梁艷瓊 唐文 董文敏 吳偉懷 李銳 習(xí)金根 譚施北 鄭金龍 黃興 陸英 賀春萍 易克賢
摘要:【目的】明確橡膠樹(shù)內(nèi)生枯草芽孢桿菌菌株Czk1揮發(fā)性物質(zhì)的抑菌活性及其組分,為橡膠樹(shù)病害的生物防治提供參考。【方法】以橡膠樹(shù)紅根病菌GP010為指示菌,分別以5種不同培養(yǎng)基LB、TSB-YE、TSB、NB和PDA為營(yíng)養(yǎng)來(lái)源,利用雙皿對(duì)扣法和菌絲生長(zhǎng)速率法評(píng)定不同營(yíng)養(yǎng)條件下Czk1揮發(fā)性物質(zhì)對(duì)病原菌的作用活性強(qiáng)弱,篩選產(chǎn)抑菌揮發(fā)性物質(zhì)的最優(yōu)培養(yǎng)基;通過(guò)雙皿對(duì)扣法測(cè)定Czk1揮發(fā)性物質(zhì)對(duì)橡膠樹(shù)5種根病菌(紅根病菌、褐根病菌、白根病菌、紫根病菌和臭根病菌)和橡膠樹(shù)炭疽病菌的抑菌活性,并利用頂空固相微萃取—?dú)庀嗌V—質(zhì)譜法(HS-SPME-GC-MS)鑒定Czk1的揮發(fā)性物質(zhì)組分?!窘Y(jié)果】在LB培養(yǎng)基中,Czk1在不同濃度下的抑菌活性均優(yōu)于其他培養(yǎng)基,是Czk1產(chǎn)抑菌揮發(fā)性物質(zhì)的最優(yōu)培養(yǎng)基。Czk1揮發(fā)性物質(zhì)對(duì)6種參試病原菌均表現(xiàn)出良好的抑制作用,Czk1菌液濃度為105 CFU/mL時(shí)抑制率均在50.00%以上,Czk1菌液濃度為108 CFU/mL時(shí)抑制率在90.00%以上;Czk1揮發(fā)性物質(zhì)可抑制紫根病菌、炭疽病菌和臭根病菌色素的產(chǎn)生,促進(jìn)褐根病菌產(chǎn)生色素,并導(dǎo)致紫根病菌、褐根病菌和炭疽病菌菌絲生長(zhǎng)畸形;其對(duì)橡膠樹(shù)炭疽病菌孢子萌發(fā)抑制率為71.30%;其在土壤中對(duì)橡膠樹(shù)紅根病菌和褐根病菌仍具有較好的抑菌效果,抑制率分別為63.37%和54.57%。利用HS-SPME-GC-MS對(duì)Czk1所產(chǎn)揮發(fā)性物質(zhì)組分進(jìn)行分析,共分離鑒定獲得包括碳?xì)浠衔铩奉?、醇類、烯類、酚類、酯類、吡嗪類、醛類、酮類及其他類?3種揮發(fā)性物質(zhì)?!窘Y(jié)論】Czk1所產(chǎn)揮發(fā)性物質(zhì)可作為生防資源應(yīng)用于橡膠樹(shù)病害防治。
關(guān)鍵詞: 枯草芽孢桿菌;橡膠樹(shù)根病;揮發(fā)性物質(zhì);抑菌活性
中圖分類號(hào): S476? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2019)11-2465-10
Antifugal effect and components analysis of volatile organic compounds from Bacillus subtilis Czk1
LIANG Yan-qiong1, TANG Wen1, DONG Wen-min2, WU Wei-huai1, LI Rui1, XI Jin-gen1,
TAN Shi-bei1, ZHENG Jin-long1, HUANG Xing1, LU Ying1, HE Chun-ping1*, YI Ke-xian1*
(1Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs/Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests/Hainan Engineering Research Center for Biological Control of Tropical Crops Diseases and Insect Pests, Haikou? 571101, China; 2College of Plant Protection,Nanjing Agricultural University, Nanjing? 210095, China)
Abstract:【Objective】In order to provide scientific basis for the biological control of rubber tree diseases,the composition of volatile organic compounds of Bacillus subtilis Czk1(an endophyte of rubber tree) and its antagonistic activities were identified. 【Method】With Ganoderma pseudoferreum GP010 as the indicator bacteria and five media(LB, TSB-YE, TSB, NB and PDA) as nutrition source, the two-sealed-base-plates method and hyphagrowth rate method were used to detect the activity of Czk1 volatile organic compounds and to screen the optimum medium of produce antifungal volatile organic compounds under different nutrient conditions. The antifungal activity of Czk1 volatile organic compounds against five kinds root pathogens (G. pseudoferreum, Phellinus noxius, Rigidoprus lignosus, Helicobasidium compactum, Sphaerostilbe repens) and Colletotrichum gloeosporiodes of rubber trees was determined by the two-sealed-base-plates method. The volatile compounds from Czk1 were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS). 【Result】Antifungal activity of Czk1 on LB medium was better than other media. LB was the optimal medium for Czk1 producing antifungal volatile organic compounds. Czk1 volatile compounds showed high inhibitory effects on six pathogenic fungal. When the concentration of bacteria was 105 CFU/mL, the inhibitory rate was above 50.00%, and when the concentration was 108 CFU/mL, the inhibitory rate reached up to more than 90.00%. Czk1 volatile compounds could inhibit the production of H. compactum, P. noxius, S. repens and C. gloeosporiodes pathogen pigment, which led to hypha malformation of H. compactum,P. noxius and C. gloeosporiodes. Its inhibition rate on the spore germination of C. gloeosporioides was as high as 71.30%, and it still had good antifungal activity against G. pseudoferreum and P. noxius in soil, with the inhibition rates as 63.37% and 54.57%, respectively. The components of volatile organic compounds were analyzed by HS-SPME-GC-MS, 33 volatile organic compounds including hydrocarbons, amines, alcohols, alkenes, phenols, esters, pyrazines, aldehydes, ketones and others were isolated and identified. 【Conclusion】 Volatile organic compounds produced by Czk1 can be used as bio-control resources for the control of rubber tree diseases.
Key words: Bacillus subtilis; rubber tree root disease; volatile organic compounds; antifugal activity
0 引言
【研究意義】天然橡膠(Hevea brasiliensis)作為重要的工業(yè)原料,在我國(guó)熱帶地區(qū)廣泛種植(李建華等,2013;位明明等,2016)。隨著橡膠種植面積的擴(kuò)大和種植年限的增加,各種橡膠樹(shù)病害的發(fā)生也日趨嚴(yán)重,其中,橡膠樹(shù)根病是橡膠樹(shù)毀滅性病害之一,是限制我國(guó)橡膠單產(chǎn)提高的關(guān)鍵因子(王樹(shù)明等,2014)。目前報(bào)道的橡膠樹(shù)根部病害有8種(黃蔚寒和王金林,2010),我國(guó)橡膠樹(shù)上已發(fā)現(xiàn)7種,其中危害最大的是紅根病和褐根?。ɡ钤銎胶土_大全,2007;梁艷瓊等,2016)。根部病害使橡膠樹(shù)根系壞死,根莖疏導(dǎo)功能被破壞,并導(dǎo)致整株死亡,造成巨大的經(jīng)濟(jì)損失(高秀兵等,2010;何其光等,2011)。目前,防治橡膠樹(shù)根部病害主要采取挖溝隔離進(jìn)行預(yù)防,使用十三嗎啉等化學(xué)藥劑進(jìn)行灌根,但挖溝隔離耗時(shí)耗力,且只能起預(yù)防作用,無(wú)法從根本上挽救已染病橡膠樹(shù);此外,藥劑灌根長(zhǎng)期單一使用十三嗎啉,其防治效果會(huì)隨著使用年限增加而有所下降,且該藥劑價(jià)格昂貴,難以實(shí)現(xiàn)大面積推廣應(yīng)用(羅卓軍等,2011;詹興球和蔡江文,2012;賀春萍等,2013)。因此,亟待尋求環(huán)境友好、操作簡(jiǎn)便、價(jià)格便宜和安全有效的橡膠樹(shù)根病防治方法?!厩叭搜芯窟M(jìn)展】利用微生物及其代謝產(chǎn)物控制病原體以防治植物病害日益受到人們的關(guān)注和重視。微生物主要是通過(guò)營(yíng)養(yǎng)和空間位點(diǎn)競(jìng)爭(zhēng)、分泌抗菌物質(zhì)、誘導(dǎo)植物抗性和促進(jìn)植物生長(zhǎng)等方式發(fā)揮生防潛力(Zheng et al.,2013;Govindappa et al.,2014;Pieterse et al.,2014;陳志誼,2015;周小江等,2016)。其中,利用拮抗微生物產(chǎn)生的抗菌物質(zhì)進(jìn)行生物防治已成為研究的熱點(diǎn),如抗菌蛋白和新型抗生素的開(kāi)發(fā)及應(yīng)用已日益廣泛和深入(秦楠等,2015;Delgado et al.,2015;向亞萍等,2016;Lee et al.,2016)。微生物代謝過(guò)程中產(chǎn)生的揮發(fā)性物質(zhì)也是一個(gè)不可忽視的生防因子。周翠等(2011)報(bào)道枯草芽孢桿菌(Bacillus subtilis)所產(chǎn)生的揮發(fā)性物質(zhì)對(duì)楊樹(shù)潰瘍病菌(Botryosphaeria dothidea)、石榴瘡痂病菌(B. dothidea)、蘋果輪紋病菌(B. dothidea)、葡萄白腐病菌(Coniothyrium diplodiella)、楊樹(shù)腐爛病菌(Valsa sordida)、桑紫紋羽病菌(Helicobasidium purpureum)、合歡枯萎病菌(Fusarium oxysporum)和蘋果霉心病菌(Trichothecium roseum)菌絲生長(zhǎng)均具有一定的抑制作用。Rajer等(2017)報(bào)道枯草芽孢桿菌FA26產(chǎn)生的VOC顯著抑制馬鈴薯細(xì)菌環(huán)腐病菌(Clavibacter michiganensis sp.)的菌絲生長(zhǎng)。Gao等(2018)研究發(fā)現(xiàn),枯草芽孢桿菌CF-3培養(yǎng)24 h的發(fā)酵液中揮發(fā)性有機(jī)化合物可抑制灰霉病菌(Botrytis cinerea)、炭疽病菌(Colletotrichum gloeosporioide)、擴(kuò)展青霉(Penicillium expansum)、桃褐腐病菌(Monilinia fructicola)和鏈格孢菌(Alternaria alternata)的菌絲生長(zhǎng),平均抑菌率為59.97%。鄭香香等(2019)發(fā)現(xiàn)枯草芽孢桿菌X和解淀粉芽孢桿菌(B. amyloliquefaciens)B1、HB-2發(fā)酵液產(chǎn)生的揮發(fā)性氣體對(duì)早熟桃鏈格孢菌菌落的擴(kuò)展有明顯抑制作用?!颈狙芯壳腥朦c(diǎn)】微生物揮發(fā)性物質(zhì)的潛在作用活性已在許多研究中得到證實(shí),與脂肽類抗生素及抑菌蛋白等抑菌物質(zhì)相似,揮發(fā)性物質(zhì)在微生物的抑菌作用中亦占有一席之地??莶菅挎邨U菌菌株Czk1由中國(guó)熱帶農(nóng)業(yè)科學(xué)院環(huán)境與植物保護(hù)研究所特色熱帶作物病害課題組分離自橡膠樹(shù)根部,具有鐵載體產(chǎn)生能力,其抗菌譜廣,對(duì)橡膠樹(shù)5種根病菌紅根病菌(Ganoderma pseudoferreum)、褐根病菌(Phellinus noxius)、紫根病菌(H. compactum)、白根病菌(Rigidoprus lignosus)和臭根病菌(Sphaerostilbe repens)及橡膠樹(shù)炭疽病菌均具有較強(qiáng)的抑制作用,且抑菌效果穩(wěn)定、持效期長(zhǎng);可誘導(dǎo)橡膠植株產(chǎn)生系統(tǒng)抗性;能分泌脂肽類抗菌物質(zhì),抑制橡膠樹(shù)根病菌和炭疽病菌生長(zhǎng)(趙璐璐等,2011;樊蘭艷等,2013)。目前,針對(duì)枯草芽孢桿菌菌株Czk1揮發(fā)性物質(zhì)的抑菌活性及其組分尚不明確?!緮M解決的關(guān)鍵問(wèn)題】以5種橡膠樹(shù)根病菌(紅根病菌、褐根病菌、紫根病菌、白根病菌和臭根病菌)及橡膠樹(shù)炭疽病菌為研究靶標(biāo),通過(guò)雙皿對(duì)扣法測(cè)定枯草芽孢桿菌菌株Czk1所產(chǎn)揮發(fā)性物質(zhì)對(duì)病原真菌的抑菌活性,明確Czk1是否產(chǎn)生活性物質(zhì),并利用頂空固相微萃取—?dú)庀嗌V—質(zhì)譜聯(lián)用技術(shù)(HS-SPME-GC/MS)對(duì)Czk1產(chǎn)生揮發(fā)性物質(zhì)的成分進(jìn)行分析,評(píng)價(jià)其開(kāi)發(fā)潛力,為橡膠樹(shù)病害的生物防治提供科學(xué)依據(jù)。
1 材料與方法
1. 1 試驗(yàn)材料
1. 1. 1 供試菌株 拮抗細(xì)菌枯草芽孢桿菌菌株Czk1分離自海南省屯昌縣中坤農(nóng)場(chǎng)11隊(duì)染病橡膠樹(shù)樹(shù)根,供試6種病原菌菌株信息見(jiàn)表1,均由中國(guó)熱帶農(nóng)業(yè)科學(xué)院環(huán)境與植物保護(hù)研究所分離鑒定與保存。
1. 1. 2 培養(yǎng)基 LB培養(yǎng)基(LB液體培養(yǎng)基不加瓊脂):蛋白胨10.0 g,酵母膏5.0 g,NaCl 8.0 g,瓊脂 20.0 g,ddH2O補(bǔ)足至1000 mL,pH 7.0;PDA培養(yǎng)基:馬鈴薯200.0 g,葡萄糖15.0~20.0 g,瓊脂15.0~20.0 g,ddH2O補(bǔ)足至1000 mL;TSB-YE培養(yǎng)基:大豆蛋白胨5.0 g,胰蛋白胨15.0 g,酵母膏6.5 g,NaCl 5.0 g,ddH2O補(bǔ)足至1000 mL,pH 7.0;TSB培養(yǎng)基:大豆蛋白胨5.0 g,胰蛋白胨15.0 g,NaCl 10.0 g,ddH2O補(bǔ)足至1000 mL,pH 7.0;NB培養(yǎng)基:牛肉浸膏3.0 g,蛋白胨5.0 g,酵母膏2.0 g,葡萄糖10.0 g,ddH2O補(bǔ)足至1000 mL,pH 7.0。
1. 2 試驗(yàn)方法
1. 2. 1 外源營(yíng)養(yǎng)對(duì)Czk1揮發(fā)性物質(zhì)抑菌活性的影響 以橡膠樹(shù)紅根病菌GP010為指示菌,分別以5種不同培養(yǎng)基LB、TSB-YE、TSB、NB和PDA為營(yíng)養(yǎng)來(lái)源,參照Gao等(2017)的雙皿對(duì)扣法,根據(jù)菌絲生長(zhǎng)速率測(cè)定揮發(fā)性物質(zhì)對(duì)病菌的抑制率。將Czk1于LB培養(yǎng)基中活化,挑取單菌落接種于50 mL LB液體培養(yǎng)基中,37 ℃、180 r/min過(guò)夜培養(yǎng),用平板菌落計(jì)數(shù)法調(diào)節(jié)菌液濃度為104、105、106、107和108 CFU/mL。取100 μL已培養(yǎng)好的各濃度Czk1發(fā)酵液,分別均勻涂布到含有上述5種固體培養(yǎng)基的培養(yǎng)皿皿底(直徑為9 cm)。挑取病原菌菌塊(直徑5 mm)接種于含有PDA培養(yǎng)基的培養(yǎng)皿皿蓋,然后將接種有真菌的皿蓋與涂有細(xì)菌的皿底對(duì)扣,用封口膜密封,于28 ℃恒溫培養(yǎng)。以涂布不接細(xì)菌發(fā)酵液的各培養(yǎng)基為對(duì)照,當(dāng)對(duì)照組菌絲長(zhǎng)至2/3培養(yǎng)皿時(shí),采用十字交叉法測(cè)量菌落直徑,根據(jù)公式(1)計(jì)算抑制率,每處理重復(fù)5次。以抑制率評(píng)定不同營(yíng)養(yǎng)條件下Czk1所產(chǎn)揮發(fā)物的作用活性強(qiáng)弱,篩選產(chǎn)抑菌揮發(fā)物質(zhì)的最優(yōu)培養(yǎng)基供后續(xù)試驗(yàn)使用。
抑制率(%)=(對(duì)照菌落直徑-處理組菌落直
徑)/對(duì)照組菌落直徑×100 (1)
1. 2. 2 Czk1揮發(fā)性物質(zhì)的抑菌活性測(cè)定 以6株供試病原菌菌株GP010、Pn006、HC001、RL001、Sr001和RC178為指示菌,測(cè)定Czk1揮發(fā)物對(duì)病原真菌的抑制活性。選取1.2.1中篩選出的最優(yōu)培養(yǎng)基為細(xì)菌生長(zhǎng)培養(yǎng)基,PDA培養(yǎng)基為病原真菌生長(zhǎng)培養(yǎng)基,參照1.2.1的方法,每處理重復(fù)5次,以不接種拮抗菌的各培養(yǎng)基為對(duì)照,待對(duì)照組菌絲長(zhǎng)至2/3平皿時(shí),測(cè)量各平皿菌落直徑。按公式(1)計(jì)算抑制率。
1. 2. 3 Czk1揮發(fā)性物質(zhì)對(duì)病原菌菌絲形態(tài)的影響 以6株供試病原菌菌株GP010、Pn006、HC001、RL001、Sr001和RC178為指示菌,具體操作方法同1.2.1,挑取培養(yǎng)5 d的病原真菌菌落邊緣菌絲,在光學(xué)顯微鏡下觀察處理組與對(duì)照組菌絲形態(tài)差異。
1. 2. 4 Czk1揮發(fā)性物質(zhì)對(duì)病原真菌色素形成的影響 以產(chǎn)色素的病原真菌HC001、RC178、Pn006和Sr001為指示菌,具體操作方法同1.2.1。當(dāng)對(duì)照組或處理組菌落產(chǎn)生大量色素時(shí),觀察處理組病原菌產(chǎn)生色素的情況。
1. 2. 5 Czk1揮發(fā)性物質(zhì)對(duì)炭疽病菌孢子萌發(fā)的影響 以橡膠樹(shù)炭疽菌RC178為指示菌,測(cè)定Czk1對(duì)病原真菌孢子萌發(fā)的影響。將RC178接種在PDA培養(yǎng)基上,于28 ℃培養(yǎng)6 d,用滅菌水輕輕洗下表面孢子,調(diào)節(jié)孢子懸浮液濃度為106 CFU/mL備用。孢子萌發(fā)采用水瓊脂法,將500 μL水瓊脂溶液均勻涂布在載玻片上,待載玻片表面的水瓊脂凝固后,取30~50 μL孢子懸浮液平鋪在水瓊脂表面。吸取100 μL Czk1發(fā)酵液(108 CFU/mL)涂布于LB培養(yǎng)基上,在距離培養(yǎng)皿中心2 cm處放置2個(gè)滅菌的牛津杯,將涂有孢子懸浮液的載玻片放置在牛津杯上,保證真菌孢子與細(xì)菌不直接接觸,蓋上培養(yǎng)皿蓋并密封。以不涂布細(xì)菌發(fā)酵液的LB培養(yǎng)基為對(duì)照,28 ℃培養(yǎng)12 h后統(tǒng)計(jì)視野下孢子萌發(fā)率,按公式(3)計(jì)算孢子萌發(fā)抑制率,每處理重復(fù)3次,每個(gè)重復(fù)隨機(jī)觀察5個(gè)視野,每處理統(tǒng)計(jì)100個(gè)孢子。
孢子萌發(fā)率(%)=孢子萌發(fā)數(shù)/觀察總孢子數(shù)×
100 (2)
孢子萌發(fā)抑制率(%)=(對(duì)照萌發(fā)率-處理萌發(fā)率)/
對(duì)照萌發(fā)率×100 (3)
1. 2. 6 土壤中Czk1揮發(fā)性物質(zhì)的抑菌活性室內(nèi)測(cè)定 為進(jìn)一步評(píng)價(jià)Czk1揮發(fā)物的抑菌活性,以GP010和Pn006為指示菌,將細(xì)菌混合在土壤中進(jìn)行活性測(cè)定。滅菌土過(guò)40目篩,取10 g滅菌土混合10 mL細(xì)菌發(fā)酵液(108 CFU/mL),加入滅菌的培養(yǎng)皿皿底,將病原菌菌塊(直徑5 mm)接種于含有PDA培養(yǎng)基的培養(yǎng)皿皿蓋,將皿蓋與皿底對(duì)扣,密封培養(yǎng),以加入等量無(wú)菌水的滅菌土為對(duì)照,待對(duì)照組病原菌長(zhǎng)至2/3平皿時(shí),測(cè)量菌絲生長(zhǎng)直徑,計(jì)算抑制率,判定Czk1在土壤中產(chǎn)揮發(fā)物的能力及抑菌活性。
1. 2. 7 Czk1揮發(fā)性物質(zhì)的GC-MS鑒定 參考Gao等(2017)、Gao等(2018)的方法,在20 mL滅菌的頂空瓶中制作優(yōu)化的斜面培養(yǎng)基,取50 ?L Czk1種子液涂布接種于斜面培養(yǎng)基,用帶有膠墊的瓶蓋迅速密封,瓶蓋外層再用封口膜密封,置于28 ℃生化培養(yǎng)箱中培養(yǎng)48 h,以不接種的斜面培養(yǎng)基為空白對(duì)照,每處理重復(fù)3次。利用固相微萃取方法萃取頂空瓶中的揮發(fā)物。先將50/30 ?m DVB/CAR/PDMS、100 ?m PDMS、7 ?m PDMS和65 ?m PDMS/DVB萃取纖維頭(Supelco,USA)老化,然后將SPME針管插入頂空瓶中,于34 ℃水浴鍋中萃取吸附30 min;將萃取好的SPME纖維頭插入氣相色譜—質(zhì)譜聯(lián)用儀進(jìn)樣口,解析3 min后啟動(dòng)儀器開(kāi)始采集數(shù)據(jù)。色譜柱:HP-5MS(30 m×250 μm,0.25 μm);色譜條件:不分流模式;升溫程序:50 ℃保持2 min,再以4 ℃/min的速率升至100 ℃,保持1 min,然后再以10 ℃/min的速率升至200 ℃,保持1min,最后以25 ℃的速率升至250 ℃,保持5 min;氣相進(jìn)樣口溫度為250 ℃;載氣:氦氣。質(zhì)譜條件:離子源溫度230 ℃,四級(jí)桿溫度150 ℃,電離方式EI,電子能量70 eV,掃描質(zhì)量范圍35~600 m/z。以不接Czk1的空白培養(yǎng)基為對(duì)照。將所得氣體成分的質(zhì)譜分別與國(guó)際標(biāo)準(zhǔn)數(shù)據(jù)庫(kù)比對(duì)(Library of the National Institute of Standards and Technology,NIST),匹配率>85%,鑒定出揮發(fā)性物質(zhì)成分后,再將對(duì)照和處理中同時(shí)存在的化合物成分去掉,最終確定揮發(fā)性物質(zhì)的組分。
2 結(jié)果與分析
2. 1 外源營(yíng)養(yǎng)對(duì)Czk1揮發(fā)性物質(zhì)抑菌活性的影響
Czk1在不同營(yíng)養(yǎng)條件下所產(chǎn)揮發(fā)性物質(zhì)對(duì)供試病原真菌菌絲生長(zhǎng)的抑制作用如圖1所示。結(jié)果表明,在不同培養(yǎng)基培養(yǎng)條件下,Czk1揮發(fā)性物質(zhì)的抑菌活性存在明顯差異,其中,在LB和PDA培養(yǎng)基條件下,其抑菌活性優(yōu)于TSB和TSB-YE培養(yǎng)基條件;在NB培養(yǎng)基中,Czk1在較低培養(yǎng)濃度(104~105)時(shí)所產(chǎn)揮發(fā)性物質(zhì)抑菌活性較弱,在較高培養(yǎng)濃度(106~108)時(shí)明顯增強(qiáng);而在LB培養(yǎng)基中,Czk1在不同濃度下的抑菌活性均優(yōu)于其他培養(yǎng)基,因此,選擇LB培養(yǎng)基為枯草芽孢桿菌菌株Czk1產(chǎn)揮發(fā)性物質(zhì)的最優(yōu)培養(yǎng)基。
2. 2 Czk1揮發(fā)性物質(zhì)對(duì)病原真菌的抑制活性
Czk1所產(chǎn)揮發(fā)性物質(zhì)對(duì)供試病原真菌抑制活性如表2所示。結(jié)果表明,Czk1所產(chǎn)揮發(fā)性物質(zhì)對(duì)6種橡膠樹(shù)病原真菌具有強(qiáng)烈的抑制作用,隨著Czk1菌液濃度的增加,抑制作用逐漸增強(qiáng),當(dāng)菌液濃度為105 CFU/mL時(shí),所產(chǎn)揮發(fā)性物質(zhì)對(duì)6種病原真菌生長(zhǎng)的抑制率均在50.00%以上;當(dāng)菌液濃度為108 CFU/mL時(shí),抑制率在90.00%以上。
2. 3 Czk1揮發(fā)性物質(zhì)對(duì)病菌菌絲形態(tài)的影響
挑取揮發(fā)性物質(zhì)處理組的病原菌邊緣菌絲在顯微鏡下觀察,結(jié)果(圖2)發(fā)現(xiàn),Czk1所產(chǎn)揮發(fā)性物質(zhì)導(dǎo)致橡膠樹(shù)紫根病菌HC001、褐根病菌Pn006和橡膠樹(shù)炭疽病菌RC178菌絲生長(zhǎng)畸形,與對(duì)照組相比,處理組菌絲變細(xì),出現(xiàn)扭曲、打結(jié),而對(duì)橡膠樹(shù)紅根病菌GP010、白根病菌RL001和臭根病菌Sr001的菌絲形態(tài)無(wú)明顯影響。
2. 4 Czk1揮發(fā)性物質(zhì)對(duì)病原真菌色素形成的影響
如圖3所示,Czk1所產(chǎn)揮發(fā)性物質(zhì)能完全抑制紫根病菌HC001和炭疽病菌RC178的色素產(chǎn)生;對(duì)臭根病菌Sr001的色素有輕微的抑制作用;能促進(jìn)褐根病菌Pn006產(chǎn)生色素,在對(duì)照組尚未產(chǎn)生色素時(shí),處理組已產(chǎn)生大量色素。說(shuō)明Czk1揮發(fā)性物質(zhì)對(duì)真菌產(chǎn)色素的影響不是簡(jiǎn)單的抑制或促進(jìn)作用,而是針對(duì)不同真菌會(huì)產(chǎn)生不同的影響。
2. 5 Czk1揮發(fā)性物質(zhì)對(duì)炭疽病菌孢子萌發(fā)的影響
孢子萌發(fā)試驗(yàn)結(jié)果顯示,對(duì)照組橡膠樹(shù)炭疽病菌RC178孢子的萌發(fā)率為65.52%,經(jīng)Czk1揮發(fā)性物質(zhì)處理的炭疽病菌孢子萌發(fā)率僅18.81%,萌發(fā)抑制率達(dá)71.30%。顯微鏡觀察發(fā)現(xiàn),處理組孢子形態(tài)與對(duì)照組無(wú)明顯差異(圖4),說(shuō)明Czk1揮發(fā)性物質(zhì)雖可抑制病原菌孢子萌發(fā),但不會(huì)導(dǎo)致孢子畸形。
2. 6 土壤中Czk1揮發(fā)性物質(zhì)的抑菌活性室內(nèi)測(cè)定結(jié)果
當(dāng)Czk1發(fā)酵液濃度為108 CFU/mL時(shí),所產(chǎn)揮發(fā)性物質(zhì)對(duì)橡膠樹(shù)紅根病菌GP010和褐根病菌Pn006的抑制率分別為63.37%和54.57%(圖5),表明Czk1在土壤中所產(chǎn)揮發(fā)性物質(zhì)對(duì)病原真菌仍具有較好的抑制作用,是其應(yīng)用于生產(chǎn)實(shí)際的基本保障。
2. 7 Czk1揮發(fā)性物質(zhì)的GC-MS鑒定結(jié)果
通過(guò)GC-MS對(duì)Czk1揮發(fā)性物質(zhì)進(jìn)行測(cè)定,總離子流圖如圖6所示。依據(jù)NIST標(biāo)準(zhǔn)譜庫(kù)將所測(cè)的揮發(fā)性物質(zhì)進(jìn)行物質(zhì)匹配分析,排除LB培養(yǎng)基處理及Czk1+LB培養(yǎng)基處理中共有的物質(zhì),將4種萃取頭分別鑒定得到的揮發(fā)性物質(zhì)進(jìn)行匯總,共收集獲得33種揮發(fā)性物質(zhì),包括碳?xì)浠衔铮?3種)、胺類(1種)、醇類(1種)、烯類(1種)、酚類(4種)、酯類(3種)、吡嗪類(1種)、醛類(2種)、酮類(5種)和其他類(2種)(表3)。
3 討論
國(guó)內(nèi)外研究發(fā)現(xiàn),細(xì)菌所產(chǎn)揮發(fā)性物質(zhì)拮抗植物病原真菌的方式主要表現(xiàn)為:抑制孢子形成或萌發(fā),導(dǎo)致孢子畸形(崔曉等,2019);抑制菌絲生長(zhǎng),導(dǎo)致菌絲生長(zhǎng)畸形(崔曉等,2019);抑制菌絲色素生成(Chaurasia et al.,2005;Elkahoui et al.,2015;Raza et al.,2015)等。黃福興(2008)研究發(fā)現(xiàn),枯草芽孢桿菌BS-2所產(chǎn)揮發(fā)性物能顯著抑制木霉(Trichoderma)菌絲的生長(zhǎng)及孢子萌發(fā)。張成省等(2009)研究發(fā)現(xiàn),枯草芽孢桿菌Tpb55菌株所產(chǎn)揮發(fā)性物質(zhì)對(duì)煙草赤星病菌(A. alternata)具有抑制作用,其不僅能抑制病原菌菌絲生長(zhǎng)及孢子產(chǎn)生,還能延緩菌絲黑色素的生成。周翠等(2011)從石榴果實(shí)中分離得到一株枯草芽孢桿菌,其揮發(fā)性物質(zhì)對(duì)8種林果病原菌具有抑制作用,且能導(dǎo)致部分病原真菌菌絲畸形并抑制病原真菌色素的產(chǎn)生。本研究中,Czk1所產(chǎn)揮發(fā)性物質(zhì)對(duì)6種橡膠樹(shù)病原真菌的生長(zhǎng)均具有明顯的抑制作用,導(dǎo)致部分真菌菌絲畸形;該菌除僅對(duì)橡膠樹(shù)褐根病菌色素的產(chǎn)生有促進(jìn)作用外,對(duì)橡膠樹(shù)紫根病菌HC001、炭疽病菌RC178和臭根病菌Sr001的色素產(chǎn)生均有抑制作用;同時(shí),揮發(fā)性物質(zhì)能抑制橡膠樹(shù)炭疽病菌RC178孢子的萌發(fā)。本研究結(jié)果表明,Czk1揮發(fā)性物質(zhì)對(duì)不同病原真菌產(chǎn)生不同的抑制效果,但其作用方式是否一致還有待進(jìn)一步探究。
與脂肽類物質(zhì)及其他抗菌物質(zhì)相比,揮發(fā)性物質(zhì)中的抑菌物質(zhì)更易在空氣、土壤中擴(kuò)散和滲透,能更高效抑制病原菌(Tahir et al.,2017a;王靜等,2018)。本研究中,Czk1在土壤中所產(chǎn)揮發(fā)性物質(zhì)對(duì)橡膠樹(shù)紅根病菌GP010和橡膠樹(shù)褐根病菌Pn006的抑制率分別為63.37%和54.57%,再次印證揮發(fā)性物質(zhì)可在土壤中滲透、擴(kuò)散,更能有效抑制病原菌。
利用微生物正常生命代謝活動(dòng)獲得天然的揮發(fā)性有機(jī)化合物,是近年來(lái)國(guó)際上較活躍的研究領(lǐng)域。對(duì)這些天然的、非化學(xué)合成氣體物質(zhì)的開(kāi)發(fā)和利用逐步受到關(guān)注,而成為研究熱點(diǎn)(陳奕鵬等,2018)。芽孢桿菌具有廣譜抑菌活性,可產(chǎn)生多種揮發(fā)性抑菌物質(zhì),利用其揮發(fā)性抑菌物質(zhì)在植物促生、抗性增強(qiáng)和病害防控等方面的研究也越來(lái)越受關(guān)注。大量研究表明,芽孢桿菌產(chǎn)生的許多揮發(fā)性化合物如醇類、酸類、醛類、酮類和酯類等可在不同程度上抑制植物病原真菌的生長(zhǎng)(陳華等,2008;Ongena and Jacques,2008;李寶慶等,2010;Raza et al.,2016)。Gao等(2017)報(bào)道貝萊斯芽孢桿菌(B. velezensis)ZSY-1產(chǎn)生的揮發(fā)性物質(zhì)(2,5-二甲基吡嗪、苯并噻唑、4-氯-3-甲基苯甲酸和2,4-二叔丁基苯酚)對(duì)Alternaria solani和Botrytis cinerea具有顯著的抗真菌活性。Gotor-Vila等(2017)發(fā)現(xiàn)解淀粉芽孢桿菌CPA-8產(chǎn)生的揮發(fā)性物質(zhì)(1,3-戊二烯、3-羥基-2-丁酮和噻吩)對(duì)3種甜櫻桃果實(shí)采后病害病原菌Monilinia laxa、M. fructicola和Botrytis cinera具有較好抑制作用。Tahir等(2017a)發(fā)現(xiàn)枯草芽孢桿菌SYST2產(chǎn)生的揮發(fā)性物質(zhì)(沙丁胺醇和1,3-丙二醇)可促進(jìn)植物生長(zhǎng)。Tahir等(2017b)報(bào)道解淀粉芽孢桿菌FZB42和LSSC22產(chǎn)生的揮發(fā)性物質(zhì)(苯甲醛、1,2-苯并異噻唑-3-酮和1,3-丁二烯)顯著抑制青枯雷爾氏菌(Ralstonia solanacearum)的菌落大小、細(xì)胞活力和運(yùn)動(dòng)性,并對(duì)趨化性產(chǎn)生負(fù)面影響。本研究中,枯草芽孢桿菌Czk1產(chǎn)生的揮發(fā)性物質(zhì)同樣可有效抑制6種橡膠樹(shù)病原真菌的菌絲生長(zhǎng)和炭疽菌孢子萌發(fā),但該菌株揮發(fā)性物質(zhì)中的主要抑菌組分具體是哪一種成分還有待進(jìn)一步證實(shí)。
枯草芽孢桿菌作為植物病害生物防治的重要資源之一,其多種多樣的生防機(jī)制是其在生物農(nóng)藥領(lǐng)域廣泛應(yīng)用的基本前提。生防枯草芽孢桿菌能分泌多種抗菌物質(zhì)并對(duì)寄主植物有促生作用(Ryu et al.,2004;Farag et al.,2006;Rath et al.,2018),能誘導(dǎo)植物獲得系統(tǒng)抗性(張振華,2011),多種機(jī)制相互結(jié)合,在防治植物病害方面具有巨大潛力。而揮發(fā)性物質(zhì)在土壤和空氣中具有更強(qiáng)的滲透和擴(kuò)散能力,在生防菌拮抗病原菌的過(guò)程中發(fā)揮重要作用(陳華等,2008;李寶慶等,2010;Li et al.,2012)。樊蘭艷等(2013)通過(guò)提取枯草芽孢桿菌Czk1發(fā)酵液中的抑菌物質(zhì),發(fā)現(xiàn)該菌株能產(chǎn)生脂肽類物質(zhì)抑制病原真菌生長(zhǎng)。本研究分析了Czk1揮發(fā)性物質(zhì)對(duì)橡膠樹(shù)病原真菌的抑制作用,發(fā)現(xiàn)其抑菌作用并不單純依靠脂肽類物質(zhì),而是多種機(jī)制相互結(jié)合、相互促進(jìn)的結(jié)果,該結(jié)論為橡膠樹(shù)病害的生物防治打下了理論基礎(chǔ)。
4 結(jié)論
枯草芽孢桿菌菌株Czk1揮發(fā)性物質(zhì)對(duì)供試5種橡膠樹(shù)根病菌和橡膠樹(shù)炭疽病菌均具有一定的抑制作用,其對(duì)病原真菌菌絲形態(tài)及產(chǎn)色素的影響各不相同;Czk1在土壤中所產(chǎn)揮發(fā)性物質(zhì)對(duì)橡膠樹(shù)2種主要根病菌紅根病菌和褐根病菌均具有較好的抑制效果。因此,Czk1所產(chǎn)揮發(fā)性物質(zhì)可作為生防資源應(yīng)用于橡膠樹(shù)病害防治。
參考文獻(xiàn):
陳華,鄭之明,余增亮. 2008. 枯草芽孢桿菌JA脂肽類及揮發(fā)性物質(zhì)抑菌效應(yīng)的研究[J]. 微生物學(xué)通報(bào),35(1):1-4. [Chen H,Zheng Z M,Yu Z L. 2008. Antagonistic properties of lipopeptides and volatiles produced by Bacillus subtilis JA[J]. Microbiology,35(1): 1-4.]
陳奕鵬,楊揚(yáng),桑建偉,蔡吉苗,徐春華,黃貴修. 2018. 拮抗內(nèi)生芽孢桿菌BEB17分離鑒定及其揮發(fā)性物質(zhì)抑菌活性分析[J]. 植物病理學(xué)報(bào),48(4):537-546. [Chen Y P,Yang Y,Sang J W,Cai J M,Xu C H,Huang G X. 2018. Isolation and identification of antagonistic endophytic Bacillus BEB17 and analysis of antibacterial activity of vo-latile organic compounds[J]. Acta Phytopathologica Sinica,48(4):537-546.]
陳志誼. 2015. 芽孢桿菌類生物殺菌劑的研發(fā)與應(yīng)用[J].中國(guó)生物防治學(xué)報(bào),31(5):723-732. [Chen Z Y. 2015. Research and application of bio-fungicide with Bacillus spp.[J]. Chinese Journal of Biological Control,31(5):723-732.]
崔曉,徐艷霞,劉俊杰,郭兆奎,王光華. 2019. 芽孢桿菌在農(nóng)業(yè)生產(chǎn)中的應(yīng)用[J]. 土壤與作物,8(1):32-42. [Cui X,Xu Y X,Liu J J,Guo Z K,Wang G H. 2019. Advances of Bacillus application in agriculture: A review[J]. Soils and Crops,8(1):32-42.]
樊蘭艷,賀春萍,梁艷瓊,鄭肖蘭,吳偉懷,李銳,鄭服叢. 2013. 橡膠樹(shù)枯草芽孢桿菌Czk1抑菌活性物質(zhì)的理化性質(zhì)[J]. 熱帶生物學(xué)報(bào),4(1):36-44. [Fan L Y,He C P,Liang Y Q,Zheng X L,Wu W H,Li R,Zheng F C. 2013. Characteristics of the antimicrobial active component of Bacillus subtilis Strain Czk1[J]. Journal of Tropical Biology,4(1):36-44.]
高秀兵,李增平,李曉娜,鄭服叢. 2010. 橡膠樹(shù)幾種根病的人工接種方法[J]. 熱帶作物學(xué)報(bào),31(4):626-630. [Gao X B,Li Z P,Li X N,Zheng F C. 2010. Artificial inoculation methods of root diseases to rubber(Hevea brasiliensis) trees[J]. Chinese Journal of Tropical Crops,31(4): 626-630.]
賀春萍,李銳,吳偉懷,鄭肖蘭,吳川穎,梁艷瓊. 2013. 12種殺菌劑對(duì)橡膠樹(shù)褐根病菌的毒力測(cè)定[J]. 熱帶作物學(xué)報(bào),34(10):1987-1990. [He C P,Li R,Wu W H,Zheng X L,Wu C Y,Liang Y Q. 2013. Evaluation of 12 fungicides for suppression of Phellinus noxius[J]. Chinese Journal of Tropical Crops,34(10):1987-1990.]
何其光,鄔國(guó)良,鄭服叢. 2011. 橡膠樹(shù)根病化學(xué)防治試驗(yàn)初報(bào)[J]. 中國(guó)熱帶農(nóng)業(yè),(4):43-44. [He Q G,Wu G L,Zheng F C. 2011. Preliminary report on chemical control of rubber root disease[J]. China Tropical Agriculture,(4): 43-44.]
黃福興. 2008. 枯草芽孢桿菌BS-2對(duì)病原真菌的抑制作用及其活性成分分析[D]. 福州:福建農(nóng)林大學(xué). [Huang F X. 2008. Inhibitory effeets and antifungal active substance of Bacillus subtilis BS-2 on phthogen[D]. Fuzhou:Fujian Agricultural and Forestry University.
黃蔚寒,王金林. 2010. 橡膠樹(shù)根病及其防治[J]. 中國(guó)熱帶農(nóng)業(yè),(S):93-95. [Huang W H,Wang J L. 2010. Rubber tree root disease and its prevention[J]. China Tropical Agriculture,(S): 93-95.]
李寶慶,鹿秀云,郭慶港,錢常娣,李社增,馬平. 2010. 枯草芽孢桿菌BAB-1產(chǎn)脂肽類及揮發(fā)性物質(zhì)的分離和鑒定[J].中國(guó)農(nóng)業(yè)科學(xué),43(17):3547-3554. [Li B Q,Lu X Y,Guo Q G,Qian C D,Li S Z,Ma P. 2010. Isolation and identification of lipopeptides and volatile compounds produced by Bacillus subtilis strain BAB-1[J]. Scientia A-gricultura Sinica,43(17):3547-3554.]
李建華,王春燕,蔣菊生,彭宗波. 2013. 天然橡膠樹(shù)的綜合開(kāi)發(fā)利用現(xiàn)狀、問(wèn)題及對(duì)策分析[J]. 熱帶農(nóng)業(yè)科學(xué),33(6):71-74. [Li J H,Wang C Y,Jiang J S,Peng Z B. 2013. Current situation,problems and countermeasures of comprehensive development and utilization of Hevea brasiliensis[J]. Chinese Journal of Tropical Agriculture,33(6):71-74.]
李增平,羅大全. 2007. 橡膠樹(shù)病蟲(chóng)害診斷圖譜[M]. 北京:中國(guó)農(nóng)業(yè)出版社:59-86. [Li Z P,Luo D Q. 2007. Diagnostic map of rubber tree pests and diseases[M]. Beijing:China Agriculture Press:59-86.]
梁艷瓊,吳偉懷,李銳,鄭肖蘭,鄭金龍,習(xí)金根,賀春萍,易克賢. 2016. 橡膠樹(shù)褐根病菌的分子檢測(cè)[J]. 熱帶作物學(xué)報(bào),37(3):576-581. [Liang Y Q,Wu W H,Li R,Zheng X L,Zheng J L,Xi J G,He C P,Yi K X. 2016. Molecular detection of Phellinus noxius in rubber tree[J]. Chinese Journal of Tropical Crops,37(3):576-581.]
羅卓軍,吳少偉,郭培照,鄭金鋒. 2011. 十三嗎啉防治橡膠樹(shù)根病效應(yīng)總結(jié)[J]. 中國(guó)熱帶農(nóng)業(yè),(1):58-59. [Luo Z J,Wu S W,Guo P Z,Zheng J F. 2011. Summary of the effect of tri-morpholine on the control of rubber tree root disease[J]. China Tropical Agriculture,(1): 58-59.]
秦楠,郝林,李鑫. 2015. 解淀粉芽孢桿菌HRH317抗菌蛋白的分離純化及其抗菌作用[J]. 植物保護(hù)學(xué)報(bào),42(5):813-819. [Qin N,Hao L,Li X. 2015. Isolation,purification and inhibitive effect of antifungal protein of Bacillus amy-loliquefaciens HRH317[J]. Journal of Plant Protection,42(5):813-819.]
王靜,曹建敏,陳德鑫,邱軍,王曉強(qiáng),馮超,王文靜. 2018. 短小芽孢桿菌AR03揮發(fā)性有機(jī)物的抑菌活性及其組分分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),51(10):1908-1919. [Wang J,Cao J M,Chen D X,Qiu J,Wang X Q,F(xiàn)eng C,Wang W J. 2018. Antimicrobial effect and components analysis of volatile organic compounds from Bacillus pumilus AR03[J]. Scientia Agricultura Sinica,51(10):1908-1919.]
王樹(shù)明,張勇,白朝良,孔祥勇,周明. 2014. 河口植膠區(qū)橡膠樹(shù)根病發(fā)生特點(diǎn)及綜合治理分析[J]. 熱帶農(nóng)業(yè)科學(xué),34(2):63-68. [Wang S M,Zhang Y,Bai Z L,Kong X Y,Zhou M. 2014. Developing characteristics and integrated control of rubber tree root disease in Hekou Rubber plantation areas[J]. Chinese Journal of Tropical Agriculture,34(2):63-68.]
位明明,李維國(guó),黃華孫,羅萍,和麗崗. 2016. 中國(guó)天然橡膠主產(chǎn)區(qū)橡膠樹(shù)品種區(qū)域配置建議[J]. 熱帶作物學(xué)報(bào),37(8):1634-1643. [Wei M M,Li W G,Huang H S,Luo P,He L G. 2016. Regional configuration of rubber tree varie-ties in the main producing areas in China[J]. Chinese Journal of Tropical Crops,37(8):1634-1643.]
向亞萍,周華飛,劉永鋒,陳志誼. 2016. 解淀粉芽孢桿菌 B1619脂肽類抗生素的分離鑒定及其對(duì)番茄枯萎病菌的抑制作用[J]. 中國(guó)農(nóng)業(yè)科學(xué),49(15):2935-2944. [Xiang Y P,Zhou H F,Liu Y F,Chen Z Y. 2016. Isolation and identification of lipopeptide antibiotics produced by Bacillus amyloliquefaciens B1619 and the inhibition of the lipopeptide antibiotics to Fusarium oxysporum f. sp. lycopersici[J]. Chinese Agricultural Science,49(15):2935-2944.]
詹興球,蔡江文. 2012. 75%十三嗎啉乳油防治橡膠紅根病田間藥效試驗(yàn)[J]. 熱帶農(nóng)業(yè)科學(xué),32(5): 59-60. [Zhan X Q,Cai J W. 2012. Field efficacy trials of 75% tridemorph EC against Ganoderma pseudoferreum(Wakef.) of hevea[J]. Chinese Journal of Tropical Agriculture,32(5): 59-60.]
張成省,孔凡玉,劉朝科,杜衛(wèi)民,李文剛,王靜. 2009. 枯草芽孢桿菌Tpb55揮發(fā)物對(duì)煙草的防病促生效應(yīng)[J]. 中國(guó)生物防治,25(3):245-249. [Zhang C S,Kong F Y,Liu Z K,Du W M,Li W G,Wang J. 2009. Tobacco growth enhancement and disease protection by the volatile-produc-ting Bacillus subtilis Tpb55[J]. Chinese Journal of Biological Control,25(3):245-249.]
張振華. 2011. 生防多粘芽孢桿菌SQR-21的定殖與誘導(dǎo)植物系統(tǒng)抗性研究[D]. 南京:南京農(nóng)業(yè)大學(xué). [Zhang Z H. 2011. Colonilization and induction of plant systemic resistance by biocontrol agent Paenibacillus polymyxa SQR-21[D]. Nanjing:Nanjing Agricultural University.]
趙璐璐,賀春萍,鄭肖蘭,樊蘭艷,鄭服叢. 2011. 枯草芽孢桿菌Czk1菌株對(duì)橡膠樹(shù)根病菌的抑制作用及對(duì)炭疽病生防效果研究初報(bào)[J]. 南方農(nóng)業(yè)學(xué)報(bào),42(7):740-743.[Zhao L L,He C P,Zheng X L,F(xiàn)an L Y,Zheng F C. 2011. Effect of Bacillus subtilis strain Czk1 on different rubber root pathogens and in vitro control of Colletotrichum gloeosporioides on rubber leaf[J]. Journal of Sou-thern Agriculture,42(7):740-743.]
鄭香香,張娜,閻瑞香,陳存坤,關(guān)文強(qiáng). 2019. 不同芽孢桿菌對(duì)極早熟桃采后鏈格孢菌的防治效果及其發(fā)酵液揮發(fā)性物質(zhì)成分分析[J]. 食品工業(yè)科技,40(14):144-150. [Zheng X X,Zhang N,Yan R X,Chen C K,Guan W Q. 2019. Control effects of different Bacillus strains against postharvest Alternaria alternata of super-early maturing peach and analysis of volatile organic compounds of fermented broth[J]. Science and Technology of Food Industry,40(14):144-150.]
周翠,喬魯芹,金靜,馬躍,趙相濤,劉會(huì)香. 2011. 一株枯草芽孢桿菌揮發(fā)性物質(zhì)的抑菌作用初步研究[J]. 農(nóng)藥學(xué)學(xué)報(bào),13(2):201-204. [Zhou C,Qiao L Q,Jin J,Ma Y,Zhao X T,Liu H X. 2011. Preliminary study on the inhibitory effect of the volatile substances produced by Bacillus subtilis[J]. Chinese Journal of Pesticide Science,13(2):201-204.]
周小江,馬湘君,張久明,李闖,田黎. 2016. 兩株海洋極端生境微生物防治番茄灰霉及促進(jìn)抗鹽抗寒作用研究[J]. 中國(guó)生物防治學(xué)報(bào),32(2):244-250. [Zhou X J,Ma X J,Zhang J M,Li C,Tian L. 2016. Effects of two marine microorganisms on tomato leaf mold and their resistance to salt and cold[J]. Chinese Journal of Biological Control,32(2):244-250.]
Chaurasia B,Pandey A,Palni L M S,Trivedi P,Kumar B,Colvin N. 2005. Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro[J]. Microbiological Research,160(1): 75-81.
Delgado J,Owens R A,Doyle S,Asensio M A,Nú?ez F. 2015. Impact of the antifungal protein PgAFP from Penicillium chrysogenum on the protein profile in Aspergillus flavus[J]. Applied Microbiology and Biotechnology,99(20): 8701-8715.
Elkahoui S,Djébali N,Yaich N,Azaiez S,Hammami M,Essid R,Limam F. 2015. Antifungal activity of volatile compounds-producing Pseudomonas P2 strain against Rhizoctonia solani[J]. World Journal of Microbiology and Biotechnology,31(1):175-185.
Farag M A,Ryu C M,Sumner LW,Paré P W. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants[J]. Phytochemistry(Amsterdam),67(20):2262-2268.
Gao H Y,Li P Z,Xu X X,Zeng Q,Guan W Q. 2018. Research on volatile organic compounds from Bacillus subtilis CF-3: Biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation[J]. Frontiers in Microbiology,9:456-471.
Gao Z F,Zhang B J ,Liu H P,Han J C,Zhang Y J. 2017. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biological Control,105:27-39.
Gotor-Vila A,Teixid N,Di Francesco A,Usall J,Ugolini L,Torres R,Mari M. 2017. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry[J].Food Microbiology,64:219-225.
Govindappa M,Rai V R,Lokesh S. 2014. Induction of resistance against Cercospora leaf spot in safflower by seed treatment with plant growth-promoting rhizobacteria[J]. Archives of Phytopathology and Plant Protection,47(20): 2479-2492.
Lee M H,Lee J,Nam Y D,Lee J S,Seo M J,Yi S H. 2016. Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang,a Korean traditional fermented soybean food[J]. International Journal of Food Microbiology,221:12-18.
Li Q L,Ning P,Zheng L,Huang J B,Li G Q,Hsiang T. 2012. Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit[J]. Biological Control,61(2):113-120.
Ongena M,Jacques P. 2008. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol[J]. Trends in Microbiology,16(3):115-125.
Pieterse C M J,Zamioudis C,Berendsen R L,Weller D M,Van Wees S C,Bakker P A H M. 2014. Induced systemic resistance by beneficial microbes[J]. Annual Review of Phytopathology,52(1): 347-375.
Rajer F U,Wu H J,Xie Y L,Xie S S,Raza W,Tahir H A S,Gao X W. 2017. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus,the causal agent of bacterial ring rot of potato[J]. Microbiology,163(4):523-530.
Rath M,Mitchell T R,Gold S E. 2018.Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent[J]. Microbiological Research,208:76-84.
Raza W,Yuan J,Ling N,Huang Q W,Shen Q R. 2015. Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates andorganic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum[J]. Biological Control,80:89-95.
Raza W,Wang J C,Wu YC,Ling N,Wei Z,Huang Q W,Shen Q R. 2016. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum[J]. Applied Microbiolog Biotechnolog,100(17):7639-7650.
Ryu C M,F(xiàn)arag Mohamed A,Hu C H,Reddy Munagala S,Kloepper Joseph W,Paré Paul W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis[J]. Plant Physiology,134(3):1017-1026.
Tahir H A S,Gu Q,Wu H J,Raza W,Hanif A,Wu L M,Colman M V,Gao X W. 2017a. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2[J]. Frontiers in Microbiology,8:171-182.
Tahir H A S,Gu Q,Wu H J,Niu Y D,Huo R,Gao X W. 2017b. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt[J]. Scientific Reports,7:40481.
Zheng L,Bae Y M,Jung K S,Heu S,Lee S Y. 2013. Antimicrobial activity of natural antimicrobial substances against spoilage bacteria isolated from fresh produce[J]. Food Control,32(2): 665-672.
(責(zé)任編輯 麻小燕)
南方農(nóng)業(yè)學(xué)報(bào)2019年11期