焉曉乘 劉元濤
[摘要]糖尿?。―M)是威脅人類健康的非傳染性疾病之一,我國糖尿病患病率顯著增加,且發(fā)病有年輕化趨勢。胰島素抵抗(IR)與胰島功能減退是2型糖尿病等代謝性疾病的病理基礎(chǔ)。導(dǎo)致IR的病因眾多,包括遺傳學(xué)因素以及肥胖、藥物等環(huán)境因素。細(xì)胞色素P450s表氧化酶(CYP450)與其代謝產(chǎn)物環(huán)氧`-二十碳三烯酸(EETs)在肥胖、IR等方面發(fā)揮重要作用。本文就CYP450`-EETs代謝途徑與肥胖誘導(dǎo)2型糖尿病IR的研究進(jìn)展作一綜述。
[關(guān)鍵詞]細(xì)胞色素P450酶系統(tǒng);環(huán)氧`-二十碳三烯酸;表氧化酶水解酶;肥胖;炎癥;胰島素抗藥性;綜述
糖尿?。―M)是威脅人類健康的最重要的非傳染性疾病之一[1],根據(jù)中國疾病預(yù)防控制中心(CDC)等機(jī)構(gòu)最新中國2型糖尿病流行病學(xué)橫斷面研究顯示,我國糖尿病患病率顯著增加,且發(fā)病有年輕化趨勢[2]。胰島素抵抗(IR)與胰島功能減退是2型糖尿病等代謝性疾病的病理基礎(chǔ)。導(dǎo)致IR的病因眾多,包括遺傳學(xué)因素如胰島素、胰島素受體、葡萄糖轉(zhuǎn)運(yùn)體4(GLUT4)等的基因突變,以及肥胖、藥物等環(huán)境因素。然而,IR發(fā)生的確切病因和發(fā)病機(jī)制尚未完全闡明。近年來,人們對(duì)細(xì)胞色素P450s表氧化酶(CYP450)與其代謝產(chǎn)物環(huán)氧`-二十碳三烯酸(EETs)在肥胖、IR等方面的作用進(jìn)行了探討。本文就CYP450`-EETs代謝途徑與肥胖誘導(dǎo)2型糖尿病IR的研究進(jìn)展作一綜述。
1肥胖引起慢性炎癥與IR的關(guān)系
肥胖是一種全球流行病,是內(nèi)皮功能障礙和糖尿病以及高血壓等血管疾病的后續(xù)發(fā)展的常見危險(xiǎn)因素,是指體內(nèi)脂肪儲(chǔ)量超標(biāo),由于脂肪細(xì)胞的數(shù)目增多和體積增大引起的脂肪組織的擴(kuò)張[3]。脂肪組織除了具有存儲(chǔ)能量、維持體溫、緩沖保護(hù)等功能外,還是重要的內(nèi)分泌器官[4],可通過自分泌和旁分泌的方式釋放一系列細(xì)胞因子,如腫瘤壞死因子`-α(TNF`-α)、瘦素、抵抗素、視黃醇結(jié)合蛋`-4(RBP4)和脂聯(lián)素等[5],其作用受胰島素和生長因子的精細(xì)調(diào)控,起到維持機(jī)體的內(nèi)穩(wěn)態(tài)平衡的作用。同時(shí),脂肪組織分泌的細(xì)胞因子反過來作用于機(jī)體,參與局部和系統(tǒng)的許多代謝及炎癥過程,調(diào)節(jié)外周組織對(duì)胰島素的敏感性,參與2型糖尿病IR的發(fā)生發(fā)展[6]。另外,肥胖脂肪細(xì)胞過度膨脹,導(dǎo)致脂肪組織內(nèi)出現(xiàn)低氧微環(huán)境,誘導(dǎo)脂肪細(xì)胞與巨噬細(xì)胞表達(dá)促炎癥因子、巨噬細(xì)胞的浸潤以及脂肪細(xì)胞壞死等,進(jìn)一步加重脂肪組織的炎癥程度。
2CYP450`-EETs途徑與肥胖所致炎癥及IR的關(guān)系
花生四烯酸(AA)是生物體內(nèi)分布最廣、含量最豐富的一種多不飽和必需脂肪酸,可經(jīng)過CYP450途徑生成4種不同的EETs異構(gòu)體,即5,6`-EET、8,9`-EET、11,12`-EET、14,15`-EET[7`-8],統(tǒng)稱為EETs,其中,11,12`-EET和14,15`-EET是多數(shù)細(xì)胞和血管中EETs主要存在形式[9]。EETs性質(zhì)不穩(wěn)定,可以被可溶性表氧化酶水解酶(sEH)水解為弱生物學(xué)活性的二羥基二十碳三烯酸(DHET),后者被迅速排除體外,而抑制sEH酶活性則可以有效減少EETs的降解[10]。目前,AA及其代謝產(chǎn)物在肥胖引起脂肪慢性炎癥以及2型糖尿病IR中的作用越來越受到關(guān)注。其中,CYP表氧化酶`-EETs`-sEH代謝通路在人體中對(duì)炎癥反應(yīng)的調(diào)控成為關(guān)注的熱點(diǎn)。
2.1CYP450`-EETs途徑與糖尿病IR的關(guān)系
CYP2J2`-EETs可增強(qiáng)胰腺胰島細(xì)胞的功能,提高外周組織對(duì)胰島素的敏感性。早在1997年,ZELDIN等[11]發(fā)現(xiàn)CYP2J2在胰島細(xì)胞大量表達(dá),產(chǎn)生EETs。而5,6`-EETs可刺激大鼠離體胰島分泌胰島素[12]。XU等[13]在CYP2J3/EETs途徑與IR的研究中,給予db/db 2型糖尿病小鼠注射表達(dá)CYP2J3的質(zhì)粒,其主動(dòng)脈、心臟、肝臟、腎臟、骨骼肌的CYP2J3蛋白高表達(dá),最終實(shí)驗(yàn)結(jié)果顯示,其IR得到改善。體內(nèi)細(xì)胞對(duì)葡萄糖的吸收和利用主要依靠細(xì)胞膜上的葡萄糖轉(zhuǎn)運(yùn)體(GLUTs)。NICOLAI等[14]研究發(fā)現(xiàn),EETs可提高血紅素加氧酶1(HO1)的表達(dá)及活性,通過HO1/脂聯(lián)素通路增加GLUT4膜轉(zhuǎn)位,促進(jìn)葡萄糖的吸收,改善IR。YANG等[15]研究顯示,CYP2J2轉(zhuǎn)基因小鼠其內(nèi)皮細(xì)胞特異性CYP2J2過表達(dá)減輕了年齡相關(guān)的IR和代謝功能障礙。sEH是EETs的主要水解酶,近幾年,sEH及其抑制劑與糖尿病IR的研究倍受關(guān)注。LUO等[16]用鏈脲霉素(STZ)誘導(dǎo)糖尿病小鼠的實(shí)驗(yàn)顯示,用STZ處理小鼠出現(xiàn)的高糖血癥,可以被同時(shí)給予的sEH抑制劑t`-AUCB逆轉(zhuǎn)。在小鼠模型中抑制sEH活性或敲除sEH基因可以保留1型糖尿病小鼠的胰島細(xì)胞[17],提高2型糖尿病小鼠的胰島素敏感性[16]。EETs也是一種有效的過氧化物酶體增殖物激活受體(PPAR)的激活劑,PPAR對(duì)控制人類胰島素敏感性、葡萄糖內(nèi)穩(wěn)態(tài)等有重要作用[18]。CYP2J2質(zhì)粒與外源EETs注射可通過抑制肝臟內(nèi)核轉(zhuǎn)錄因子(NF`-κB)與絲裂原活化蛋白激酶(MAPK)信號(hào)通路活性,誘導(dǎo)過氧化物酶體增殖物激活受體γ(PPARγ)表達(dá),改善2型糖尿病db/db小鼠的血糖及血脂異常[19]。
2.2CYP450`-EETs途徑與慢性炎癥的關(guān)系
在糖尿病的發(fā)生發(fā)展中,炎癥因子通過氧化應(yīng)激激活NF`-κB、蛋白激酶C(PKC)等系統(tǒng),抑制胰島素的磷酯酰肌醇3激酶/蛋白激酶B(PI3K/PKB)通路,減弱了胰島素信號(hào)轉(zhuǎn)導(dǎo),從而引起IR。
2.2.1CYP450`-EETs途徑與多種組織慢性炎癥的關(guān)系細(xì)胞黏附分子(CAMs)是一類位于細(xì)胞膜表面的糖蛋白分子,負(fù)責(zé)細(xì)胞與細(xì)胞之間及細(xì)胞與細(xì)胞外基質(zhì)之間的相互作用及信息交流,是炎癥進(jìn)一步發(fā)生發(fā)展的誘導(dǎo)劑。研究表明巨噬細(xì)胞和白細(xì)胞代謝生成的細(xì)胞因子TNF`-α、IL`-1α等可激活內(nèi)皮細(xì)胞,促進(jìn)CAMs的表達(dá),進(jìn)而促進(jìn)炎癥的發(fā)生與發(fā)展[20]。NODE等[21]報(bào)道,11,12`-EET是對(duì)血管細(xì)胞黏附分子(VCAM`-1)表達(dá)最強(qiáng)的抑制劑,對(duì)由TNF`-α誘導(dǎo)產(chǎn)生的VCAM`-1的抑制作用最強(qiáng),可達(dá)到72%,其次是8,9`-EET和5,6`-EET,而14,15`-EET沒有抑制作用。NF`-κB是一種廣泛存在于各種細(xì)胞中的轉(zhuǎn)錄因子,因其能與免疫球蛋白κ鏈基因增強(qiáng)子結(jié)合而得名。激活的NF`-κB可促進(jìn)許多致炎因子的轉(zhuǎn)錄和表達(dá),被作為炎癥治療的“靶點(diǎn)”。OLEARCZYK等[22]研究表明,sEH抑制劑可抑制NF`-κB活性、減少炎癥細(xì)胞浸潤、減輕糖尿病高血壓引起的腎損害,從而減少清蛋白隨尿液排出體外,改善腎損傷等。注射外源性EETs可抑制NF`-κB的活化和轉(zhuǎn)位,從而顯著抑制TNF`-α誘導(dǎo)的小鼠頸動(dòng)脈內(nèi)皮細(xì)胞VCAM`-1的表達(dá),減少單核細(xì)胞對(duì)內(nèi)皮細(xì)胞的黏附[21]。肝臟是葡萄糖代謝的主要場所,還分泌并釋放炎癥因子,在進(jìn)行性加重的糖尿病有關(guān)的肝臟疾病病理生理過程中,肝臟由IR誘導(dǎo)NF`-κB激活入核是至關(guān)重要的一環(huán)。低氧條件下,11,12`-EET可激活肝臟細(xì)胞與動(dòng)脈內(nèi)皮細(xì)胞內(nèi)低氧反應(yīng)元件(HRE)的啟動(dòng)子活性,誘導(dǎo)低氧誘導(dǎo)因子1α(HIF`-1α)穩(wěn)定表達(dá),推測CYP`-EETs通路也與低氧導(dǎo)致炎癥反應(yīng)相關(guān)[23]。
2.2.2CYP450`-EETs途徑與脂肪組織慢性炎癥的關(guān)系脂肪組織慢性炎癥與2型糖尿病IR密切相關(guān)。SINGH等[24]發(fā)現(xiàn),EET能夠負(fù)性調(diào)節(jié)心包脂肪中促炎性因子腎母細(xì)胞瘤過度表達(dá)蛋白(NOV/CCN3)的表達(dá),增加胰島素受體磷酸化。同時(shí),EET可減輕氧化應(yīng)激,提升細(xì)胞線粒體活性,增加高脂飲食(HFD)誘導(dǎo)肥胖小鼠的氧耗,降低內(nèi)臟脂肪比例[25]。SCHRAGENHEIM等[26]發(fā)現(xiàn),CYP`-EETs代謝途徑可以增加腎周脂肪組織脂聯(lián)素的產(chǎn)生,降低促炎癥因子NOV的釋放,改善鈉排泄,降低血壓和增強(qiáng)線粒體功能,改善肥胖引起的腎功能障礙。CAO等[27]發(fā)現(xiàn),EET治療可增加心包脂肪脂聯(lián)素的分泌,磷酸化AMP激活的蛋白激酶,使得胰島素受體磷酸化,導(dǎo)致心肌下脂肪表型的“褐變”,證明EET可增加Wnt1和HO`-1信號(hào)傳導(dǎo),同時(shí)減少NOV途徑和心肌病的進(jìn)展。因此,CYP`-EETs途徑在多種炎癥性疾病尤其是脂肪炎癥中發(fā)揮抗炎效應(yīng)。臨床研究證實(shí),血清中TNF`-α和IL`-1β水平升高是糖尿病和IR的危險(xiǎn)因素,抗炎已經(jīng)成為治療糖尿病的新的途徑。HFD可引起肥胖相關(guān)疾病。LUO等[28]研究發(fā)現(xiàn),給予HFD的小鼠顯示出時(shí)間依賴性的腎損傷,而且,腎臟中sEH在mRNA、蛋白質(zhì)等分子水平上均有所上升。GAI等[29]研究顯示,CYP450`-EETs代謝途徑可減輕HFD誘導(dǎo)小鼠肝損傷,在體外,CYP450誘導(dǎo)足以抑制NF`-κB信號(hào)傳導(dǎo)和細(xì)胞遷移。ROCHE等[30]發(fā)現(xiàn),sEH抑制劑使得HFD誘導(dǎo)體質(zhì)量超標(biāo)高糖血癥小鼠的尿微量清蛋白降低,改善腎臟炎癥,在糖尿病腎病的早期階段提供腎保護(hù)。
2.2.3CYP450`-EETs途徑與血管生成的關(guān)系CYP450`-EETs代謝途徑是參與血管生成調(diào)節(jié)的重要脂質(zhì)信號(hào)分子。最新研究顯示,CYP450`-EETs代謝途徑可促進(jìn)微血管生成,在炎癥、再灌注損傷、傷口愈合等方面起著重要作用[31`-34]。DING等[31]研究顯示,11,12`-EET促進(jìn)內(nèi)皮細(xì)胞膜中的G蛋白偶聯(lián)受體介導(dǎo)的PKA依賴TRPC6通道的易位和活化,從而促進(jìn)血管生成。SOMMER等[32]結(jié)果表明,11,12`-EET可通過促進(jìn)微血管生成改善小鼠缺血性傷口的愈合,減輕傷口炎癥反應(yīng)。ZHAO等[33]研究顯示,CYP2J2`-11,12`-EET途徑通過Jagged1/Notch1信號(hào)途徑促進(jìn)血管生成,增加梗死后心肌再灌注,改善心臟功能。ZHAO等[34]報(bào)道,補(bǔ)充外源EETs可顯著減輕肥胖ob/ob糖尿病小鼠創(chuàng)面組織的炎癥指標(biāo),加快創(chuàng)面愈合速度。
由此可見,CYP`-EETs途徑與糖尿病有著密切的聯(lián)系,在炎癥、疼痛、腫瘤、高血壓、動(dòng)脈粥樣硬化、糖尿病等人類常見疾病和病理生理變化的發(fā)生發(fā)展中發(fā)揮著重要作用。
3小結(jié)與展望
綜上,我們對(duì)CYP450`-EETs途徑在機(jī)體的代謝過程以及生物學(xué)作用有了一定的認(rèn)識(shí),而且許多研究結(jié)果表明,CYP`-EETs途徑在肥胖、肥胖引起脂肪炎癥及糖尿病IR的發(fā)生機(jī)制中具有重要的作用[13],但是關(guān)于CYP450`-EETs途徑與胰島功能、IR的關(guān)系,目前國內(nèi)研究較少。根據(jù)已有研究,我們推測CYP450`-EETs代謝通路可能通過改善血管生成等參與了肥胖誘導(dǎo)的慢性炎癥發(fā)病過程及IR,其相關(guān)性有待進(jìn)一步探索。
[參考文獻(xiàn)]
[1]中華醫(yī)學(xué)會(huì)糖尿病學(xué)分會(huì). 中國2型糖尿病防治指南(2017年版)[J].?中國實(shí)用內(nèi)科雜志. 2018,38(4):292`-344.
[2]WANG Limin, GAO Pei, ZHANG Mei, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J].??JAMA, 2017,317(24):2515`-2523.
[3]DEFRONZO R A. Insulin resistance, lipotoxicity, type 2 dia`-betes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009[J].??Diabetologia, 2010,53(7):1270`-1287.
[4]WAKI H, TONTONOZ P. Endocrine functions of adipose tissue[J].?Annual Review of Pathology, 2007,2:31`-56.
[5]MCGOWN C, BIRERDINC A, YOUNOSSI Z M. Adipose tissue as an endocrine organ[J].?Clinics in Liver Disease, 2014,18(1):41`-58.
[6]YE Jianping. Mechanisms of insulin resistance in obesity[J].?Frontiers of Medicine, 2013,7(1):14`-24.
[7]FLEMING I. Epoxyeicosatrienoic acids, cell signaling and angiogenesis[J].?Prostaglandins & Other Lipid Mediators, 2007,82(1/4):60`-67.
[8]SPECTOR A A. Arachidonic acid cytochrome P450 epoxyge`-nase pathway[J].?Journal of Lipid Research, 2009,50 (Suppl):S52`-56.
[9]DENG Y M, EDIN M L, THEKEN K N, et al. Endothelial CYP epoxygenase overexpression and soluble epoxide hydrolase disruption attenuate acute vascular inflammatory responses in mice[J].?FASEB Journal, 2011,25(2):703`-713.
[10]XU Xizhen, LI Rui, CHEN Guangzhi, et al. The role of cytochrome P450 epoxygenases, soluble epoxide hydrolase, and epoxyeicosatrienoic acids in metabolic diseases[J].?Advances in Nutrition (Bethesda, Md), 2016,7(6):1122`-1128.
[11]ZELDIN D C, FOLEY J, BOYLE J E, et al. Predominant expression of an arachidonate epoxygenase in islets of Langerhans cells in human and rat pancreas[J].?Endocrinology, 1997,138(3):1338`-1346.
[12]MUSTAFA S, SHARMA V, MCNEILL J H. Insulin resis`-tance and endothelial dysfunction: are epoxyeicosatrienoic acids the link[J]??Experimental and Clinical Cardiology, 2009,14(2):e41`-e50.
[13]XU Xizhen, ZHAO Chunxia, WANG Luyun, et al. Increased CYP2J3 expression reduces insulin resistance in fructose`-treated rats and db/db mice[J].?Diabetes, 2010,59(4):997`-1005.
[14]NICOLAI A, LI M, KIM D H, et al. Heme oxygenase`-1 induction remodels adipose tissue and improves insulin sensitivity in obesity`-induced diabetic rats[J].?Hypertension, 2009,53(3):508`-515.
[15]YANG Yan, DONG Ruolan, CHEN Zhihui, et al. Endothe`-lium`-specific CYP2J2 overexpression attenuates age`-related insulin resistance[J].?Aging cell, 2018,17(2). doi:10.1111/acel.12718.
[16]LUO P C, CHANG H H, ZHOU Y Q, et al. Inhibition or deletion of soluble epoxide hydrolase prevents hyperglycemia, promotes insulin secretion, and reduces islet apoptosis[J].?The Journal of Pharmacology and Experimental Therapeutics, 2010,334(2):430`-438.
[17]LURIA A, BETTAIEB A, XI Y N, et al. Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance[J].?Proceedings of the National Academy of Sciences of the United States of America, 2011,108(22):9038`-9043.
[18]BARROSO I, GURNELL M, CROWLEY V E, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension[J].?Nature, 1999,402(6764):880`-883.
[19]LI Rui, XU Xizhen, CHEN Chen, et al. CYP2J2 attenuates metabolic dysfunction in diabetic mice by reducing hepatic inflammation via the PPARgamma[J].?American Journal of Physiology`-Endocrinology and Metabolism, 2015,308(4):E270`-282.
[20]CAMPBELL W B. New role for epoxyeicosatrienoic acids as anti`-inflammatory mediators[J].?Trends in Pharmacological Sciences, 2000,21(4):125`-127.
[21]NODE K, HUO Y Q, RUAN X L, et al. Anti`-inflammatory properties of cytochrome P450 epoxygenase`-derived eicosanoids[J].??Science (New York, NY), 1999,285(5431):1276`-1279.
[22]OLEARCZYK J J, QUIGLEY J E, MITCHELL B C, et al. Administration of a substituted adamantyl urea inhibitor of soluble epoxide hydrolase protects the kidney from damage in hypertensive Goto`-Kakizaki rats[J].?Clinical Science (London, England:1979), 2009,116(1):61`-70.
[23]SUZUKI S, OGURO A, OSADA`-OKA M, et al. Epoxyeicosatrienoic acids and/or their metabolites promote hypoxic response of cells[J].?Journal of Pharmacological Sciences, 2008,108(1):79`-88.
[24]SINGH S P, MCCLUNG J A, BELLNER L, et al. CYP`-450 Epoxygenase derived epoxyeicosatrienoic acid contribute to reversal of heart failure in obesity`-induced diabetic cardiomyopathy via PGC`-1 alpha activation[J].?Cardiovascular Pharmacology (Open access), 2018,7(1):233. doi:10.4172/2329`-6607.1000233.
[25]SINGH S P, SCHRAGENHEIM J, CAO J, et al. PGC`-1 alpha regulates HO`-1 expression, mitochondrial dynamics and biogenesis: role of epoxyeicosatrienoic acid[J].?Prostaglandins & Other Lipid Mediators, 2016,125:8`-18.
[26]SCHRAGENHEIM J, BELLNER L, CAO J, et al. EET enhances renal function in obese mice resulting in restoration of HO`-1`-Mfn1/2 signaling, and decrease in hypertension through inhibition of sodium chloride co`-transporter[J].?Prostaglandins & Other Lipid Mediators, 2018,137:30`-39.
[27]CAO J, SINGH S P, MCCLUNG J A, et al. EET intervention on Wnt1, NOV, and HO`-1 signaling prevents obesity`-induced cardiomyopathy in obese mice[J].?American Journal of Phy`-siology`-Heart and Circulatory Physiology, 2017,313(2):H368`-H380.
[28]LUO Ying, WU Mingyu, DENG Bingqing, et al. Inhibition of soluble epoxide hydrolase attenuates a high`-fat diet`-mediated renal injury by activating PAX2 and AMPK[J].?Proc Natl Acad Sci USA, 2019,116(11):5154`-5159.
[29]GAI Z B, VISENTIN M, GUI T, et al.
Effects of Farnesoid X receptor activation on arachidonic acid metabolism, NF`-κB signaling, and hepatic inflammation[J].?Molecular Pharmacology, 2018,94(2):802`-811.
[30]ROCHE C, GUERROT D, HAROUKI N, et al. Impact of soluble epoxide hydrolase inhibition on early kidney damage in hyperglycemic overweight mice[J].?Prostaglandins & Other Lipid Mediators. 2015,120:148`-154.
[31]DING Y D, FROMEL T, POPP R, et al. The biological actions of 11,12`-epoxyeicosatrienoic acid in endothelial cells are specific to the R/S`-enantiomer and require the G(s) protein[J].?The Journal of Pharmacology and Experimental Therapeutics, 2014,350(1):14`-21.
[32]SOMMER K, JAKOB H, BADJLAN F, et al. 11,12 and 14,15 epoxyeicosatrienoic acid rescue deteriorated wound healing in ischemia[J].?PLoS One, 2019,14(1):e0209158.
[33]ZHAO Qinshuo, HUANG Jingqiu, WANG Dong, et al. Endothelium`-specific CYP2J2 overexpression improves cardiac dysfunction by promoting angiogenesis via Jagged1/Notch1 signaling[J].?Journal of Molecular and Cellular Cardiology, 2018,123:118`-127.
[34]ZHAO Huichen, CHEN Jicui, CHAI Jiachao, et al. Cytochrome P450 (CYP) epoxygenases as potential targets in the management of impaired diabetic wound healing[J].?Laboratory Investigation, 2017,97(7):782`-791.