景雷 歐愛(ài)春 李亞男 王英振
[摘要]目的探討多聚蛋白多糖(Aggrecan)過(guò)表達(dá)載體修飾骨髓間充質(zhì)干細(xì)胞(BMSCs)來(lái)源外泌體聯(lián)合絲素蛋白支架對(duì)新西蘭大白兔軟骨缺損的修復(fù)作用。方法培養(yǎng)兔源性BMSCs,流式細(xì)胞儀檢測(cè)第2代BMSCs表面蛋白CD44、CD29、CD34和CD45表達(dá)。慢病毒Aggrecan過(guò)表達(dá)質(zhì)粒轉(zhuǎn)染BMSCs,超速離心法提取外泌體,Western Blot方法檢測(cè)外泌體分子標(biāo)志物CD81和CD63的表達(dá)。構(gòu)建絲素蛋白支架聯(lián)合外泌體復(fù)合物,利用掃描電鏡技術(shù)檢測(cè)絲蛋白支架的結(jié)構(gòu)。利用蘇木精`-伊紅(HE)染色和番紅`-快綠染色檢測(cè)新西蘭大白兔軟骨缺損模型中軟骨結(jié)構(gòu)。結(jié)果第2代BMSCs表面蛋白CD44和CD29表達(dá)分別為60.2%和58.3%,CD34和CD45表達(dá)分別為3.4%和2.6%。慢病毒Aggrecan過(guò)表達(dá)載體轉(zhuǎn)染效率為(95±2)%。掃描電鏡觀察顯示,外泌體為直徑40~100 nm雙層膜的膜狀結(jié)構(gòu)。Western Blot檢測(cè)顯示,外泌體可以表達(dá)分子標(biāo)志物CD81和CD63。HE染色和番紅`-快綠染色結(jié)果顯示,Aggrecan過(guò)表達(dá)載體修飾BMSCs分泌的外泌體聯(lián)合絲素蛋白支架對(duì)軟骨缺損的修復(fù)作用明顯優(yōu)于BMSC組和陰性對(duì)照組(F=19.298、12.548,P<0.05)。結(jié)論Aggrecan過(guò)表達(dá)載體修飾BMSCs分泌的外泌體聯(lián)合絲素蛋白支架對(duì)軟骨缺損的修復(fù)具有明顯的促進(jìn)作用,可為骨性關(guān)節(jié)炎治療提供新的思路與方法。
[關(guān)鍵詞]外泌體;間充質(zhì)基質(zhì)細(xì)胞;絲素蛋白支架;骨關(guān)節(jié)炎
[ABSTRACT]ObjectiveTo investigate the effect of exosome derived from Aggrecan overexpression vector`-modified bone marrow mesenchymal stem cells (BMSCs) combined with silk fibroin scaffold in the repair of cartilage defect in New Zealand white rabbits. MethodsRabbit`-derived BMSCs were cultured. Flow cytometry was used to measure the expression of CD44, CD29, CD34, and CD45 on the surface of the second`-generation BMSCs. Lentivirus Aggrecan`-overexpression plasmid was transfected into BMSCs, the exosomes were extracted by ultracentrifugation, and Western blot was used to measure the expression of the biomar`-kers CD81 and CD63. The silk fibroin scaffold`-exosome complexes were constructed, and scanning electron microscopy was used to observe the structure of silk fibroin scaffolds. HE staining and safranine`-fast green staining were used to observe cartilage structure in New Zealand white rabbits with cartilage defect. ResultsThe expression rates of CD44 and CD29 on the surface of the se`-cond`-generation BMSCs were 60.2% and 58.3%, respectively, and the expression rates of CD34 and CD45 were 3.4% and 2.6%, respectively. The transfection efficiency of lentiviral Aggrecan`-overexpression vector was (95±2)%. Scanning electron microscopy showed that the exosome had a double`-membrane structure with a diameter of 40-100 nm. Western blot showed that exosomes expressed the molecular markers CD81 and CD63. HE staining and saffron`-fast green staining showed that exosomes secreted by Aggrecan overexpression vector`-modified BMSCs combined with silk fibroin scaffold had a better effect in repairing cartilage defect than the BMSC group and the negative control group (F=19.298 and 12.548,P<0.05). Conclusionexosomes secreted by Aggrecan overexpression vector`-modified BMSCs combined with silk fibroin scaffold can significantly promote the repair of cartilage defect, which provides new ideas and methods for the treatment of osteoarthritis in clinical practice.
[KEY WORDS]exosome; mesenchymal stromal cells; silk fibroin scaffold; osteoarthritis
骨性關(guān)節(jié)炎(OA)是關(guān)節(jié)外科最常見(jiàn)的疾病,也是目前臨床上的治療難題,其病理機(jī)制主要為軟骨細(xì)胞過(guò)度凋亡和軟骨基質(zhì)降解而導(dǎo)致的軟骨缺損[1`-3]。多聚蛋白多糖(Aggrecan)是軟骨基質(zhì)合成最主要的成分[4`-5]。骨髓間充質(zhì)干細(xì)胞(BMSCs)具有多向分化潛能,在特定誘導(dǎo)條件下,可以分化成人體內(nèi)的多種細(xì)胞[6`-8],如成骨細(xì)胞、軟骨細(xì)胞以及神經(jīng)細(xì)胞等[9`-11]。新近研究結(jié)果表明,BMSCs在特定誘導(dǎo)條件下可以轉(zhuǎn)化成成骨細(xì)胞,進(jìn)而促進(jìn)骨與軟骨損傷的修復(fù);而且BMSCs來(lái)源于病人自體,移植后可以避免排斥反應(yīng),這為臨床上骨缺損的修復(fù)提供了一個(gè)新的思路[12]。本研究利用BMSCs的多分化潛能,構(gòu)建Aggrecan的過(guò)表達(dá)載體轉(zhuǎn)染BMSCs,收集外泌體,聯(lián)合絲素蛋白支架,探討其對(duì)于軟骨缺損的修復(fù)作用,以期尋找最優(yōu)化的治療方案,為OA的治療提供新的思路。
1材料與方法
1.1實(shí)驗(yàn)材料
新西蘭大白兔20只,雌性,年齡為(12.11±3.04)月,體質(zhì)量(5.47±1.01)kg,購(gòu)自山東省濟(jì)南市實(shí)驗(yàn)動(dòng)物中心;胎牛血清購(gòu)自Gibco公司;DMEM、TRIZOL及2.5 g/L的胰酶Trypsin均購(gòu)自美國(guó)Invitrogen公司;氯仿、乙醇(體積分?jǐn)?shù)0.75)及逆轉(zhuǎn)錄試劑盒均購(gòu)自美國(guó)ABI Applied Biosystems公司;Real`-time PCR儀購(gòu)自美國(guó)bio`-rad公司。
1.2實(shí)驗(yàn)方法
1.2.1BMSCs分離和培養(yǎng)將兔麻醉后,消毒,鋪巾,利多卡因20 mL局部麻醉,利用骨穿穿刺針采集新鮮骨髓,按1∶3體積比加入含體積分?jǐn)?shù)0.10胎牛血清、100 kU/L青霉素的DMEM細(xì)胞培養(yǎng)液,充分混勻后,移入25 cm2的Hank培養(yǎng)瓶中,差速培養(yǎng)法培養(yǎng),3 d后去掉培養(yǎng)瓶中的油脂等雜質(zhì),之后每3 d換1次細(xì)胞培養(yǎng)液。BMSCs細(xì)胞融合率達(dá)70%~80%后進(jìn)行傳代培養(yǎng)。
1.2.2BMSCs鑒定采用流式細(xì)胞儀檢測(cè)BMSCs表面蛋白CD29、CD44、CD34和CD45的表達(dá),采用倒置光學(xué)顯微鏡觀察BMSCs的細(xì)胞形態(tài)。
1.2.3慢病毒Aggrecan過(guò)表達(dá)載體構(gòu)建兔源性Aggrecan基因序列從Pubmed genebank中獲得,序列號(hào)為NW_003159560;大小為40 893 bp(DNA linear CON 23`-JUN`-2016);按照RNA過(guò)表達(dá)序列的構(gòu)建原則,構(gòu)建Aggrecan過(guò)表達(dá)序列,以環(huán)狀質(zhì)粒pHBLV`-U6`-ZsGreen`-PGK`-Puro作為質(zhì)粒的克隆載體。利用慢病毒轉(zhuǎn)染Aggrecan過(guò)表達(dá)載體。Aggrecan過(guò)表達(dá)質(zhì)粒的構(gòu)建和慢病毒的轉(zhuǎn)染均由上海吉?jiǎng)P公司完成。
1.2.4慢病毒細(xì)胞轉(zhuǎn)染取第2代BMSCs,將細(xì)胞接種到6孔板,待融合率為50%時(shí)進(jìn)行慢病毒轉(zhuǎn)染,根據(jù)轉(zhuǎn)染說(shuō)明書操作,轉(zhuǎn)染復(fù)數(shù)(MOI)=50,慢病毒滴度為3×107 mg/L。慢病毒轉(zhuǎn)染效率=熒光下視野細(xì)胞/白光下視野細(xì)胞×100%。
1.2.5外泌體的提取和鑒定采用超速離心法收集BMSCs的外泌體,將Aggrecan過(guò)表達(dá)載體轉(zhuǎn)染72 h 的BMSCs和無(wú)病毒轉(zhuǎn)染的BMSCs,加入無(wú)血清的DMEM培養(yǎng)液,使BMSC的外泌體分泌到培養(yǎng)液中,然后將收集的培養(yǎng)液加入到低溫超速離心機(jī)中,分別設(shè)置轉(zhuǎn)速和時(shí)間為:300 r/min,15 min;2 000 r/min,15 min;10 000 r/min,30 min;100 000 r/min,70 min。收集純凈外泌體,利用掃描電鏡進(jìn)行形態(tài)鑒定。
1.2.6絲素蛋白支架的制備和檢測(cè)利用鹽瀝濾法將2 mL濃度為100 g/L的絲素蛋白溶液灌入24孔板中,加入450~600 μm的NaCl顆粒,室溫風(fēng)干3 d,鹽析法成型后將絲素蛋白支架晾干,修剪成10 mm×10 mm×10 mm大小圓柱狀絲素多孔支架,消毒后備用。利用掃描電鏡檢測(cè)支架結(jié)構(gòu)。
1.2.7實(shí)驗(yàn)分組及處理取20只成年健康新西蘭大白兔,隨機(jī)分為空白組、BMSCs組、陰性對(duì)照組、實(shí)驗(yàn)組,每組5只。各組動(dòng)物用150 g/L水合氯醛靜脈麻醉(3 mL/kg)后,常規(guī)消毒鋪無(wú)菌單,取膝關(guān)節(jié)正中側(cè)切口,逐層切開(kāi)皮膚、皮下軟組織、淺深筋膜,顯露膝關(guān)節(jié)股骨側(cè),使用口腔鉆在其軟骨層進(jìn)行鉆孔,形成長(zhǎng)5 mm、寬2 mm、深3 mm的錐形軟骨缺損,制成軟骨缺損模型,生理鹽水沖洗,進(jìn)行相應(yīng)干預(yù)后逐層縫合??瞻捉M:造模后植入絲素蛋白支架;BMSCs組:造模后植入絲素蛋白支架+BMSCs外泌體復(fù)合物;陰性對(duì)照組:造模后植入絲素蛋白支架+轉(zhuǎn)染空白載體BMSCs外泌體復(fù)合物;實(shí)驗(yàn)組:造模后植入絲素蛋白支架+轉(zhuǎn)染Aggrecan過(guò)表達(dá)載體BMSCs外泌體復(fù)合物。
1.2.8蘇木精`-伊紅(HE)染色和番紅`-快綠染色方法檢測(cè)軟骨缺損兔模型的軟骨結(jié)構(gòu)14 d后,將實(shí)驗(yàn)動(dòng)物處死,取4組新西蘭大白兔軟骨缺損組織行HE染色和番紅`-快綠染液染色,40 g/L多聚甲醛固定30 min;脫鈣處理4周;過(guò)二甲苯Ⅰ處理15 min,二甲苯Ⅱ10 min,二甲苯Ⅲ 10 min;體積分?jǐn)?shù)1.00、0.95、0.90、0.85乙醇梯度處理各5 min;二甲苯Ⅰ15 min,二甲苯Ⅱ 10 min,二甲苯Ⅲ 10 min,體積分?jǐn)?shù)1.00、0.95、0.90、0.85乙醇各處理5 min,自來(lái)水沖洗5 min, HE染液和番紅`-快綠染液染色5 min,封片,倒置光學(xué)顯微鏡觀察。應(yīng)用改良O’Driscoll 評(píng)分系統(tǒng)評(píng)估HE染色結(jié)果,改良Mankin評(píng)分評(píng)估番紅`-快綠染色結(jié)果。
1.3統(tǒng)計(jì)學(xué)方法
應(yīng)用SPSS 19.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,結(jié)果用±s形式表示,多組數(shù)據(jù)比較采用單因素方差分析方法,組間兩兩比較采用q檢驗(yàn)。P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1BMSCs的培養(yǎng)和鑒定
接種48 h后,原代BMSCs開(kāi)始貼壁,細(xì)胞呈梭形或者多角形;培養(yǎng)至第2代后,細(xì)胞呈旋渦狀或者輻射狀生長(zhǎng),增殖迅速。流式細(xì)胞儀檢測(cè)顯示,第2代BMSCs表面蛋白CD44和CD29的表達(dá)率分別為60.2%和58.3%,CD34和CD45的表達(dá)率分別為3.4%和2.6%。
2.2慢病毒轉(zhuǎn)染BMSCs效率
慢病毒轉(zhuǎn)染72 h后觀察顯示,慢病毒轉(zhuǎn)染效率較高,為(95.07±2.11)%。
2.3掃描電鏡下外泌體聯(lián)合絲素蛋白支架復(fù)合體的結(jié)構(gòu)
掃描電鏡下不同視窗觀察顯示,支架表面粗糙、凹凸不平,有利于細(xì)胞黏附和遷移。
2.4外泌體的形態(tài)學(xué)和標(biāo)志物鑒定
掃描電鏡觀察顯示,外泌體為直徑40~100 nm的雙層膜膜狀結(jié)構(gòu)。Western Blot檢測(cè)顯示,外泌體可以表達(dá)分子標(biāo)志物CD81和CD63。
2.5軟骨缺損兔模型軟骨缺損部位HE染色和番紅`-快綠染色觀察
HE染色顯示,空白組軟骨缺損范圍大,炎癥細(xì)胞浸潤(rùn)多;BMSCs組軟骨缺損范圍較空白組明顯減小;陰性對(duì)照組炎性細(xì)胞減少,支架略有消失;實(shí)驗(yàn)組炎性細(xì)胞明顯減少,支架消失,血管生成。實(shí)驗(yàn)組改良O’Driscoll評(píng)分低于空白組、BMSCs組、陰性對(duì)照組,BMSCs組評(píng)分高于空白組,差異均有顯著性(F=19.298,P<0.01)。番紅`-快綠染色結(jié)果顯示,空白組軟骨缺損范圍大,并伴有軟骨下骨硬化;BMSCs組軟骨缺損范圍較空白組明顯減小;實(shí)驗(yàn)組軟骨缺損部位有明顯修復(fù),且為纖維組織修復(fù)。實(shí)驗(yàn)組改良Makin評(píng)分高于空白組、BMSCs組、陰性對(duì)照組,BMSCs組評(píng)分高于空白組,差異均有顯著性(F=12.548,P<0.05)。見(jiàn)表1。
3討論
本研究根據(jù)基因工程和組織工程的原理,以體外培養(yǎng)新西蘭大白兔來(lái)源的BMSCs為研究細(xì)胞,利用siRNA過(guò)表達(dá)技術(shù)構(gòu)建Aggrecan的過(guò)表達(dá)載體,轉(zhuǎn)染BMSCs,提取轉(zhuǎn)染后干細(xì)胞來(lái)源的外泌體,并且通過(guò)構(gòu)建絲素蛋白支架+外泌體復(fù)合體,對(duì)新西蘭大白兔軟骨缺損部位進(jìn)行填充和修補(bǔ),探討Aggrecan過(guò)表達(dá)載體修飾BMSCs分泌的外泌體對(duì)軟骨缺損的修復(fù)作用,以期為臨床上具有外側(cè)間室軟骨缺損的OA治療提供新的方法。既往研究表明,利用BMSCs復(fù)合異種骨基質(zhì)明膠可以有效修復(fù)大鼠橈骨缺損,提示組織支架可以促進(jìn)BMSCs向骨細(xì)胞轉(zhuǎn)化,進(jìn)而修復(fù)軟骨缺損部位[13`-15]。但是這種方法需要符合特定條件的組織工程支架體系,也就是需要特殊的“土壤”,BMSCs這個(gè)“種子細(xì)胞”才能更好地在其內(nèi)生長(zhǎng)并且分化,但其臨床應(yīng)用的安全性有待進(jìn)一步研究[16`-17]。有研究顯示,利用慢病毒構(gòu)建基因載體轉(zhuǎn)染BMSCs并不影響B(tài)MSCs的表型[18`-21]。另有研究顯示利用基因工程原理,構(gòu)建基因過(guò)表達(dá)的BMSCs也是提高“種子”有效分化的手段[22`-24]。本研究基于該理論,構(gòu)建Aggrecan基因過(guò)表達(dá)質(zhì)粒慢病毒載體轉(zhuǎn)染BMSCs,制作新型“基因種子”,結(jié)果表明,Aggrecan基因過(guò)表達(dá)質(zhì)粒慢病毒載體轉(zhuǎn)染BMSCs具有較高的轉(zhuǎn)染效率,高達(dá)90%以上,可見(jiàn)慢病毒介導(dǎo)Aggrecan基因過(guò)表達(dá)質(zhì)粒轉(zhuǎn)染BMSC是一種高效的轉(zhuǎn)染方法。
外泌體為一種新興的手段,可以作為無(wú)細(xì)胞物質(zhì)提取治療OA的手段之一[25`-28]。有研究結(jié)果顯示,在一定條件下,BMSCs可以促進(jìn)軟骨細(xì)胞分化[29],然而具體的作用機(jī)制未知。本研究利用超高速離心的方法,提取Aggrecan基因過(guò)表達(dá)質(zhì)粒慢病毒載體轉(zhuǎn)染BMSCs來(lái)源的外泌體,并且利用組織工程原理,構(gòu)建絲素蛋白支架,聯(lián)合外泌體,構(gòu)建外泌體+絲素蛋白支架體系。進(jìn)而將基因修飾后干細(xì)胞來(lái)源外泌體與組織工程支架相結(jié)合,通過(guò)掃描電鏡觀察外泌體聯(lián)合絲素蛋白支架復(fù)合體的結(jié)構(gòu),可觀察到支架表面粗糙、凹凸不平,有利于細(xì)胞黏附和遷移。另外,我們還利用新西蘭大白兔構(gòu)建膝關(guān)節(jié)軟骨缺損模型,應(yīng)用外泌體+絲素蛋白支架復(fù)合體對(duì)軟骨缺損部位進(jìn)行填充和修復(fù),HE染色和番紅`-快綠染色對(duì)軟骨缺損部位進(jìn)行觀察,結(jié)果表明,實(shí)驗(yàn)組改良O’Driscoll評(píng)分低于空白組、BMSCs組、陰性對(duì)照組,實(shí)驗(yàn)組改良Makin評(píng)分高于空白組、BMSCs組、陰性對(duì)照組,差異具有統(tǒng)計(jì)學(xué)差異,說(shuō)明外泌體+絲素蛋白支架復(fù)合體可以對(duì)軟骨缺損部位進(jìn)行更有效的修復(fù)。
綜上所述,Aggrecan過(guò)表達(dá)載體修飾BMSCs分泌的外泌體聯(lián)合絲素蛋白支架復(fù)合體可以對(duì)軟骨缺損部位進(jìn)行有效的修復(fù),可以為臨床上OA治療提供新的思路與方法。
[參考文獻(xiàn)]
[1]MANIAR K H, JONES I A, GOPALAKRISHNA R A. Lo`-wering side effects of NSAID usage in osteoarthritis: recent attempts at minimizing dosage[J]. ?Expert Opinion on Pharmacotherapy, 2018,19(2):93`-102.
[2]GRAESSEL S, MUSCHTER D. Do neuroendocrine peptides and their receptors qualify as novel therapeutic targets in os`-teoarthritis[J]? ?International Journal of Molecular Sciences, 2018,19(2):367`-371.
[3]OSAWA Y, SEKI T, TAKEGAMI Y, et al. Cementless total hip arthroplasty for osteonecrosis and osteoarthritis produce similar results at ten years follow`-up when matched for age and gender[J]. ?International Orthopaedics, 2018,42(7, SI):1683`-1688.
[4]HUI Tianqian, ZHOU Yachuan, WANG Tingyu, et al. Activation of beta`-catenin signaling in aggrecan`-expressing cells in temporomandibular joint causes osteoarthritis`-like defects[J]. ?International Journal of Oral Science, 2018,10(2):13`-17.
[5]ZHANG Zhao, LI Xiaofei, HUANG Heng, et al. Cross`-coupling effects of silencing of cyclooxygenase`-2 (COX`-2)/aggrecanase`-1 and over`-expressed insulin`-like growth factor 1 (IGF`-1) in an osteoarthritis animal model[J]. ?Medical Science Monitor, 2017,23(7):5302`-5310.
[6]馮笑,韓絮,張亞,等. 與軟骨細(xì)胞共培養(yǎng)促進(jìn)BMSCs分化為軟骨細(xì)胞[J]. ?江蘇大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2017,27(5):403`-407.
[7]阿勒泰別克·鬧乎旦,張玉玲,白廣超,等. Wnt因子聯(lián)合BMP`-7誘導(dǎo)BMSCs向成骨分化的研究[J]. ?石河子大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017,35(1):113`-118.
[8]薄建成,張海寧,杜青峰,等. 介導(dǎo)pcDNA`-IGF`-1質(zhì)粒轉(zhuǎn)染骨髓間充質(zhì)干細(xì)胞兩種方法比較[J]. ?青島大學(xué)醫(yī)學(xué)院學(xué)報(bào), 2016,52(5):505`-507,511.
[9]王穎,張雷,周詠,等. miR`-21誘導(dǎo)犬BMSCs骨向分化的體外實(shí)驗(yàn)研究[J]. ?安徽醫(yī)科大學(xué)學(xué)報(bào), 2017,52(9):1318`-1323.
[10]徐亮,陶樹清,文剛,等. RhoA/ROCK信號(hào)通路在骨質(zhì)疏松大鼠BMSCs成骨分化中的研究[J]. ?中國(guó)骨質(zhì)疏松雜志, 2017,23(11):1415`-1419.
[11]亓俊華,吳梅,徐祥,等. TNF`-α對(duì)小鼠骨髓間充質(zhì)干細(xì)胞免疫抑制作用影響[J]. ?青島大學(xué)醫(yī)學(xué)院學(xué)報(bào), 2015,51(2):169`-171,174.
[12]黃勇,吳華拉,馬琳,等. γ`-分泌酶抑制劑阻斷Notch信號(hào)通路對(duì)BMSCs向肺泡上皮細(xì)胞分化的影響[J]. ?基因組學(xué)與應(yīng)用生物學(xué), 2017,36(5):1727`-1731.
[13]陳能,邵云峰,劉儻,等. 帶部分松質(zhì)骨小牛皮質(zhì)骨復(fù)合骨髓間充質(zhì)干細(xì)胞植入兔體內(nèi)成骨及骨形態(tài)發(fā)生蛋白2的表達(dá)[J]. ?中國(guó)組織工程研究, 2017,21(17):2684`-2689.
[14]劉天丹,張保朝,郝明亮. 膠原蛋白`-明膠復(fù)合支架材料修復(fù)周圍神經(jīng)缺損[J]. ?中國(guó)組織工程研究, 2017,21(2):286`-290.
[15]陶旋,李強(qiáng),李詩(shī)鵬,等. 慢病毒介導(dǎo)人骨形態(tài)發(fā)生蛋白2/骨髓間充質(zhì)干細(xì)胞/脫鈣骨基質(zhì)修復(fù)股骨大段缺損[J]. ?中國(guó)組織工程研究, 2018,22(9):1338`-1343.
[16]張志勇,于光屹,陶丹丹,等. 應(yīng)用骨髓間充質(zhì)干細(xì)胞復(fù)合關(guān)節(jié)軟骨脫細(xì)胞基質(zhì)修復(fù)兔軟骨缺損的實(shí)驗(yàn)研究[J]. ?中國(guó)醫(yī)藥指南, 2017,15(22):53`-54.
[17]姜良斌,韋標(biāo)方,馮志,等. 人脫細(xì)胞羊膜與骨髓間充質(zhì)干細(xì)胞復(fù)合體修復(fù)關(guān)節(jié)軟骨缺損[J]. ?中國(guó)組織工程研究, 2017,21(26):4113`-4118.
[18]SONG Jialin, ZHENG Wei, CHEN Wei, et al. Lentivirus`-mediated microRNA`-124 gene`-modified bone marrow mesenchymal stem cell transplantation promotes the repair of spinal cord injury in rats[J]. ?Experimental and Molecular Medicine, 2017,49(5):1`-9.
[19]AN Ke, LIU Huiping, ZHONG Xiaolong, et al. hTERT`-Immortalized bone mesenchymal stromal cells expressing rat galanin via a single tetracycline`-inducible lentivirus system[J]. ?Stem Cells Int, 2017, 2017:6082684.
[20]WANG Bangjun, LIAN Kai, LI Jun, et al. Restoration of osteogenic differentiation by overexpression of cannabinoid receptor 2 in bone marrow mesenchymal stem cells isolated from osteoporotic patients[J]. ?Experimental and Therapeutic Me`-dicine, 2018,15(1):357`-364.
[21]DU Xiufan, HUANG Fangli, ZHANG Shujiang, et al. Carboxymethylcellulose with phenolic hydroxyl microcapsules enclosinggene`-modified BMSCs for controlled BMP`-2 release in vitro[J]. ?Artificial Cells Nanomedicine And Biotechnology, 2017,45(8):1`-14.
[22]LU Yao, GAO Hui, ZHANG Man, et al. Glial cell line`-derived neurotrophic factor`-transfected placenta`-derived versus bone marrow`-derived mesenchymal cells for treating spinal cord injury[J]. ?Medical Science Monitor, 2017,23(1):1800`-1811.
[23]ZENG Yanling, ZHENG Hao, CHEN Qiuru, et al. Bone marrow`-derived mesenchymal stem cells overexpressing MiR`-21 efficiently repair myocardial damage in rats[J]. ?Oncotarget, 2017,8(17):29161`-29173.
[24]SUN Bingyin, ZHAO Baoxiang, ZHU Jieying, et al. Role of TGF`-beta 1 expressed in bone marrow`-derived mesenchymal stem cells in promoting bone formation in a rabbit femoral defect model[J]. ?International Journal of Molecular Medicine, 2018,42(2):897`-904.
[25]ZHAO Na, ZENG Li, LIU Yang, et al. DLX3 promotes bone marrow mesenchymal stem cell proliferation through H19/miR`-675 axis[J]. ?Clinical Science, 2017,131(22):2721`-2735.
[26]KAMERKAR S, LEBLEU V S, SUGIMOTO H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer[J]. ?Nature, 2017,546(7659):498`-503.
[27]PAN Lei, LIANG Wei, FU Min, et al. Exosomes`-mediated transfer of long noncoding RNA ZFAS1 promotes gastric can`-cer progression[J]. ?Journal of Cancer Research and Clinical Oncology, 2017,143(6):991`-1004.
[28]GUO Shangchun, TAO Shicong, YIN Wenjing, et al. Exosomes derived from platelet`-rich plasma promote the re`-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model[J]. ?Theranostics, 2017,7(1):81`-96.
[29]TAO Shicong, YUAN Ting, ZHANG Yuelei, et al. Exosomes derived from miR`-140`-5p`-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model[J]. ?Theranostics, 2017,7(1):180`-195.