).
ConclusionMPP+ can inhibit the excitability of dopaminergic neurons in the substantia nigra in normal mice in a time-dependent manner.
[KEY WORDS]1-methyl-4-phenylpyridinium; dopaminergic neurons; patch-clamp technique; mice
LANGSTON等[1]于1982年發(fā)現(xiàn),1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)在人類能夠?qū)е骂愃婆两鹕〉陌Y狀,如運(yùn)動遲緩、肌僵直、姿勢不穩(wěn)和靜止性震顫等[2-4]。之后又有實驗室在靈長類、嚙齒類動物相繼發(fā)現(xiàn)MPTP同樣可誘導(dǎo)帕金森病的發(fā)生[5]。研究表明,MPTP可選擇性地?fù)p傷黑質(zhì)多巴胺能神經(jīng)元,已經(jīng)成為誘導(dǎo)帕金森病動物模型最常用的藥物[6-7]。目前,對MPTP誘導(dǎo)產(chǎn)生帕金森病的作用機(jī)制研究主要集中在其對線粒體損傷上,認(rèn)為MPTP是一種親脂性的神經(jīng)毒素,很容易透過血-腦脊液屏障,在神經(jīng)膠質(zhì)細(xì)胞內(nèi)經(jīng)單胺氧化酶B作用下,轉(zhuǎn)變?yōu)榛钚源x產(chǎn)物1-甲基-4-苯基吡啶離子(MPP+),然后釋放到細(xì)胞間隙被多巴胺能神經(jīng)元上的多巴胺轉(zhuǎn)運(yùn)體選擇性地重攝取[8-10],MPP+在線粒體中積聚,抑制線粒體復(fù)合體Ⅰ,導(dǎo)致ATP不足、線粒體膜電位缺失、活性氧形成以及氧化應(yīng)激等,最終導(dǎo)致細(xì)胞死亡[11-13]。之后又有文獻(xiàn)報道,MPTP可通過激活自噬溶酶體途徑損傷多巴胺能神經(jīng)元[14-15]。然而,MPTP對多巴胺能神經(jīng)元電活動的影響尚不清楚。鑒于黑質(zhì)多巴胺能神經(jīng)元有自發(fā)放電行為[16-17],且放電活動的變化與多巴胺遞質(zhì)的釋放量密切相關(guān)[18-21],因此,闡明MPTP/MPP+對神經(jīng)元電活動的影響至關(guān)重要。本研究旨在探討急性灌流MPP+對黑質(zhì)多巴胺能神經(jīng)元自發(fā)放電和誘發(fā)放電的影響。
1?材料與方法
1.1?材料
1.1.1實驗動物?出生15~20 d的C57BL/6小鼠由蘇州工業(yè)園區(qū)愛爾麥特科技有限公司提供。動物的飼養(yǎng)和手術(shù)符合青島大學(xué)動物倫理學(xué)要求。
1.1.2主要試劑?MPP+由美國Sigma公司提供,用三蒸水稀釋至100 mmol/L溶液,在應(yīng)用前稀釋至10 mmol/L,-20 ℃保存。
1.1.3溶液配制?①人工腦脊液(ACSF)配制:將3.0 mmol/L KCl、124.0 mmol/L NaCl、1.3 mmol/L Na2HPO4、1.3 mmol/L CaCl2、26.0 mmol/L NaHCO3、2.4 mmol/L MgCl2和10.0 mmol/L Glucose混合,調(diào)整pH值至7.4(用1 mol/L NaOH稀釋),滲透壓770 kPa(用滲透壓測量儀進(jìn)行測量),并持續(xù)通入含體積分?jǐn)?shù)0.95 O2和體積分?jǐn)?shù)0.05 CO2的混合氣體進(jìn)行氧合。②低鈣切片液配制:將3.0 mmol/L KCl、124.0 mmol/L NaCl、1.3 mmol/L Na2HPO4、2.0 mmol/L CaCl2、26.0 mmol/L NaHCO3、1.0 mmol/L MgCl2和10.0 mmol/L Glucose混合,使用1 mol/L的NaOH調(diào)節(jié)溶液的pH值至7.4,滲透壓為770 kPa(用滲透壓測量儀檢測),并持續(xù)通入含體積分?jǐn)?shù)0.95 O2和體積分?jǐn)?shù)0.05 CO2的混合氣體進(jìn)行氧合。③電極內(nèi)液的配制:將10.0 mmol/L HEPES、120.0 mmol/L K-gluconate、20.0 mmol/L KCl、2.0 mmol/L MgCl2、10.0 mmol/L EGTA、2.0 mmol/L Na2ATP以及0.3 mmol/L的Na2GTP混合,用1 mmol/L KOH調(diào)節(jié)pH值至7.3,以500 μL分裝后-20 ℃儲存。
1.2?實驗方法
1.2.1離體黑質(zhì)腦片制備?制備方法參見文獻(xiàn)[22]。
1.2.2腦片全細(xì)胞膜片鉗電生理記錄?將離體腦片轉(zhuǎn)移至持續(xù)灌流ACSF的浴槽內(nèi),ASCF持續(xù)通入含體積分?jǐn)?shù)0.95 O2及體積分?jǐn)?shù)0.05 CO2的混合氣體,并選擇狀態(tài)良好、邊界清晰的細(xì)胞進(jìn)行全細(xì)胞膜片鉗記錄。將拋光的玻璃微電極(其電阻為5~10 MΩ)注入電極內(nèi)液并使電極尖端進(jìn)入液面以下。當(dāng)電極尖端接近細(xì)胞表面并在細(xì)胞表面壓出類似“酒窩”的形狀時(此時電流變小,電阻慢慢變大),迅速釋放正壓,使細(xì)胞膜快速達(dá)到千兆封接。如果電阻沒有達(dá)到千兆,則通過注射器給予細(xì)胞膜片一個負(fù)壓,使之達(dá)到千兆封接,并補(bǔ)償快電容。之后,采用負(fù)壓法吸破電極與細(xì)胞相接觸的膜片,使電極與細(xì)胞內(nèi)液相通,并補(bǔ)償慢電容。轉(zhuǎn)換至電流鉗模式,將電流鉗置于0 pA,完成全細(xì)胞電流鉗記錄,判斷是否為黑質(zhì)多巴胺能神經(jīng)元[19]。數(shù)據(jù)用Patchmaster軟件采集并儲存,用Minianalysis、Clamfit等軟件進(jìn)行分析。
1.3?統(tǒng)計學(xué)分析
應(yīng)用SPSS 22.0軟件進(jìn)行統(tǒng)計學(xué)分析,實驗所得數(shù)據(jù)以[AKx-D]±s表示,同一個神經(jīng)元灌流藥物前后放電頻率以及峰電位間隔時間的比較采用配對t檢驗,以P<0.05為差異有顯著性。
2?結(jié)??果
2.1?MPP+對多巴胺能神經(jīng)元自發(fā)放電活動影響
本實驗共記錄了6個黑質(zhì)多巴胺能神經(jīng)元,其自發(fā)放電的頻率為(1.41±0.32)Hz,當(dāng)灌流含有10 μmol/L MPP+的ASCF 5 min后,多巴胺能神經(jīng)元自發(fā)放電頻率為(2.30±0.43)Hz,與加藥前相比較,放電頻率明顯增加,差異具有統(tǒng)計學(xué)意義(t=3.443,P<0.05)。繼續(xù)灌流該藥物,在灌流15 min左右時,多巴胺能神經(jīng)元的自發(fā)放電頻率為(0.78±0.21)Hz,與加藥前相比較,放電頻率顯著減慢(t=4.172,P<0.01)。繼續(xù)延長灌流時間至25 min左右,多巴胺能神經(jīng)元的自發(fā)放電活動被完全抑制,應(yīng)用ASCF沖洗腦片,有1個多巴胺能神經(jīng)元的放電頻率被完全恢復(fù),其余的多巴胺能神經(jīng)元均未能恢復(fù)自發(fā)放電活動。
2.2?MPP+對多巴胺能神經(jīng)元誘發(fā)放電活動影響
本實驗又記錄了5個黑質(zhì)多巴胺能神經(jīng)元,并在電流鉗下給予細(xì)胞膜30 pA的電流刺激,多巴胺能神經(jīng)元誘發(fā)放電頻率為(2.15±0.20)Hz,峰電位間隔時間為(0.19±0.11)s;在灌流10 μmol/L的MPP+5 min后,多巴胺能神經(jīng)元誘發(fā)放電頻率為(3.89±0.31)Hz,峰電位間隔時間為(0.11±0.13)s。與灌流藥物前相比,多巴胺能神經(jīng)元誘發(fā)放電頻率顯著增加(t=4.472,P<0.05),峰電位間隔時間顯著縮短(t=48.390,P<0.01)。
3?討??論
黑質(zhì)多巴胺能神經(jīng)元的電活動在黑質(zhì)紋狀體系統(tǒng)的功能調(diào)節(jié)以及帕金森病中發(fā)揮重要作用,其放電頻率增加或放電模式向簇狀放電的轉(zhuǎn)換均促進(jìn)多巴胺的釋放,但興奮性過度增高可引起多巴胺能神經(jīng)元的死亡。而放電頻率降低1 Hz即可導(dǎo)致多巴胺的釋放下降10%,影響機(jī)體的運(yùn)動功能[23-24]。因此,闡明神經(jīng)毒素或其他致病因素對黑質(zhì)多巴胺能神經(jīng)元放電活動的影響,對于研究帕金森病的病理機(jī)制及治療措施是極其關(guān)鍵的。
本研究選用低濃度(10 μmol/L)的MPP+急性灌流黑質(zhì)多巴胺能神經(jīng)元,結(jié)果表明,MPP+對多巴胺能神經(jīng)元電活動的抑制作用具有時間依賴性。在開始灌流的5 min左右,多巴胺能神經(jīng)元的自發(fā)放電頻率是明顯增加的,但隨著灌流時間的延長,多巴胺能神經(jīng)元的放電頻率開始顯著減慢甚至被完全抑制。MASI等[25]的研究結(jié)果顯示,使用50 μmol/L的MPP+灌流黑質(zhì)腦片時,多巴胺能神經(jīng)元的放電頻率可在5 min左右受到明顯抑制,并沒有出現(xiàn)短時間的多巴胺能神經(jīng)元放電頻率增加。目前的研究認(rèn)為,MPP+主要通過在線粒體聚集,抑制線粒體復(fù)合體Ⅰ,引起ATP不足,激活鉀離子通道、HCN通道等多種離子通道,導(dǎo)致多巴胺能神經(jīng)元放電活動減慢[25-26]。我們推測,當(dāng)?shù)蜐舛鹊腗PP+短時間作用于多巴胺能神經(jīng)元時,多巴胺能神經(jīng)元處于應(yīng)激狀態(tài),通過提高自身興奮性釋放較多的多巴胺遞質(zhì)來進(jìn)行自身保護(hù)。隨著灌流時間延長,更多MPP+進(jìn)入多巴胺能神經(jīng)元并在線粒體中聚集,對線粒體的損傷作用增強(qiáng),超出多巴胺能神經(jīng)元的代償能力,因此,隨著灌流MPP+時間的延長,多巴胺能神經(jīng)元的放電頻率被逐漸抑制。高濃度的MPP+可快速進(jìn)入多巴胺能神經(jīng)元,對線粒體的損傷作用強(qiáng),在很短的時間內(nèi)就可以明顯抑制多巴胺能神經(jīng)元的放電活動。在灌流MPP+5 min時,多巴胺能神經(jīng)元的誘發(fā)放電頻率顯著增加,峰電位間隔時間顯著縮短,進(jìn)一步支持低濃度的MPP+可在短時間內(nèi)增強(qiáng)黑質(zhì)多巴胺能神經(jīng)元的興奮性。
之前的研究表明,神經(jīng)毒素MPTP/MPP+抑制線粒體復(fù)合體Ⅰ,引起活性氧的增多和細(xì)胞凋亡,許多肽類或激動劑可通過抗凋亡抗氧化途徑發(fā)揮神經(jīng)保護(hù)作用[27-29]。通過研究MPTP對黑質(zhì)多巴胺能神經(jīng)元電活動的調(diào)控,進(jìn)一步完善了其對多巴胺能神經(jīng)元損傷的作用機(jī)制,為帕金森病的治療提供了新的方向。
[參考文獻(xiàn)]
[1]LANGSTON J W, BALLARD P, TETRUD J W, et al. ?Chronic parkinsonism in humans due to a product of meperidine-analog synthesis[J]. ?Science(New York,N.Y.), 1983,219(4587):979-980.
[2]LANGSTON J W, LANGSTON E B, IRWIN I. MPTP-induced parkinsonism in human and non-human primates-clinical and experimental aspects[J]. ?Acta Neurologica Scandinavica. Supplementum, 1984,100(7):49-54.
[3]李愛英,王輝明,章政,等. 黃芩苷對MPTP致帕金森病模型小鼠行為能力影響[J]. ?青島大學(xué)醫(yī)學(xué)院學(xué)報, 2016,52(1):46-48.
[4]ALEXOUDI A, ALEXOUDI I, GATZONIS S. Parkinsons disease pathogenesis,evolution and alternative pathways:a review[J]. ?Revue Neurologique, 2018,174(10):699-704.
[5]BURNS R S, CHIUEH C C, MARKEY S P, et al. ?A primate model of parkinsonism:selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine[J]. ?Proceedings of the National Academy of Sciences of the United States of America, 1983,80(14):4546-4550.
[6]FORNAI F, SCHLUTER O M, LENZI P, et al. ?Parkinson-like syndrome induced by continuous MPTP infusion:convergent roles of the ubiquitin-proteasome system and alpha-synuclein[J]. ?Proceedings of the National Academy of Sciences of the United States of America, 2005,102(9):3413-3418.
[7]ZHANG Yunlong, LIU Yan, KANG Xinpan, et al. ?Ginse-noside Rb1 confers neuroprotection via promotion of glutamate transporters in a mouse model of Parkinsons disease[J]. ?Neuropharmacology, 2018,131(25):223-237.
[8]FULLER R W, HEMRICK-LUECKE S K. Mechanisms of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity to striatal dopamine neurons in mice[J]. ?Progress in Neuro-Psychopharmacology & Biological Psychiatry, 1985,9(5/6):687-690.
[9]IRWIN I,LANGSTON J W. Selective accumulation of MPP+ in the substantia nigra:a key to neurotoxicity[J]? ?Life Sciences, 1985,36(3):207-212.
[10]HUANG Dongping, XU Jing, WANG Jinghui, et al. ?Dynamic changes in the nigrostriatal pathway in the MPTP mouse mo-del of Parkinsons disease[J]. ?Parkinsons Disease, 2017, 2017(1):1-7.
[11]SMEYNE R J, JACKSON-LEWIS V. The MPTP model of Parkinsons disease[J]. ?Brain Research. Molecular Brain Research, 2005,134(1):57-66.
[12]LEE S B, KIM H T, YANG H O, et al. ?Anodal transcranial direct current stimulation prevents methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by modulating autophagy in an in vivo mouse model of Parkinsons di-sease[J]. ?Scientific Reports, 2018,8(1):15165.
[13]王月華,張崢,侯琳,等. MPTP細(xì)胞損傷模型中Ca2+濃度和β-鏈蛋白表達(dá)變化[J]. ?青島大學(xué)醫(yī)學(xué)院學(xué)報, 2016,52(3):253-256.
[14]LI Huan, JANG W, KIM H J, et al. ?Biochemical protective effect of 1,25-dihydroxyvitamin D-3 through autophagy induction in the MPTP mouse model of Parkinsons disease[J]. ?NeuroReport, 2015,26(12):669-674.
[15]SU Lingyan, LI Hao, LV Li, et al. ?Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation[J]. ?Autophagy, 2015,11(10):1745-1759.
[16]KIMM T, KHALIQ Z M, BEAN B P. Differential regulation of action potential shape and burst-frequency firing by BK and Kv2 channels in substantia nigra dopaminergic neurons[J]. ?Journal of Neuroscience, 2015,35(50):16404-16417.
[17]MEZA R C, LOPEZ-JURY L. Role of the axon initial segment in the control of spontaneous frequency of nigral dopaminergic neurons in vivo[J]. ?J Neurosci, 2018,38(3):733-744.
[18]HANSEN H H, ANDREASEN J T, WEIKOP P A, et al. ?The neuronal KCNQ channel opener retigabine inhibits locomotor activity and reduces forebrain excitatory
responses to the psycho stimulants cocaine,methylphenidate and phencyclidine[J]. ?European Journal of Pharmacology, 2007,570(1/3):77-88.
[19]SHI Limin, BIAN Xiling, QU Zhiqiang, et al. ?Peptide hormone ghrelin enhances neuronal excitability by inhibition of Kv7/KCNQ channels[J]. ?Nature Communications, 2013,4(2):1435-1447.
[20]AVERSA D, MARTINI A, GUATTEO E, et al. ?Reversal of dopamine-mediated firing inhibition through activation of the dopamine transporter in substantia nigra pars compacta neurons[J]. ?British Journal of Pharmacology, 2018,175(17):3534-3547.
[21]CANAVIER C C, EVANS R C, OSTER A M, et al. ?Implications of cellular models of dopamine neurons for disease[J]. ?Journal of Neurophysiology, 2016,116(6):2815-2830.
[22]薛寶,常曉麗,賈璐,等. Ghrelin抑制A型鉀通道電流對小鼠黑質(zhì)多巴胺能神經(jīng)元興奮性的影響[J]. ?青島大學(xué)學(xué)報(醫(yī)學(xué)版), 2018,54(2):127-129,133.
[23]SURMEIER D J, SCHUMACKER P T. Calcium,bioenerge-tics, and neuronal vulnerability in Parkinsons disease[J]. ?The Journal of Biological Chemistry, 2013,288(15):10736-10741.
[24]DRAGICEVIC E, SCHIEMANN J, LISS B. Dopamine midbrain neurons in health and Parkinsons disease:emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels[J]. ?Neuroscience, 2015,284(54):798-814.
[25]MASI A, NARDUCCI R, LANDUCCI E, et al. ?MPP+-dependent inhibition of Ih reduces spontaneous activity and enhances EPSP summation in nigral dopamine neurons[J]. ?British Journal of Pharmacology, 2013,169(1):130-142.
[26]YEE A G, LEE S M, HUNTER M R, et al. ?Effects of the Parkinsonian toxin MPP+ on electrophysiological properties of nigral dopaminergic neurons[J]. ?NeuroToxicology, 2014,45(4):1-11.
[27]李林靜,姜宏,王俊,等. Ghrelin 對MPTP小鼠帕金森病模型黑質(zhì)TH、Bcl-2和Bax mRNA表達(dá)的影響[J]. ?青島大學(xué)醫(yī)學(xué)院學(xué)報, 2007,43(4):283-285,288.
[28]CHEN H, XU J, LV Y, et al. ?Proanthocyanidins exert a neuroprotective effect via ROS/JNK signaling in MPTPinduced Parkinsons disease models in vitro and in vivo[J]. ?Molecular Medicine Reports, 2018,18(6):4913-4921.
[29]馮曉慶,袁良杰,惠雅,等. E2對MPP+誘導(dǎo)SH-SY5Y細(xì)胞損傷保護(hù)作用及G15的阻斷效應(yīng)[J]. ?青島大學(xué)學(xué)報(醫(yī)學(xué)版), 2018,54(1):6-9.