邢志強 席瑞澤 楊永強 朱俊 胡紅青 付慶靈
摘要:【目的】明確土壤水含量與氮肥類型對堿性水稻土N2O釋放總量及釋放途徑的影響,為制定合理的農(nóng)田氮素管理措施及減少土壤N2O排放提供理論依據(jù)?!痉椒ā恳猿蓖列运就粒╬H 7.9)為供試土壤,通過室內(nèi)培養(yǎng)調(diào)整不同的土壤水含量,即調(diào)節(jié)土壤最大持水量(WHC)分別為50%、80%、100%、120%和160%,施用尿素與硫酸銨(N 100 mg/kg)兩種氮肥,使用乙炔(C2H2,10 Pa)與氧氣(O2,100 kPa)抑制100% WHC時不同氮肥處理的自養(yǎng)硝化與反硝化過程,利用氣相色譜及流動分析儀測定不同處理下土壤的N2O排放量、硝態(tài)氮與銨態(tài)氮含量?!窘Y(jié)果】對比不施肥處理(CK),尿素和硫酸銨處理的N2O排放速率與累計排放量明顯提高,其中尿素對N2O排放速率的影響大于硫酸銨,且隨著土壤水含量的增加,尿素和硫酸銨處理的N2O排放速率均呈先增大后減小的變化趨勢。施氮后土壤自養(yǎng)硝化和異養(yǎng)硝化作用中N2O排放速率均有所提高,且施氮處理自養(yǎng)硝化對N2O排放的貢獻大于異養(yǎng)硝化作用,但尿素與硫酸銨對自養(yǎng)和異養(yǎng)硝化過程N2O排放貢獻的影響存在差異。硫酸銨提高了自養(yǎng)硝化對N2O排放的貢獻,降低了異養(yǎng)硝化的貢獻,分別由CK的31.0%提高到49.0%,以及從63.0%降低至5.3%;尿素卻同時降低了自養(yǎng)硝化和異養(yǎng)硝化對N2O排放的貢獻,分別由31.0%降低到25.0%及由63.0%降低到1.7%。【結(jié)論】堿性水稻土N2O釋放速率隨土壤水含量的增加呈先增加后減小的趨勢,不同土壤水含量下尿素的N2O累積釋放量均高于硫酸銨。添加氮肥降低了異樣硝化對N2O釋放的貢獻,硫酸銨與尿素分別由自養(yǎng)硝化和反硝化作用起主導(dǎo)作用。因此,旱地土壤施用尿素、水田施用銨態(tài)氮肥有利于減少N2O釋放。
關(guān)鍵詞: 堿性水稻土;N2O;自養(yǎng)硝化;反硝化;異養(yǎng)硝化
中圖分類號: S153? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2019)11-2429-07
Effects of urea and ammonium sulfate on N2O release pathway in an alkaline paddy soil
XING Zhi-qiang1, XI Rui-ze1,2, YANG Yong-qiang1, ZHU Jun1,
HU Hong-qing1, FU Qing-ling1*
(1College of Resources & Environment, Huazhong Agricultural University,Wuhan? 430070, China; 2Soil and Fertilizer Workstation of Linfen, Linfen, Shanxi? 041000, China)
Abstract:【Objective】The effects of soil water content and nitrogen fertilizer type on alkaline paddy soil N2O release and release route were clarified,which provided a scientific basis for improving nitrogen use efficiency and reducing soil N2O release. 【Method】In this experiment,fluvo-aquic soil was used as the tested soil,soil moisture contents were adjusted through indoor culture, which was adjusting the maximum water holding capacity(WHC) to be 50%,80%,100%,120% and 160%, applying two types of nitrogen fertilizers: urea and ammonium sulfate(N 100 mg/kg). Acetylene(C2H2,10 Pa)and oxygen(O2,100 kPa) were used to inhibit the autotrophic nitrification process and denitrification process of different nitrogen fertilizer types during 100% WHC. N2O release,nitrate nitrogenand ammonium nitrogen contents were determined by gas chromatography and flow analyzer. 【Result】The results showed that compared with no fertilization treatment(CK), urea and ammonium sulfate treatments significantly increased soil N2O emission rate and cumulative emissions,and the effects of urea was greater than that of ammonium sulfate,and N2O emission rate increased first and then decreased with the increase of water content. The N2O emission rate of soil autotrophic nitrification and heterotrophic nitrification increased after nitrogen application,and the contribution of autotrophic nitrification to N2O emission was greater than that of heterotrophic nitrification. However,the effects of urea and ammonium sulfate on the contribution of autotrophic nitrification and heterotrophic nitrification to N2O emissions were different. The application of ammonium sulfate increased the contribution of autotrophic nitrification to N2O emissions from 31.0%(CK) to 49.0% and reduced the contribution of heterotrophic nitrification from 63.0% to 5.3%;while urea reduced both the contribution of autotrophic nitrification and heterotrophic nitrification to N2O emissions,from 31.0% to 25.0% and 63.0% to 1.7%,respectively. 【Conclusion】With the increase of soil water content, the release rate of alkaline paddy soil N2O increases first and then decreases. The cumulative release amount of urea N2O under different water contents is higher than that of ammonium sulfate. The addition of nitrogen fertilizer reduces the contribution of heterogeneous nitrification to N2O release. Ammonium sulfate and urea are dominated by autotrophic nitrification and denitrification, respectively. Therefore, the application of urea in dry soil and the use of ammonium nitrogen fertilizer in paddy field are beneficial to reduce N2O release.
Key words: alkaline paddy soil; N2O; autotrophic nitrification; denitrification; heterotrophic nitrification
0 引言
【研究意義】氧化亞氮(N2O)是除二氧化碳(CO2)和甲烷(CH4)之外的第三大溫室氣體,其中約70%的N2O來源于陸地生態(tài)系統(tǒng),而農(nóng)業(yè)土壤中的微生物氮循環(huán)過程約貢獻了45%的N2O排放量(Solomon et al.,2007)。作為世界上最主要的糧食作物,水稻在全世界的種植面積約1.55億ha,我國是世界上最大的稻米生產(chǎn)國,稻米產(chǎn)量約占全球的26%(Zhu et al.,2011;Ge et al.,2017)。為滿足日益增長的糧食需要,越來越多的氮肥被施入到土壤中,其中1%~5%氮素以N2O的形式損失(Galloway et al.,2008;Shcherbak et al.,2014)。每年約有6.8 Tg N2O-N的釋放源于氮肥及有機肥的使用,占大氣中N2O釋放量的65%(Ravishankara et al.,2009)。因此,了解不同氮肥對水稻土N2O釋放量及釋放途徑的影響,對于提高氮素利用效率及減緩全球變暖具有重要意義?!厩叭搜芯窟M展】水稻生長期間頻繁的干濕交替提供了獨特的生物化學環(huán)境,源于有機質(zhì)與根系分泌物礦化或氮肥釋放的氨在氧化層及根際土附近發(fā)生硝化反應(yīng)(Ke et al.,2013;Li and Wang,2013;Li et al.,2014),而硝態(tài)氮或亞硝態(tài)氮轉(zhuǎn)移到還原層發(fā)生反硝化反應(yīng)逐步還原成N2O或N2(Ishii et al.,2011)。與旱地相比,水稻土由于強烈的厭氧環(huán)境使N2O可進一步被還原成N2從而降低N2O的釋放,但在水稻生長過程中的排水與干濕交替期間仍可觀察到N2O的集中釋放,整個水稻生長期水稻土N2O-N釋放量為9~35 Gg(Yao et al.,2010;Cai,2012)。土壤水含量與氮肥類型顯著影響土壤N2O的釋放量與釋放過程,隨著水含量逐漸增加,N2O釋放量隨之增加(Burger and Venterea,2011;Sainju,2016)。也有研究發(fā)現(xiàn),土壤最大持水量(WHC)為35%~60%時N2O主要由硝化過程產(chǎn)生,而WHC為70%時反硝化作用是N2O釋放的主要過程(Morse and Bernhardt,2013;Lan et al.,2014;Müller et al.,2014)。Bateman and Baggs(2005)研究發(fā)現(xiàn),當土壤孔隙水含量(WFPS)為70%時,土壤N2O的產(chǎn)生全部源自反硝化作用,而WFPS在60%時硝化作用貢獻了N2O產(chǎn)生量的81%。Liu等(2007)研究顯示,在WFPS為60%時加入硫酸銨比硝酸鉀可產(chǎn)生更多的N2O,表明硝化作用與隨后的反硝化作用是低水含量時N2O釋放的主要途徑,而WFPS為75%時的N2O釋放量顯著高于WFPS為60%的N2O釋放量。Lebender等(2014)研究發(fā)現(xiàn),當WHC在70%時施用尿素與硫酸銨后N2O累積釋放量顯著提高,其中尿素處理釋放量大于硫酸銨。Liu等(2017)通過使用15N分別標記氯化銨與硝酸鉀,觀察到溫度為25 ℃,WFPS分別為50%、70%和85%時,硝化作用對N2O釋放的貢獻分別為87%、80%和53%。鄭欠等(2017)研究發(fā)現(xiàn),當WFPS為80%時,土壤N2O的產(chǎn)生主要源于反硝化過程,當WFPS為95%時,硝化作用為N2O排放的主要過程,且N2O排放量隨著水含量的增加而升高。【本研究切入點】目前已有的研究主要集中在水含量對硝化作用和反硝化作用對N2O釋放的影響及低于飽和水含量時N2O釋放與水分的關(guān)系,關(guān)于硝化作用中的自養(yǎng)硝化與異養(yǎng)硝化過程及淹水條件對N2O釋放的影響則鮮有關(guān)注。與土壤中自養(yǎng)硝化細菌僅可進行對銨態(tài)氮的氧化作用相比,異養(yǎng)硝化細菌雖然利用效率較低,但由于在環(huán)境中的數(shù)量及生長速率遠高于自養(yǎng)硝化細菌,且既可利用銨態(tài)氮又能利用有機氮,因此在某些環(huán)境中,異養(yǎng)硝化作用對N2O釋放的貢獻可與自養(yǎng)硝化相當甚至超過自養(yǎng)硝化。同時,氮肥類型對N2O釋放影響的研究存在相互矛盾的結(jié)果,尚缺乏明確的定論?!緮M解決的關(guān)鍵問題】通過室內(nèi)模擬水稻生長過程中的水分變化,研究不同水分條件下氮肥類型對堿性水稻土N2O釋放總量及排放途徑相對貢獻的影響,為制定合理的農(nóng)田氮素管理措施及減少土壤N2O排放供理論依據(jù)。
1 材料與方法
1. 1 土壤樣品
供試土壤為潮土性水稻土,采自湖北省潛江市廣華農(nóng)場(東經(jīng)121°69′,北緯30°41′,海拔26.4 m),土壤含17%砂粒、60%粉粒及23%黏粒。取0~20 cm耕層土壤,混勻后過5 mm篩,一部分-20 ℃保存用于后續(xù)的培養(yǎng)試驗,另一部分風干后測量土壤基本理化性質(zhì)。土壤持水能力82.2%,pH 7.9,有機質(zhì)37.3 g/kg,全氮2.24 g/kg,銨態(tài)氮11.8 mg/kg,硝態(tài)氮26.6 mg/kg。
1. 2 土壤水含量與氮肥類型對N2O排放的影響
將土壤樣品放入25 ℃恒溫培養(yǎng)箱中預(yù)培養(yǎng)7 d,然后稱取相當于20 g干土重量的新鮮土樣置于300 mL培養(yǎng)瓶中,以水溶液的形式將尿素與硫酸銨(N 100 mg/kg)加入土壤,隨后調(diào)節(jié)至不同的土壤水含量,即調(diào)節(jié)WHC分別為50%、80%、100%、120%和160%,然后使用橡膠塞密封培養(yǎng)瓶。于培養(yǎng)開始后0、12和24 h分別使用氣密注射器抽取10 mL氣體樣品,使用氣相色譜儀(Agilent GC7890A)分析其中的N2O濃度,培養(yǎng)結(jié)束后測定其中的硝態(tài)氮和銨態(tài)氮濃度。每處理重復(fù)3次,同時進行不施肥的空白對照(CK)試驗。
1. 3 土壤N2O排放途徑試驗
試驗設(shè)3種處理:處理Ⅰ,土壤;處理Ⅱ,土壤+100 kPa O2;處理Ⅲ,土壤+10 Pa C2H2+100 kPa O2。分別加入尿素和硫酸銨(N 100 mg/kg)并調(diào)節(jié)水含量為100% WHC。將培養(yǎng)瓶密封后抽氣至真空,按試驗處理注入不同氣體后放入25 ℃恒溫培養(yǎng)箱避光培養(yǎng)24 h,其余條件與1.2相同。利用差減法計算不同途徑N2O排放通量:
N2O總量=N2O空氣
N2O自養(yǎng)硝化=N2O氧氣-N2O氧氣+乙炔
N2O異養(yǎng)硝化=N2O氧氣+乙炔
式中,N2O總量為培養(yǎng)期間N2O釋放量,N2O自養(yǎng)硝化為培養(yǎng)期間自養(yǎng)硝化的N2O釋放量,N2O異養(yǎng)硝化為培養(yǎng)期間異養(yǎng)硝化的N2O釋放量,N2O空氣為處理Ⅰ中的N2O釋放量,N2O氧氣為處理Ⅱ中的N2O釋放量,N2O氧氣+乙炔為處理Ⅲ中的N2O釋放量。
1. 4 N2O排放速率計算
根據(jù)培養(yǎng)開始后0、12和24 h測定的N2O濃度,使用Slope函數(shù)計算N2O濃度隨時間變化的曲線斜率,選擇|R2|>0.9的數(shù)值,按以下公式計算N2O排放速率:
P=[dcdt]×[vMv]×[Mww]×[273T]
式中,P為N2O排放速率[μg/(kg·h)];dc/dt為培養(yǎng)瓶中N2O濃度隨時間線性變化的曲線斜率[μL/(L·h)];v為培養(yǎng)瓶中氣體的體積(L);Mv為標準狀態(tài)下1 mol氣體體積(L);Mw為N2O的摩爾質(zhì)量(g);w為干土質(zhì)量(g);T為溫度(K)。
1. 5 統(tǒng)計分析
使用Origin 2018C繪圖、SPSS 25.0進行方差分析,采用最小顯著性差異法(LSD)比較不同處理間N2O排放速率與排放通量的差異。
2 結(jié)果與分析
2. 1 土壤水含量與氮肥類型對N2O排放的影響
由圖1可知,在不同水含量條件下,施氮處理與CK間的N2O排放速率差異明顯,且除WHC為50%外,尿素處理N2O排放速率均高于硫酸銨處理。隨土壤水含量的增加,尿素和硫酸銨處理的N2O排放速率呈先增大后減小的變化趨勢,在WHC為100%時達最大值,分別為77.7和67.7[μg/(kg·h)],當WHC上升到160%時,二者的N2O排放速率與最大值相比分別下降30%和29%。
由圖2可知,隨著土壤水含量的增加,土壤硝態(tài)氮含量呈先增加后減少的變化趨勢,CK的硝態(tài)氮含量在WHC為120%時達最大值,尿素和硫酸銨處理均在WHC為80%時達最大值,分別為96.6和70.0 mg/kg。
2. 2 氮肥類型對N2O排放途徑的影響
2. 2. 1 N2O排放通量 由圖3可看出,施用氮肥不僅增加了N2O排放總量,還增加了自養(yǎng)硝化和異養(yǎng)硝化的N2O排放量,自養(yǎng)硝化N2O排放量由CK的3.1 μg/(kg·h)提高到462.9 μg/(kg·h)(尿素)和800.8 μg/(kg·h)(硫酸銨),異養(yǎng)硝化由CK的6.2 μg/(kg·h)提高到31.8 μg/(kg·h)(尿素)和86.3 μg/(kg·h)(硫酸銨),其中尿素對N2O排放總量的增加作用高于硫酸銨,而在自養(yǎng)硝化和異養(yǎng)硝化方面,硫酸銨的增加量高于尿素。
2. 2. 2 N2O排放途徑的相對貢獻 由圖4可看出,CK處理中硝化作用在N2O排放中占主導(dǎo)作用,而反硝化作用對N2O釋放的貢獻僅為6.0%,硝化作用中又以異養(yǎng)硝化為主,占63.0%,自養(yǎng)硝化僅占31.0%。與CK相比,添加氮肥后反硝化作用與自養(yǎng)硝化在N2O排放中占主導(dǎo)作用,而異養(yǎng)硝化的比例最小。對比不同氮肥類型處理,發(fā)現(xiàn)加入硫酸銨后提高了自養(yǎng)硝化與反硝化對N2O排放的貢獻,自養(yǎng)硝化由CK的31.0%提高到49.0%,使自養(yǎng)硝化成為N2O排放的主導(dǎo)作用,異養(yǎng)硝化對N2O的貢獻只有5.3%。尿素處理降低了自養(yǎng)硝化與異養(yǎng)硝化的貢獻,分別由CK的31.0%和63.0%降低到25.0%和1.7%,反硝化作用占N2O釋放的73.0%。
2. 2. 3 土壤銨態(tài)氮和硝態(tài)氮含量 從圖5可看出,不同抑制處理銨態(tài)氮含量的變化趨勢相同,均表現(xiàn)為處理Ⅲ>處理Ⅱ>處理Ⅰ,且不同抑制處理下施氮處理銨態(tài)氮含量表現(xiàn)為硫酸銨>尿素>CK,最大值分別為178.2、154.4和31.3 mg/kg。
從圖6可看出,CK與施氮處理硝態(tài)氮含量均表現(xiàn)為處理Ⅱ>處理Ⅰ>處理Ⅲ,施氮后土壤硝態(tài)氮含量均在處理Ⅱ和處理Ⅲ達最大值和最小值,尿素處理分別為111.0和45.6 mg/kg,硫酸銨處理分別為69.0和30.0 mg/kg。
3 討論
Gagnon等(2011)在玉米生長季節(jié)使用尿素、氨水和硝酸銨作為氮肥施入土壤,發(fā)現(xiàn)在不同施氮量情況下使用尿素替代部分硝酸銨后的N2O釋放量均高于單施硝酸銨處理。席瑞澤等(2017)利用黃棕壤性水稻土進行室內(nèi)培養(yǎng)試驗,添加尿素和硫酸銨作為氮源,發(fā)現(xiàn)在不同水分條件下添加尿素后N2O釋放速率均高于硫酸銨。本研究結(jié)果表明,不同土壤氮肥類型處理在培養(yǎng)期間N2O釋放量不同,在不同水含量條件下均表現(xiàn)為尿素處理N2O釋放量高于硫酸銨處理。不同肥料類型間的N2O釋放差異可能是由于尿素使用為土壤中的反硝化微生物提供了碳源,刺激了反硝化微生物的活性,添加尿素后土壤N2O釋放途徑轉(zhuǎn)變?yōu)榉聪趸贾鲗?dǎo)地位,表明尿素處理中N2O釋放量的增加是由于反硝化作用增強所致。
鄭欠等(2017)通過室內(nèi)培養(yǎng)試驗發(fā)現(xiàn)以硫酸銨作為氮源時,潮褐土在67%、80%和95% WFPS條件下N2O釋放量逐漸增加,其中95% WFPS時N2O釋放量約為67% WFPS時的15倍。本研究發(fā)現(xiàn),土壤水含量顯著影響N2O的釋放速率,隨著土壤水含量增加,N2O釋放速率呈先增大后減小的變化趨勢。N2O釋放速率在100% WHC時達最大值,隨后N2O釋放速率隨水含量增加而逐漸下降。這可能是由于土壤中厭氧條件進一步加強,當土壤水含量高于75% WHC時, N2O與N2的比值隨著水含量增加而減少(Rudaz et al.,1999;Dalal et al.,2003)。
Zhang和Wienhold(2002)研究表明,WHC高于80%時土壤硝態(tài)氮濃度快速下降,而銨態(tài)氮濃度逐漸增加。在本研究中,硝態(tài)氮含量在80% WHC時達最大值,隨后隨水含量的增加逐漸下降,土壤中的銨態(tài)氮經(jīng)硝化細菌的作用轉(zhuǎn)換為硝態(tài)氮,硝態(tài)氮被反硝化細菌逐步還原為NO、N2O和N2,由于培養(yǎng)期間高水含量條件下厭氧環(huán)境逐漸增強,反硝化對硝態(tài)氮的消耗可能超過硝化作用中硝態(tài)氮的產(chǎn)生。
本研究中,尿素處理自養(yǎng)硝化和異養(yǎng)硝化的N2O釋放量均低于硫酸銨處理,可能是由于試驗供試土壤為堿性土壤,從而抑制了硝化微生物的活性。相關(guān)研究表明,加入尿素會使土壤pH升高,而硫酸銨可能會降低土壤pH(Zhao and Xing,2009;Tong and Xu,2012),當pH大于6.9時,隨著pH升高,氨氧化古菌與氨氧化細菌的amoA基因豐度及轉(zhuǎn)錄活性逐漸降低(Nicol et al.,2008;蘇瑜和王為東,2017),異養(yǎng)硝化細菌的硝化活性也會隨著pH升高而降低(Duggin et al.,1991)。
王大鵬等(2018)研究表明,在35%~70% WFPS范圍內(nèi),隨著土壤水分的增加,土壤反硝化速率呈線性增加。Inubushi等(1996)通過添加硫酸銨或硝酸鈉進行室內(nèi)培養(yǎng)試驗發(fā)現(xiàn),當土壤WHC在60%或80%時,土壤有87%~92%的N2O由自養(yǎng)硝化過程釋放,而當土壤WHC為100%時,土壤釋放的N2O中96%~98%來自于反硝化過程。在本研究中,當土壤水含量為100% WHC時,土壤N2O釋放量達最大值,其中由反硝化作用引起的N2O釋放量占44.0%~73.0%,自養(yǎng)硝化占31.0%~49.0%,表明反硝化作用在100% WHC時主導(dǎo)土壤N2O的釋放,而自養(yǎng)硝化作用是硝化作用N2O釋放的主要來源。尿素處理中反硝化作用對N2O釋放的貢獻大于硫酸銨處理,可能是由于尿素為反硝化微生物提供了碳源,進而提高反硝化微生物的豐度及活性(Chen et al.,2018),且由于培養(yǎng)瓶中土層厚度僅有1 cm,在100% WHC時土壤表面仍可接觸到O2,從而高估硫酸銨處理中硝化作用對N2O釋放的貢獻(Pihlatie et al.,2004)。Stange等(2013)在森林土壤中使用15N同位素示蹤技術(shù)研究不同途徑N2O釋放貢獻,發(fā)現(xiàn)異養(yǎng)硝化作用對N2O釋放的貢獻為48%~76%;而Rütting等(2010)使用牧場土壤進行的培養(yǎng)試驗中,通過分析15N標記的NH4NO3與N2O的同位素特性,發(fā)現(xiàn)異養(yǎng)硝化作用對N2O釋放的貢獻達68.5%~90.6%。本研究中,異養(yǎng)硝化在施肥處理中的貢獻僅為1.7%~5.3%,在CK中的貢獻卻高達63.0%,表明在無外源氮加入時,土壤本身異養(yǎng)硝化細菌通過利用土壤有機質(zhì)進行的異養(yǎng)硝化過程是土壤N2O釋放的主要來源。
本研究還發(fā)現(xiàn),與處理Ⅰ相比,處理Ⅲ中使用C2H2抑制自養(yǎng)硝化作用,抑制了銨態(tài)氮的轉(zhuǎn)換,而處理Ⅱ通過增加O2分壓至100 kPa抑制了反硝化過程,導(dǎo)致硝態(tài)氮的積累(Taylor et al.,2013)。本研究為理解影響土壤N2O的釋放因素提供了新見解,豐富了不同環(huán)境條件下制定減排措施的理論依據(jù),但今后仍需進一步了解反硝化過程中間產(chǎn)物的分配及微生物在其中發(fā)揮的重要作用。
4 結(jié)論
堿性水稻土N2O釋放速率隨土壤水含量的增加呈先增大后減小的變化趨勢,且施用硫酸銨的N2O排放速率低于尿素。添加氮肥后異養(yǎng)硝化對N2O排放的貢獻降低,其中硫酸銨處理自養(yǎng)硝化起主導(dǎo)作用,尿素處理反硝化作用起主導(dǎo)作用。因此,旱地土壤施肥應(yīng)選用反硝化起主導(dǎo)作用的尿素并配合使用硝化抑制劑,水田施肥則以銨態(tài)氮肥能更好地減少N2O釋放。
參考文獻:
蘇瑜,王為東. 2017. 我國北方四類土壤中氨氧化古菌和氨氧化細菌的活性及對氨氧化的貢獻[J]. 環(huán)境科學學報,37(9):3519-3527. [Su Y,Wang W D. 2017. Activity of AOA and AOB and their contributions to ammonia oxidization in four soils in North China[J]. Acta Scientiae Circumstantiae,37(9):3519-3527.]
王大鵬,鄭亮,羅雪華,王文斌,張永發(fā),薛欣欣,吳小平. 2018. 磚紅壤不同溫度、水分及碳氮源條件下硝化和反硝化特征[J]. 土壤通報,49(3):616-622. [Wang D P,Zheng L,Luo X H,Wang W B,Zhang Y F,Xue X X,Wu X P. 2018. Nitrification and denitrification under different temperature,moisture,carbon and nitrogen sources in latosols[J]. Chinese Journal of Soil Science,49(3):616-622.]
席瑞澤,付慶靈,楊永強,尤錦偉,朱俊,胡紅青,葉磊. 2017. 氮肥品種和含水量對水稻土N2O排放速率及排放過程的影響[J]. 農(nóng)業(yè)環(huán)境科學學報,36(12):2553-2560. [Xi R Z,F(xiàn)u Q L,Yang Y Q,You J W,Zhu J,Hu H Q,Ye L. 2017. Effects of nitrogen fertilization and water content on the process and rate of N2O emission in paddy soils[J]. Journal of Agro-Environment Science,36(12):2553-2560.]
鄭欠,丁軍軍,李玉中,林偉,徐春英,李巧珍,毛麗麗. 2017. 土壤含水量對硝化和反硝化過程N2O排放及同位素特征值的影響[J]. 中國農(nóng)業(yè)科學,50(24):4747-4758. [Zheng Q,Ding J J,Li Y Z,Lin W,Xu C Y,Li Q Z,Mao L L. 2017. The effects of soil water content on N2O emissions and isotopic signature of nitrification and denitrification[J]. Scientia Agricultura Sinica,50(24):4747-4758.]
Bateman E J,Baggs E M. 2005. Contributions of nitrification and denitrification to N2O emissions from soils at diffe-rent water-filled pore space[J]. Biology and Fertility of Soils,41:379-388.
Burger M,Venterea R T. 2011. Effects of nitrogen fertilizer types on nitrous oxide emissions[J]. ACS Symposium Series, 1072:179-202.
Cai Z C. 2012. Greenhouse gas budget for terrestrial ecosystems in China[J]. Science China Earth Sciences,55(2):173-182.
Chen S,Wang F,Zhang Y,Qin S,Wei S,Wang S,Hu C,Liu B. 2018. Organic carbon availability limiting microbial denitrification in the deep vadose zone[J]. Environmental Microbiology,20(3):980-992.
Dalal R C,Wang W J,Robertson G P,Parton W J. 2003. Nitrous oxide emission from Australian agricultural lands and mitigation options:A review[J]. Australian? Journal of Soil Research,41:165-195.
Duggin J A,Voigt G K,Bormann F H. 1991. Autotrophic and heterotrophic nitrification in response to clear-cutting northern hardwood forest[J]. Soil Biology and Bioche-mistry,23(8):779-787.
Gagnon B,Ziadi N,Rochette P,Chantigny M H,Angers D A. 2011. Fertilizer source influenced nitrous oxide emissions from a clay soil under corn[J]. Soil Science Society of America Journal,75(2):595-604.
Galloway J N,Townsend A R,Erisman J W,Bekunda M,Cai Z,F(xiàn)reney J R,Martinelli L A,Seitzinger S P,Sutton M A. 2008. Transformation of the nitrogen cycle:Recent trends,questions,and potential solutions[J]. Science,320(5878):889-892.
Ge T D,Li B Z,Zhu Z K,Hu Y J,Yuan H Z,Dorodnikov M,Jones D L,Wu J S,Kuzyakov Y. 2017. Rice rhizodeposition and its utilization by microbial groups depends on N fertilization[J]. Biology and Fertility of Soils,53(1):37-48.
Inubushi K,Naganuma H,Kitahara S. 1996. Contribution of denitrification and autotrophic and heterotrophic nitrification to nitrous oxide production in andosols[J]. Biology and Fertility of Soils,23(3):292-298.
Ishii S,Ikeda S,Minamisawa K,Senoo K. 2011. Nitrogen cycling in rice paddy environments:Past achievements and future challenges[J]. Microbes and Environments,26(4):282-292.
Ke X,Angel R,Lu Y,Conrad R. 2013. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil[J]. Environmental Microbiology,15(8):2275-2292.
Lan T,Han Y,Roelcke M,Nieder R,Cai Z C. 2014. Temperature dependence of gross N transformation rates in two Chinese paddy soils under aerobic condition[J]. Biology and Fertility of Soils,50(6):949-959.
Lebender U,Senbayram M,Lammel J,Kuhlmann H. 2014. Effect of mineral nitrogen fertilizer forms on N2O emissions from arable soils in winter wheat production[J]. Journal of Plant Nutrition and Soil Science,177(5):722-732.
Li Y L,Wang X X. 2013. Root-induced changes in radial oxygen loss,rhizosphere oxygen profile,and nitrification of two rice cultivars in Chinese red soil regions[J]. Plant and Soil,365:115-126.
Li Y,Watanabe T,Murase J,Asakawa S,Kimura M. 2014. Abundance and composition of ammonia oxidizers in response to degradation of root cap cells of rice in soil microcosms[J]. Journal of Soils and Sediments,14:1587-1598.
Liu R,Hayden H L,Suter H,Hu H W,Lam S K,He J Z,Mele P M,Chen D L. 2017. The effect of temperature and moisture on the source of N2O and contributions from ammonia oxidizers in an agricultural soil[J]. Biology and Fertility of Soils,53(1):141-152.
Liu X J,Mosier A R,Halvorson A D,Reule C A,Zhang F S. 2007. Dinitrogen and N2O emissions in arable soils:Effect of tillage,N source and soil moisture[J]. Soil Biology and Biochemistry,39(9):2362-2370.
Morse J L,Bernhardt E S. 2013. Using 15N tracers to estimate N2O and N2 emissions from nitrification and denitrification in coastal plain wetlands under contrasting land-uses [J]. Soil Biology and Biochemistry,57:635-643.
Müller C,Laughlin R J,Spott O,Rütting T. 2014. Quantification of N2O emission pathways via a 15N tracing model[J]. Soil Biology and Biochemistry,72:44-54.
Nicol G W,Leininger S,Schleper C,Prosser J I. 2008. The influence of soil pH on the diversity,abundance and transcriptional activity of ammonia oxidizing archaea and bacteria[J]. Environmental Microbiology,10(11):2966-2978.
Pihlatie M,Syv?salo E,Simojoki A,Esala M,Regina K. 2004. Contribution of nitrification and denitrification to N2O production in peat,clay and loamy sand soils under different soil moisture conditions[J]. Nutrient Cycling in Agroecosystems,70(2):135-141.
Ravishankara A R,Daniel J S,Portmann R W. 2009. Nitrous oxide(N2O):The dominant ozone-depleting substance emitted in the 21st Century[J]. Science,326(5949):123-125.
Rudaz A O,W?lti E,Kyburz G,Lehmann P,F(xiàn)uhrer J. 1999. Temporal variation in N2O and N2 fluxes from a permanent pasture in Switzerland in relation to management,soil water content and soil temperature[J]. Agriculture,Ecosystems & Environment,73(1):83-91.
Rütting T,Clough T J,Mueller C,Lieffering M,Newton P C. 2010. Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture[J]. Global Change Biology,16(9):2530-2542.
Sainju U M. 2016. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils[J]. PLoS One,11:e0148527.
Shcherbak I,Millar N,Robertson G P. 2014. Global metaanalysis of the nonlinear response of soil nitrous oxide(N2O)emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences of the united States of Ame-rica,111:9199-9204.
Solomon S,Qin D,Manning M,Chen Z,Marquis M,Averyt K B,Tignor M,Miller H L. 2007. Contribution of wor-king group I to the fourth assessment report of the intergovernmental panel on climate change[M]. United Kingdom:Cambridge University Press:1-1538.
Stange C F,Spott O,Arriaga H,Menéndez S,Estavillo J M,Merino P. 2013. Use of the inverse abundance approach to identify the sources of NO and N2O release from Spa-nish forest soils under oxic and hypoxic conditions[J]. Soil Biology and Biochemistry,57:451-458.
Taylor A E,Vajrala N,Giguere A T,Gitelman A I,Arp D J,Myrold D D,Luis S S,Bottomley P J. 2013. Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing thaumarchaea and bacteria[J]. Applied & Environmental Microbiology,79:6544-6551.
Tong D L,Xu R K. 2012. Effects of urea and(NH4)2SO4 on nitrification and acidification of Ultisols from Southern China[J]. Journal of Environmental Sciences,24(4):682-689.
Yao Z S,Zhou Z X,Zheng X H,Xie B H,Mei B L,Wang R,Butterbach-Bahl K,Zhu J G. 2010. Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China[J]. Plant and Soil,327:315-330.
Zhang R,Wienhold B J. 2002. The effect of soil moisture on mineral nitrogen,soil electrical conductivity,and pH[J]. Nutrient Cycling in Agroecosystems,63(2-3):251-254.
Zhao X,Xing G X. 2009. Variation in the relationship between nitrification and acidification of subtropical soils as affected by the addition of urea or ammonium sulfate [J]. Soil Biology and Biochemistry,41(12):2584-2587.
Zhu G,Wang S,Wang Y,Wang C,Risgaard-Petersen N,Jetten M S,Yin C. 2011. Anaerobic ammonia oxidation in a fertilized paddy soil[J]. The ISME Journal,5(12):1905-1912.
(責任編輯 王 暉)