黃巧 孟海寧 任靜 羅路 齊宏 沈若武
[摘要]目的探討microRNA`-375(miR`-375)對結(jié)直腸癌(CRC)細(xì)胞侵襲遷移的影響及該影響與Notch2通路蛋白的關(guān)系。方法將表達(dá)miR`-375的慢病毒轉(zhuǎn)染入人CRC細(xì)胞HCT`-116細(xì)胞中作為實驗組,將空載慢病毒轉(zhuǎn)染入HCT`-116細(xì)胞中作為陰性對照組(NC組),未轉(zhuǎn)染HCT`-116細(xì)胞作為空白組,采用實時熒光定量PCR(qRT`-PCR)方法檢驗轉(zhuǎn)染效率,Transwell小室實驗檢測細(xì)胞侵襲和遷移能力,Western Blot方法檢測Notch2通路蛋白的相對表達(dá)。再將Notch2小干擾RNA(siRNA)轉(zhuǎn)染入HCT`-116細(xì)胞中作為Notch2`-siRNA組,將陰性對照轉(zhuǎn)染入HCT`-116細(xì)胞中作為Notch2陰性對照組,未轉(zhuǎn)染HCT`-116細(xì)胞作為空白組,采用Western Blot方法檢測3組細(xì)胞Notch2蛋白表達(dá)量,采用Transwell小室實驗進(jìn)一步驗證Notch2表達(dá)的改變對CRC細(xì)胞侵襲遷移的影響。結(jié)果CRC細(xì)胞中miR`-375表達(dá)明顯低于人正常結(jié)直腸黏膜細(xì)胞(t=33.00,P<0.05)。使HCT`-116細(xì)胞中的miR`-375過表達(dá)后,與NC組和空白組相比,細(xì)胞的侵襲、遷移能力均下降(F=223.40~894.16,P<0.05),且Notch2通路蛋白相對表達(dá)量下降(F=100.63,P<0.05)。將Notch2下調(diào)后,與Notch2陰性對照組和空白組相比,Notch2`-siRNA組細(xì)胞的侵襲遷移能力下降(F=144.31~197.54,P<0.05)。結(jié)論上調(diào)miR`-375表達(dá)可以抑制CRC細(xì)胞的侵襲遷移,這一作用可以通過調(diào)控Notch2來實現(xiàn)。
[關(guān)鍵詞]結(jié)直腸腫瘤;微RNAs`-375;Notch2;腫瘤轉(zhuǎn)移
[ABSTRACT]ObjectiveTo investigate the effect of microRNA`-375 (miR`-375) on the invasion and migration of colorectal cancer (CRC) and its association with Notch2 pathway protein. MethodsHuman CRC HCT`-116 cells transfected with the lentivirus with miR`-375 expression were included as experimental group, HCT`-116 cells transfected with the empty lentivirus were included as negative control group (NC group), and untransfected HCT`-116 cells were included as blank group. Quantitative real`-time PCR was used to measure transfection efficiency, Transwell chamber was used to evaluate cell invasion and migration, and Western Blot was used to measure the relative expression of Notch2 pathway protein. HCT`-116 cells transfected with Notch2 small interfering RNA (siRNA) were included as Notch2`-siRNA group, HCT`-116 cells transfected with negative control were included as Notch2 negative control group, and untransfected HCT`-116 cells were included as blank group. Western Blot was used to measure the protein expression of Notch2, and Transwell chamber was used to verify the effect of the change in Notch2 expression on the invasion and migration of CRC. ResultsCRC cells had significantly lower expression of miR`-375 than normal human colorectal mucosal cells (t=33.00,P<0.05). Compared with the NC group and the blank group, the HCT`-116 cells with miR`-375 overexpression had significant reductions in the invasion and migration of cells (F=223.40-894.16,P<0.05) and the relative expression of Notch2 pathway protein (F=100.63,P<0.05). Compared with the Notch2 negative control group and the blank group, the Notch2`-siRNA group with downregulated Notch2 had significant reductions in the invasion and migration of cells (F=144.31-197.54,P<0.05). ConclusionUpregulation of miR`-375 expression can inhibit the invasion and migration of CRC cells, which can be achieved by the regulation of Notch2.
[KEY WORDS] colorectal neoplasms; microRNAs`-375; notch2; neoplasm metastasis
結(jié)直腸癌(CRC)是第三大常見的癌癥,也是男性和女性癌癥死亡的第三大原因,已知有多種致瘤途徑均可導(dǎo)致CRC的發(fā)生[1]。侵襲和遷移是CRC致死的主要原因,但其機(jī)制仍未明確[2`-3]。因此,從分子水平研究CRC侵襲遷移的影響因素意義深遠(yuǎn)。微小RNA(miRNA)是一種小型非編碼RNA分子,它參與基因沉默和癌癥惡化的調(diào)節(jié)[4],同時也可以影響細(xì)胞功能包括惡性轉(zhuǎn)化、血管生成、細(xì)胞生長以及炎癥反應(yīng)等[5]。其中,miR`-375是一種多功能的miRNA,參與胰島發(fā)育、葡萄糖體內(nèi)平衡、黏膜免疫、肺表面活性劑分泌以及腫瘤發(fā)生等。最近的研究結(jié)果顯示,miR`-375在多種癌癥中表達(dá)量顯著降低,并可通過抑制星形細(xì)胞上調(diào)基因`-1(AEG`-1)、Yes相關(guān)蛋白1(YAP1)、胰島素樣生長因子1受體(IGF1R)和3`-磷酸肌醇依賴性蛋白激酶`-1(PDK1)等幾個重要的致癌基因來發(fā)揮抑癌作用[6]。Notch信號通路是一種進(jìn)化上保守的細(xì)胞信號通路,它可以對癌癥發(fā)生、癌癥干細(xì)胞生物學(xué)特性和腫瘤血管生成產(chǎn)生影響,其在腫瘤學(xué)領(lǐng)域作為潛在治療靶點具有重要地位[7]。Notch信號通路由Notch受體、DSL蛋白配體(Delta/Serrate/lag2)和細(xì)胞內(nèi)效應(yīng)分子組成,Notch受體又可以分為Notch1、Notch2、Notch3和Notch4,其中Notch2受體與多種癌癥密切相關(guān)。而Notch2的表達(dá)與CRC密切相關(guān),并可能在腫瘤抑制中發(fā)揮作用。本實驗研究miR`-375、Notch2及CRC間的關(guān)系,分析其可能的分子機(jī)制,為CRC的分子靶向治療提供參考。
1材料與方法
1.1實驗材料
人類CRC細(xì)胞株HCT`-116及人正常結(jié)直腸黏膜細(xì)胞(FHC)購自吉凱基因化學(xué)技術(shù)有限公司;胎牛血清、RPMI`-1640培養(yǎng)基、胰蛋白酶及青霉素`-鏈霉素雙抗購自北京索萊寶科技有限公司;miR`-375慢病毒(HIV)及空載病毒(HIV)購自吉凱基因化學(xué)技術(shù)有限公司;聚凝胺購自北京索萊寶科技有限公司;Li`-pofectamineTM2000、Trizol試劑購買于美國Invitrogen公司;PrimeScript RT reagent Kit with gDNA Eraser(Perfect Real Time)、SYBR Premix Ex Taq RR420A試劑盒購自大連Takara公司;基質(zhì)膠購自美國BD公司;Transwell小室購自美國康寧公司;Notch2小干擾RNA(siRNA)及陰性對照購自Santa Cruz公司;Notch2一抗購自CST公司;β`-actin一抗、二抗購自Absin公司。
1.2實驗方法
1.2.1細(xì)胞培養(yǎng)用含體積分?jǐn)?shù)為0.10胎牛血清、10 g/L青霉素`-鏈霉素雙抗的RPMI`-1640培養(yǎng)液培養(yǎng)細(xì)胞。在37 ℃、含體積分?jǐn)?shù)0.05 CO2培養(yǎng)箱中培養(yǎng),每24 h更換1次培養(yǎng)液,倒置顯微鏡下觀察細(xì)胞生長狀態(tài)。當(dāng)細(xì)胞融合度達(dá)80%左右時傳代,取對數(shù)生長期細(xì)胞進(jìn)行實驗。
1.2.2實時熒光定量PCR(qRT`-PCR)方法檢測miR`-375表達(dá)量收集細(xì)胞,根據(jù)TRIzol試劑說明書提取細(xì)胞總RNA,應(yīng)用PrimeScript RT reagent Kit with gDNA Eraser(Perfect Real Time)將其反轉(zhuǎn)錄成cDNA,應(yīng)用SYBR Premix Ex Taq RR420A進(jìn)行qRT`-PCR (bio`-rad CFX96)檢測細(xì)胞中miR`-375的表達(dá)。反應(yīng)條件:95 ℃,30 s;95 ℃、5 s,60 ℃、30 s,40個循環(huán);60 ℃、15 s。實驗重復(fù)3次。實驗所用引物來自上海生物技術(shù)工程有限公司。其序列見表1。
1.2.3miRNA轉(zhuǎn)染及表達(dá)檢測將生長狀態(tài)良好HCT`-116細(xì)胞接種于96孔板,每孔5×104個,培養(yǎng)24 h。實驗分為實驗組、陰性對照(NC)組和空白組,每組設(shè)3個復(fù)孔。將聚凝胺按1∶2 000稀釋,每孔10 μL,與miR`-375慢病毒共同轉(zhuǎn)染HCT`-116細(xì)胞作為實驗組,與空載慢病毒共同轉(zhuǎn)染HCT`-116細(xì)胞中作為NC組,未轉(zhuǎn)染HCT`-116細(xì)胞作為空白組。感染復(fù)數(shù)(MOI)值為25。加入培養(yǎng)液后將96孔板放于37 ℃、含體積分?jǐn)?shù)0.05的CO2培養(yǎng)箱中培養(yǎng)10 h,移除培養(yǎng)液,每孔加入100 μL新的培養(yǎng)液,培養(yǎng)箱中繼續(xù)培育24 h,應(yīng)用qRT`-PCR方法檢測3組細(xì)胞miR`-375的表達(dá)量。結(jié)果取3個復(fù)孔平均值,實驗重復(fù)3次。
1.2.4siRNA轉(zhuǎn)染及表達(dá)檢測將生長狀態(tài)良好的HCT`-116細(xì)胞接種于6孔板中,每孔5×105個,培養(yǎng)24 h。實驗分為Notch2`-siRNA組、Notch2陰性對照組和空白組。將Notch2`-siRNA和陰性對照分別與Li`-pofectamineTM2000按照20∶1的比例混合后加入到兩組HCT`-116細(xì)胞中,每孔105 μL混合物,分別作為Notch2`-siRNA組和Notch2陰性對照組,未轉(zhuǎn)染細(xì)胞為空白組。將3組細(xì)胞加入含體積分?jǐn)?shù)0.10胎牛血清的RPMI`-1640培養(yǎng)液2 mL,放于37 ℃、含體積分?jǐn)?shù)0.05 CO2培養(yǎng)箱中培養(yǎng)6 h,移除培養(yǎng)液,每孔加入2 mL新培養(yǎng)液。48 h后收集細(xì)胞,應(yīng)用Western Blot方法驗證Notch2蛋白是否下調(diào)成功。實驗重復(fù)3次。
1.2.5Transwell小室實驗檢測細(xì)胞侵襲和遷移能力向24孔板中加500 μL含體積分?jǐn)?shù)0.15血清的RPMI`-1640培養(yǎng)液,將Transwell小室放于孔中,取生長狀態(tài)良好的細(xì)胞接種于Transwell小室的上室,每孔5×104個,加200 μL無血清的RPMI`-1640培養(yǎng)液于上室;將24孔板置培養(yǎng)箱培育24 h后取出,以PBS清洗小室,用棉簽輕輕拭去上室細(xì)胞,甲醇固定15 min,結(jié)晶紫染色15 min,PBS溶液清洗3次,取出拍照,對照片中細(xì)胞計數(shù),進(jìn)行統(tǒng)計學(xué)分析。侵襲實驗:將基質(zhì)膠用RPMI`-1640培養(yǎng)液稀釋10倍后,每個小室內(nèi)加入100 μL,放入培養(yǎng)箱4 h后取出,將小室中液體輕輕吸出,其余步驟同遷移實驗。48 h后觀察并拍照,計數(shù)細(xì)胞,進(jìn)行統(tǒng)計學(xué)分析。實驗重復(fù)3次。
1.2.6Western Blot方法檢測Notch2蛋白相對表達(dá)量提取細(xì)胞蛋白,使用BCA法檢測蛋白濃度,用Western Blot方法分別檢測實驗組、NC組、空白組細(xì)胞以及Notch2`-siRNA組、Notch2陰性對照組、空白組細(xì)胞的Notch2蛋白表達(dá)。將50 μg蛋白在SDS`-PAGE凝膠上電泳并分離,將分離后的蛋白分子轉(zhuǎn)至PVDF膜上,于低速搖床上用含脫脂奶粉的TBST溶液室溫封閉2 h。加入Notch2一抗(1∶1 000),4 ℃過夜孵育。加入二抗(1∶3 000)孵育2 h。用ECL發(fā)光液在顯影儀中進(jìn)行目的蛋白顯影并保存圖片。分析條帶灰度,以目的條帶灰度值/內(nèi)參條帶灰度值表示Notch2蛋白相對表達(dá)量。實驗重復(fù)3次。
1.3統(tǒng)計學(xué)分析
應(yīng)用SPSS 19.0軟件對實驗數(shù)據(jù)進(jìn)行統(tǒng)計學(xué)分析。計量資料結(jié)果以±s形式表示,多組數(shù)據(jù)間比較采用方差分析,兩組數(shù)據(jù)間比較應(yīng)用t檢驗。以P<0.05表示差異有統(tǒng)計學(xué)意義。
2結(jié)果
2.1miR`-375對各指標(biāo)檢測結(jié)果的影響
2.1.1HCT`-116細(xì)胞、FHC細(xì)胞miR`-375表達(dá)比較HCT116細(xì)胞、FHC細(xì)胞miR`-375相對表達(dá)量比較差異有顯著性(t=33.02,P<0.05)。見圖1。
2.1.2各組miR`-375表達(dá)比較實驗組HCT`-116細(xì)胞miR`-375表達(dá)量較NC組明顯增加,差異有統(tǒng)計學(xué)意義(F=8 413.05,P<0.05);NC組與空白對照組比較差異無顯著性(P>0.05)。見表1。
2.1.3miR`-375對細(xì)胞遷移數(shù)目影響實驗組遷移細(xì)胞數(shù)顯著少于空白組和NC組,差異有統(tǒng)計學(xué)意義(F=223.40,P<0.05),空白組與NC組比較差異無顯著性(P>0.05)。見表1。
2.1.4miR`-375對細(xì)胞侵襲數(shù)目影響實驗組侵襲細(xì)胞數(shù)顯著少于空白組和NC組,差異有統(tǒng)計學(xué)意義(F=894.16,P<0.05); 空白組與NC組比較差異無顯著性(P>0.05)。見表1。
2.2下調(diào)Notch2對各指標(biāo)檢測結(jié)果影響
2.2.1各組Notch2相對表達(dá)量比較空白組和NC組細(xì)胞Notch2蛋白相對表達(dá)量高于實驗組,差異有統(tǒng)計學(xué)意義(F=100.63,P<0.05);空白組與NC組Notch2蛋白相對表達(dá)量比較差異無顯著性(P>0.05)。見表1、圖2。
2.2.2Notch2對細(xì)胞遷移和侵襲影響Western Blot結(jié)果顯示,空白組(A組)和Notch2`-陰性對照組(B組)的Notch 2蛋白相對表達(dá)量高于Notch2`-siRNA組(C組),差異有統(tǒng)計學(xué)意義(F=805.35,P<0.05),空白組與Notch2`-陰性對照組比較差異
214青島大學(xué)學(xué)報(醫(yī)學(xué)版)55卷
無顯著性(P>0.05)。見表2、圖3。Transwell遷移實驗顯示,Notch2`-siRNA組遷移細(xì)胞數(shù)顯著少于空白組和Notch2`-陰性對照組,差異有統(tǒng)計學(xué)意義(F=197.54,P<0.05),空白組與Notch2`-陰性對照組比較差異無顯著性(P>0.05)。見表2。Transwell侵襲實驗顯示,Notch2`-siRNA組侵襲細(xì)胞數(shù)顯著少于空白組和Notch2`-陰性對照組,差異有統(tǒng)計學(xué)意義(F=144.31,P<0.05);空白組與Notch2`-陰性對照組比較差異無顯著性(P>0.05)。見表2。
3討論
miRNA是一組內(nèi)源性的、進(jìn)化保守的非編碼小分子RNA,它在腫瘤的發(fā)生發(fā)展中發(fā)揮重要作用。miRNA是重要的調(diào)控RNA,在各種生物過程和人類疾病中控制基因表達(dá),可以通過翻譯抑制或mRNA降解來調(diào)節(jié)轉(zhuǎn)錄后的基因表達(dá)[8]。近年來,miRNA在癌癥中的作用得到了廣泛的研究,多項研究表明,miRNA可以通過調(diào)節(jié)細(xì)胞增殖、細(xì)胞黏附、凋亡和血管生成而發(fā)揮致癌或抑癌作用[9]。有研究進(jìn)一步表明,miRNA作為癌癥研究中的診斷及預(yù)后標(biāo)志物有很大意義。在多種癌癥中miR`-375表達(dá)紊亂,miR`-375在胃癌、膠質(zhì)瘤、CRC、胰腺癌、肝癌、鱗癌中呈低表達(dá),而在甲狀腺髓樣癌、乳癌和前列腺癌中高表達(dá)[10]。另有研究表明,miR`-375作為一種腫瘤抑制因子,可以抑制某些類型癌癥的細(xì)胞生長和腫瘤進(jìn)展[11]。與正常人類結(jié)直腸組織相比,miR`-375在人類CRC細(xì)胞系和組織中大多數(shù)呈低表達(dá)[12],這表明miR`-375的變化可能與CRC的發(fā)生發(fā)展有關(guān)。以往的研究證明,miR`-375可以通過調(diào)節(jié)KLF4來抑制CRC的增殖[13],也可以通過調(diào)節(jié)pi3k/akt信號通路抑制CRC細(xì)胞的生長[12]。還有研究發(fā)現(xiàn),hsa`-miR`-375和hsa`-miR`-133a`-3p可能為CRC的新標(biāo)記物[14];miR`-375作為抑癌基因起著重要作用,如能夠增加卵巢癌細(xì)胞的凋亡[15]。但在前列腺癌中miR`-375卻促進(jìn)了腫瘤細(xì)胞的增殖、遷移和侵襲[16],提示miR`-375在腫瘤細(xì)胞中的作用具有組織細(xì)胞特異性。本文研究miR`-375對CRC細(xì)胞侵襲與遷移能力是否有影響,研究結(jié)果表明miR`-375過表達(dá)對于CRC細(xì)胞的侵襲轉(zhuǎn)移能力具有抑制作用,這與miR`-375為抑癌基因的研究結(jié)果相一致。
然而,在CRC中miR`-375的具體作用機(jī)制仍不清楚。為了闡明miR`-375調(diào)節(jié)CRC侵襲遷移的潛在分子機(jī)制,本文研究了miR`-375的可能通路。Notch信號通路是一個高度保守的細(xì)胞信號系統(tǒng),在細(xì)胞增殖、分化、凋亡等多種細(xì)胞功能中均發(fā)揮著重要作用[17]。Notch信號軸由Notch受體、DSL蛋白配體和細(xì)胞內(nèi)效應(yīng)分子組成,Notch受體又分為Notch1、Notch2、Notch3、Notch4,其中Notch2參與多種癌癥的發(fā)生,促進(jìn)腫瘤生長,降低化療敏感性[19]。目前,Notch信號通路被認(rèn)為在多種癌癥中發(fā)揮作用,是調(diào)節(jié)正常腸黏膜細(xì)胞譜系分化的必要條件[19]。以往研究顯示,CRC中Notch信號調(diào)節(jié)異常,且該異常貫穿整個腫瘤發(fā)生過程[20]。Notch信號參與CRC的發(fā)生和發(fā)展,且高表達(dá)Notch信號與癌癥的進(jìn)展和轉(zhuǎn)移相關(guān)[21]。使用基因分析軟件篩選miR`-375的可能性直接靶點,發(fā)現(xiàn)Notch與Wnt通路中的NOTCH2、RBPJ等基因包含了與miR`-375直接結(jié)合的位點[22]。有研究顯示,拮抗Notch2/Notch3能有效地治療包括乳癌、肺癌、卵巢癌和胰腺癌在內(nèi)的多種上皮腫瘤[23],下調(diào)Notch2還可以抑制胃癌的增殖、侵襲和轉(zhuǎn)移,也可以抑制腫瘤干細(xì)胞的性狀和膀胱癌的進(jìn)展[24]。在以往CRC基因組突變譜的研究中還發(fā)現(xiàn)了融合基因PHKB`-NOTCH2[25]。因此,本文選取Notch2作為研究對象。已有研究顯示,Notch2表達(dá)與CRC密切相關(guān),并可能在腫瘤抑制中發(fā)揮作用[26]。本文實驗結(jié)果顯示,miR`-375過表達(dá)能夠抑制Notch2通路蛋白的表達(dá),進(jìn)而抑制CRC細(xì)胞的侵襲和遷移;將Notch2用siRNA下調(diào)后,CRC的侵襲遷移能力下降,二者的作用是一致的。
以上結(jié)果表明,miR`-375是調(diào)節(jié)CRC侵襲轉(zhuǎn)移的靶點,它的作用可以通過調(diào)控Notch2實現(xiàn)。本文盡管明確了CRC細(xì)胞中miR`-375與Notch2之間的靶向關(guān)系,但miRNA在腫瘤發(fā)生發(fā)展中發(fā)揮作用的機(jī)制十分復(fù)雜,Notch通路亦復(fù)雜多變,還需要更深入地研究,才能為臨床上腫瘤的治療提供更多的可能性治療靶點。
[參考文獻(xiàn)]
[1]PERICLEOUS M, MANDAIR D, CAPLIN M E. Diet and supplements and their impact on colorectal cancer[J].?Journal of Gastrointestinal Oncology, 2013,4(4):409`-423.
[2]ZHOU Jiaojiao, ZHENG Shu, SUN Lifeng, et al. MicroRNA regulation network in colorectal cancer metastasis[J].?World Journal of Biological Chemistry, 2014,5(3):301`-307.
[3]DUAN J, CHEN L, GAO H, et al. GALNT6 suppresses progression of colorectal cancer[J].?American Journal of Cancer Research, 2018,8(12):2419`-2435.
[4]ZHENG Keyan, LIU Weicheng, LIU Ye, et al. MicroRNA`-133a suppresses colorectal cancer cell invasion by targeting Fascin1[J].?Oncology Letters, 2015,9(2):869`-874.
[5]YIU A J, YIU C Y. Biomarkers in colorectal cancer[J].?Anticancer Research, 2016,36(3):1093`-1102.
[6]YAN Junwei, LIN Jusheng, HE Xingxing. The emerging role of miR`-375 in cancer[J].?International Journal of Cancer, 2014,135(5):1011`-1018.
[7]ESPINOZA I, MIELE L. Notch inhibitors for cancer treatment[J].?Pharmacology & Therapeutics, 2013,139(2):95`-110.
[8]WANG Xinglong, JIA Yanqing, WANG Xiangwei, et al. MiR`-375 has contrasting effects on Newcastle disease virus growth depending on the target gene[J].?International Journal of Biological Sciences, 2019,15(1):44`-57.
[9]SIRIWARDHANA C, KHADKA V S, CHEN J J, et al. Development of a miRNA`-seq based prognostic signature in lung adenocarcinoma[J].?BMC Cancer, 2019,19(1):34.
[10]KUMAR S, XIE H, SCICLUNA P, et al. MiR`-375 Regulation of LDHB plays distinct roles in polyomavirus`-positive and negative merkel cell carcinoma[J].?Cancers, 2018,10(11):90`-102
[11]ZHANG Hailong, LIU Tao, YI Sha, et al. Targeting MYCN IRES in MYCN`-amplified neuroblastoma with miR`-375 inhi`-bits tumor growth and sensitizes tumor cells to radiation[J].?Molecular Oncology, 2015,9(7):1301`-1311.
[12]WANG Yihui, TANG Qingchao, LI Mingqi, et al. Micro`-RNA`-375 inhibits colorectal cancer growth by targeting PIK3CA[J].?Biochemical and Biophysical Research Communications, 2014,444(2):199`-204.
[13]MAO Q, QUAN T, LUO B, et al. MiR`-375 targets KLF4 and impacts the proliferation of colorectal carcinoma[J].?Tumour Biology, 2016,37(1):463`-471.
[14]WEBER D, AMAR L, GODDE D, et al. Extensive screening of microRNA populations identifies hsa`-miR`-375 and hsa`-miR`-133a`-3p as selective markers for human rectal and colon cancer[J].?Oncotarget, 2018,9(43):27256`-27267.
[15]SHAO Xiaowen, MEI Wenjie, WENG Wenhao, et al. MiR`-375 enhances ruthenium`-derived compound Rawq01 induced cell death in human ovarian cancer[J].?International Journal of Clinical and Experimental Pathology, 2013,6(6):1095`-1102.
[16]PICKL J M, TICHY D, KURYSHEV V Y, et al. Ago`-RIP`-Seq identifies Polycomb repressive complex Ⅰ member CBX7 as a major target of miR`-375 in prostate cancer progression[J].?Oncotarget, 2016,7(37):59589`-59603.
[17]NIKOLIC N, JAKOVLJEVIC A, CARKIC J, et al. Notch signaling pathway in apical periodontitis: correlation with bone resorption regulators and proinflammatory cytokines[J].?Journal of Endodontics, 2019,45(2):123`-128.
[18]HUA Chunbo, SONG Shengbo, MA Huili, et al. MiR`-1`-5p is down`-regulated in gallbladder carcinoma and suppresses cell proliferation, migration and invasion by targeting Notch2[J].?Pathology Research and Practice, 2019,215(1):200`-208.
[19]GUILMEAU S. Notch signaling and intestinal cancer[J].?Advances in experimental medicine and biology, 2012,727:272`-288.
[20]VINSON K E, GEORGE D C, FENDER A W, et al. The notch pathway in colorectal cancer[J].?International Journal of Cancer, 2016,138(8):1835`-1842.
[21]LIAN Haifeng, JIA Xingfang, SHI Ning, et al. Notch signaling promotes serrated neoplasia pathway in colorectal cancer through epigenetic modification of EPHB2 and EPHB4[J].?Cancer Management and Research, 2018,10:6129`-6141.
[22]ABRAHAM K J, ZHANG X, VIDAL R, et al. Roles for miR`-375 in neuroendocrine differentiation and tumor suppression via notch pathway suppression in merkel cell carcinoma[J].?The American Journal of Pathology, 2016,186(4):1025`-1035.
[23]YEN W C, FISCHER M M, AXELROD F, et al. Targeting notch signaling with a notch2/notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor`-initiating cell frequency[J].?Clinical Cancer Research, 2015,21(9):2084`-2095.
[24]TENG J, AI X, JIA Z, et al. Long non`-coding RNA ARAP1`-AS1 promotes the progression of bladder cancer by regulating miR`-4735`-3p/NOTCH2 axis[J].?Cancer Biology & Therapy, 2018, 2018:1`-10.
[25]TENG H, GAO R, QIN N, et al. Identification of recurrent and novel mutations by wholegenome sequencing of colorectal tumors from the Han population in Shanghai,eastern China[J].?Molecular Medicine Reports, 2018,18(6):5361`-5370.
[26]CHU Dake, ZHENG Jianyong, WANG Weizhong, et al. Notch2 expression is decreased in colorectal cancer and related to tumor differentiation status[J].?Annals of Surgical Oncology, 2009,16(12):3259`-3266.