国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

國(guó)外草地貪夜蛾化學(xué)防治技術(shù)的研究與應(yīng)用

2019-09-04 09:34:39崔麗芮昌輝李永平王芹芹楊代斌閆曉靜郭永旺袁會(huì)珠
植物保護(hù) 2019年4期
關(guān)鍵詞:種子處理草地貪夜蛾化學(xué)防治

崔麗 芮昌輝 李永平 王芹芹 楊代斌 閆曉靜 郭永旺 袁會(huì)珠

摘要 草地貪夜蛾Spodoptera frugiperda(J. E. Smith)是一種適應(yīng)性和遷徙能力很強(qiáng)的農(nóng)業(yè)害蟲,并具有暴發(fā)為害的特點(diǎn)。幾十年來,化學(xué)防治一直是防治草地貪夜蛾的重要技術(shù)措施。20世紀(jì)80年代以前,美洲國(guó)家防治草地貪夜蛾以有機(jī)磷類和氨基甲酸酯類殺蟲劑為主;隨后擬除蟲菊酯類殺蟲劑得到了廣泛使用;20世紀(jì)90年代中后期,美洲特別是美國(guó)推廣種植轉(zhuǎn)基因Bt玉米后,防治草地貪夜蛾殺蟲劑的用量顯著減少;近年來,甲氨基阿維菌素苯甲酸鹽、乙基多殺菌素、除蟲脲、虱螨脲、茚蟲威、氯蟲苯甲酰胺、氟苯蟲酰胺、溴氰蟲酰胺等一系列新型殺蟲劑品種在防治草地貪夜蛾中發(fā)揮了突出的作用。伴隨著不同種類殺蟲劑的使用,草地貪夜蛾對(duì)殺蟲劑抗性也相應(yīng)地呈現(xiàn)出明顯的變化,20世紀(jì)80年代后,美洲的草地貪夜蛾先后對(duì)有機(jī)磷類和氨基甲酸酯類殺蟲劑產(chǎn)生了抗藥性,截至2017年,美洲地區(qū)的草地貪夜蛾至少對(duì)包括氨基甲酸酯類、有機(jī)磷類、擬除蟲菊酯類及Bt殺蟲蛋白等不同類型共29種殺蟲劑產(chǎn)生了抗藥性;2016年,采自北美洲波多黎各的草地貪夜蛾田間種群對(duì)雙酰胺類殺蟲劑氟苯蟲酰胺和氯蟲苯甲酰胺抗性倍數(shù)最高分別達(dá)500倍和160倍。草地貪夜蛾的抗藥性機(jī)制主要是解毒代謝增強(qiáng)和靶標(biāo)基因突變。種子處理可以預(yù)防作物苗期草地貪夜蛾的為害,并且有利于天敵保護(hù)。霧滴粒徑不僅影響殺蟲劑對(duì)草地貪夜蛾的防治效果,還影響草地貪夜蛾對(duì)殺蟲劑抗藥性的發(fā)展,因此,防治田間草地貪夜蛾適宜采用細(xì)霧噴霧方式。使用得當(dāng),化學(xué)殺蟲劑可以與天敵和生物殺蟲劑協(xié)同增效防治草地貪夜蛾。航空施藥要和地面施藥聯(lián)合使用才能對(duì)玉米田嚴(yán)重發(fā)生的草地貪夜蛾達(dá)到好的防治效果。

關(guān)鍵詞 草地貪夜蛾;?化學(xué)防治;?抗藥性機(jī)制;?種子處理;?霧滴粒徑

中圖分類號(hào): S 48

文獻(xiàn)標(biāo)識(shí)碼:?A

DOI:?10.16688/j.zwbh.2019300

Abstract The fall armyworm, Spodoptera frugiperda (J. E. Smith) displays an outstanding adaptable and migratory capacity,and is an agricultural pest characterized by outbreaks. Over the past decades, chemical control has been an important method to control this pest. Before the 1980s, organophosphates and carbamates were main insecticides to control the fall armyworm in the American continent. Then pyrethroid insecticides were widely used in field. In the mid to late 1990s, after the commercialization of genetically engineered (GE) crops producing Bacillus thuringiensis (Bt) insecticidal proteins in the American continent, particularly in the United States, the amount of synthetic insecticide applied significantly decreased. Recently active ingredients with novel modes of action are available for the control of the fall armyworm, including emamectin benzoate, spinetoram, diflubenzuron, lufenuron, indoxacarb, chlorantraniliprole, flubendiamide and cyantraniliprole, and have played an outstanding role in the management of the pest. Along with the use of different types of insecticides, the insecticide-resistance of the fall armyworm also presents a significant time-associated succession rule. Many cases on organophosphate and carbamate resistance were reported in the American continent since the 1980s. Up to 2017, the fall armyworm has become resistant to 29 active ingredients belong to carbamate, organophosphorus, pyrethroids and Bt insecticidal protein in the Americas. It was reported that the field population of fall armyworm collected from Puerto Rico in 2016 showed the resistance ratio of 500-?and 160-fold to diamides insecticides, flubendiamide and chlorantraniliprole. The insecticide-resistance of the fall armyworm was mainly caused by enhanced detoxification and target mutation. Seed treatment can prevent seedling damage caused by the pest and protect natural enemies. Spraying using a large droplet size nozzle significantly decreased the control efficacy of insecticides and may promote the tolerance to insecticides than that using a small droplet size nozzle. Therefore, small-drop spray mode is recommended for the control of this pest in field. Combination of chemical insecticides and natural enemies or biological insecticides may exhibit synergisms against the fall armyworm when properly used. Combination of aerial application and ground application will play vital role for the control of outbreaks of the fall armyworm in maize field.

Key words Spodoptera frugiperda;?chemical control;?insecticide-resistance mechanism;?seed treatment;?spray droplet

草地貪夜蛾自2019年1月入侵我國(guó)云南后,截至6月中旬,已經(jīng)蔓延到全國(guó)18個(gè)省市,并呈繼續(xù)北上之勢(shì),防控形勢(shì)嚴(yán)峻。目前,我國(guó)草地貪夜蛾化學(xué)防治技術(shù)的研究數(shù)據(jù)十分有限,我們綜述分析了國(guó)外對(duì)草地貪夜蛾化學(xué)防治技術(shù)方面的研究與應(yīng)用情況,希望為我國(guó)目前針對(duì)草地貪夜蛾的應(yīng)急防控提供參考。

1?草地貪夜蛾的發(fā)生與化學(xué)防治藥劑

草地貪夜蛾Spodoptera frugiperda(J.E.Smith)屬鱗翅目Lepidoptera夜蛾科Noctuidae,又名秋黏蟲,是美洲地區(qū)特有的一種害蟲[13]。草地貪夜蛾可以取食353種植物,包括玉米、水稻、高粱、小米、甘蔗、蔬菜和棉花等作物[4]。草地貪夜蛾在美洲是最具破壞性的玉米害蟲之一,如果防治措施不力,可以造成重大損失。自2016年草地貪夜蛾在非洲暴發(fā)為害,現(xiàn)已成為非洲中西部主要玉米害蟲。該害蟲2019年1月自東南亞侵入我國(guó)云南、廣西,現(xiàn)已在18個(gè)?。ㄊ小⒆灾螀^(qū))發(fā)生為害,嚴(yán)重威脅我國(guó)玉米等糧食生產(chǎn)。

草地貪夜蛾是一種適應(yīng)性和遷徙能力很強(qiáng)的農(nóng)業(yè)害蟲,并具有暴發(fā)為害的特點(diǎn)[57]。草地貪夜蛾的防治主要依賴化學(xué)農(nóng)藥。在防治用藥品種的選擇上,隨著殺蟲劑防治效果及害蟲抗藥性的變化,以及新品種和新作用機(jī)制殺蟲劑的開發(fā)應(yīng)用,用藥品種也相應(yīng)發(fā)生變化。在20世紀(jì)80年代以前美洲國(guó)家防治草地貪夜蛾以有機(jī)磷類、氨基甲酸酯類殺蟲劑為主[8],主要品種包括敵百蟲、二嗪磷、甲基對(duì)硫磷、辛硫磷、毒死蜱、硫丙磷、甲萘威、硫雙滅多威等。隨后擬除蟲菊酯類殺蟲劑得到了廣泛使用,如氯菊酯、氯氰菊酯、溴氰菊酯、高效氯氟氰菊酯等。至20世紀(jì)90年代中后期,在美洲特別是美國(guó)推廣種植表達(dá)蘇云金桿菌Bacillus thuringiensis(Bt)殺蟲蛋白的轉(zhuǎn)基因玉米等作物后,殺蟲劑用量下降47.8%[9],顯著減少了防治草地貪夜蛾殺蟲劑的用量。近年來,隨著草地貪夜蛾的擴(kuò)散和多種新型殺蟲劑的開發(fā)應(yīng)用,在該害蟲發(fā)生為害比較嚴(yán)重的地區(qū),一系列殺蟲劑新品種在草地貪夜蛾的防治上發(fā)揮了突出的作用[10],如:甲氨基阿維菌素苯甲酸鹽、乙基多殺菌素、除蟲脲、虱螨脲、茚蟲威、氯蟲苯甲酰胺、氟苯蟲酰胺、溴氰蟲酰胺等。目前,南非登記用于防治草地貪夜蛾的殺蟲劑品種見表1??v覽世界上草地貪夜蛾的防治歷史,若不重視其暴發(fā)為害的特點(diǎn),防治措施不及時(shí)或不得力,則極有可能造成重大損失;而重視其發(fā)生為害,并根據(jù)該害蟲暴發(fā)為害的特點(diǎn)科學(xué)選擇殺蟲劑品種,及時(shí)進(jìn)行藥劑防治,將大幅度降低其發(fā)生為害。

2?草地貪夜蛾對(duì)殺蟲劑抗藥性發(fā)展歷程

害蟲對(duì)殺蟲劑的抗性是一種生物進(jìn)化現(xiàn)象,是殺蟲劑使用后存在的普遍問題。主要依賴化學(xué)農(nóng)藥控制其發(fā)生為害的草地貪夜蛾也隨殺蟲劑的使用不斷檢測(cè)到對(duì)殺蟲劑的抗藥性問題。20世紀(jì)80年代中期,美國(guó)東南部地區(qū)普遍檢測(cè)到草地貪夜蛾對(duì)甲萘威、甲基對(duì)硫磷、敵百蟲的抗藥性,在佛羅里達(dá)州草地貪夜蛾田間種群對(duì)滅多威的敏感性出現(xiàn)了明顯下降。而在中、南美洲,草地貪夜蛾田間種群對(duì)甲萘威、辛硫磷、甲基對(duì)硫磷、敵百蟲、滅多威出現(xiàn)了低到中等程度的抗藥性[7]。

截至2017年,美洲地區(qū)的草地貪夜蛾至少對(duì)29種殺蟲劑產(chǎn)生了抗性,主要包括氨基甲酸酯類、有機(jī)磷類、擬除蟲菊酯類及蘇云金芽孢桿菌Cry1F殺蟲蛋白等[11]。隨著轉(zhuǎn)Bt抗蟲基因作物的廣泛推廣應(yīng)用,草地貪夜蛾對(duì)Bt蛋白產(chǎn)生抗性的報(bào)道越來越多,如Cry1Fa、Cry1Ac和Cry1Ab在波多黎各[1213],Cry1A.105和Cry1F在美國(guó)大陸[1416],Cry1F和Cry1Ab在巴西[1719],Cry1F在阿根廷[20]均已經(jīng)出現(xiàn)了草地貪夜蛾的抗性問題。

Gutiérrez-Moreno等報(bào)道,墨西哥和波多黎各地區(qū)草地貪夜蛾田間種群對(duì)毒死蜱、滅多威、硫雙威、氯菊酯、zeta-氯氰菊酯(zeta-cypermethrin)、溴氰菊酯、乙基多殺菌素、多殺霉素、甲氨基阿維菌素苯甲酸鹽、阿維菌素和殺鈴脲的抗性倍數(shù)最高分別達(dá)47、223、124、48、35、25、14、8、7、7和20倍。而對(duì)氟苯蟲酰胺和氯蟲苯甲酰胺的抗性倍數(shù)最高分別達(dá)500倍和160倍[21]。

草地貪夜蛾是典型的遷飛性害蟲,在我國(guó)已呈現(xiàn)快速暴發(fā)和向玉米主產(chǎn)區(qū)快速擴(kuò)散為害的態(tài)勢(shì)。因此,特別需要重視其抗藥性發(fā)展動(dòng)態(tài)變化,并盡早開展草地貪夜蛾抗藥性治理策略的研究,以便長(zhǎng)期有效地控制其發(fā)生為害。

3?草地貪夜蛾對(duì)殺蟲劑抗性機(jī)制

草地貪夜蛾對(duì)殺蟲劑的抗性機(jī)制主要包括兩個(gè)方面:即解毒代謝機(jī)制和靶標(biāo)抗性機(jī)制。解毒代謝酶活性的升高是草地貪夜蛾對(duì)殺蟲劑產(chǎn)生抗性的一個(gè)重要原因。生化研究結(jié)果表明:對(duì)甲萘威(RR=562)和甲基對(duì)硫磷(RR=354)產(chǎn)生高水平抗性的草地貪夜蛾解毒代謝酶活性顯著高于敏感種群。抗性草地貪夜蛾幼蟲中腸中,微粒體氧化酶(環(huán)氧酶、羥化酶、亞砜酶、N-脫甲基酶和O-脫甲基酶)和水解酶(酯酶,羧酸酯酶,β-葡萄糖苷酶)的活性分別提高1.2倍和1.9倍。抗性草地貪夜蛾幼蟲脂肪體中,微粒體氧化酶(環(huán)氧酶、羥化酶、亞砜酶、N-脫甲基酶、O-脫甲基酶和S-脫甲基酶)、谷胱甘肽S-轉(zhuǎn)移酶、水解酶(酯酶、羧酸酯酶、β-葡萄糖苷酶、羧胺酶)、還原酶(細(xì)胞色素c還原酶)的活性相比對(duì)敏感種群提高了1.3倍~7.7倍。細(xì)胞色素P450的活性升高了2.5倍[22]。而且,谷胱甘肽S-轉(zhuǎn)移酶、細(xì)胞色素P450及羧酸酯酶基因的過量表達(dá)也介導(dǎo)了草地貪夜蛾對(duì)毒死蜱和高效氯氟氰菊酯的抗性。此外,靶標(biāo)敏感性降低是草地貪夜蛾對(duì)殺蟲劑產(chǎn)生抗性的另一重要原因;酶動(dòng)力學(xué)研究結(jié)果表明:氨基甲酸酯類和有機(jī)磷類殺蟲劑對(duì)田間抗性草地貪夜蛾乙酰膽堿酯酶的抑制活性降低17倍~345倍,乙酰膽堿酯酶與氨基甲酸酯類和有機(jī)磷類殺蟲劑的親和力降低,Km值和Vmax在抗性種群中升高2倍以上[22-23]。Carvalho等的研究結(jié)果表明:毒死蜱抗性草地貪夜蛾乙酰膽堿酯酶基因發(fā)生A201S,G227A和 F290V氨基酸突變。高效氯氟氰菊酯抗性草地貪夜蛾電壓門控鈉離子通道基因存在抗性相關(guān)的T929I,L932F和L1014F氨基酸突變[24]。此外,室內(nèi)選育的對(duì)氯蟲苯甲酰胺(RR=225)和氟苯蟲酰胺(RR>5 400)產(chǎn)生高水平抗性的草地貪夜蛾,其魚尼丁受體基因發(fā)生與抗性相關(guān)的I4734M氨基酸突變[25]。

4?種子處理對(duì)草地貪夜蛾的防治效果

種子包衣省時(shí)省力,是防治草地貪夜蛾的重要措施,可以在作物生長(zhǎng)早期對(duì)草地貪夜蛾起到持續(xù)控制作用,但在作物生長(zhǎng)中后期控制作用較弱。因此,作為草地貪夜蛾IPM治理的重要一環(huán),還需要與其他防治措施,如噴霧防治等相結(jié)合。

美國(guó)在20世紀(jì)60年代即開始拌種防治大豆上草地貪夜蛾。室內(nèi)試驗(yàn)結(jié)果表明,采用75%克百威可濕性粉劑以有效用量125 g/kg對(duì)大豆拌種處理,播種2周和3周后對(duì)草地貪夜蛾的防治效果分別達(dá)到88.9%和96.9%[26]。在田間,硫雙威和克百威是種子包衣防治草地貪夜蛾的常用活性成分[8]。隨著魚尼丁受體抑制劑的問世,氯蟲苯甲酰胺和溴氰蟲酰胺也可以通過種子包衣防治草地貪夜蛾,但這兩種藥劑通過種子包衣防治草地貪夜蛾其效果發(fā)揮較慢。按有效成分用量,用氯蟲苯甲酰胺 65.4 g/hm2、溴氰蟲酰胺8.99 g/hm2拌種,大豆苗接蟲后1 d,兩個(gè)處理均對(duì)草地貪夜蛾沒有影響;接蟲后2~3 d,氯蟲苯甲酰胺處理可以有效減少草地貪夜蛾蟲口數(shù)量,但溴氰蟲酰胺處理對(duì)蟲口數(shù)量沒有影響;接蟲后4 d,氯蟲苯甲酰胺處理對(duì)草地貪夜蛾的防治效果為80%,溴氰蟲酰胺處理的防治效果為50%[27]。此外,用氯蟲苯甲酰胺等藥劑對(duì)種子包衣對(duì)草地貪夜蛾捕食性天敵黑刺益蝽Podisus nigrispinus的影響較小,有利于保護(hù)天敵[28]。研究還發(fā)現(xiàn),常用的新煙堿類殺蟲劑種子包衣對(duì)草地貪夜蛾無效。

5?霧滴粒徑對(duì)草地貪夜蛾抗藥性發(fā)展的影響

殺蟲劑霧滴粒徑對(duì)草地貪夜蛾的抗性發(fā)展速度有重要影響。不同的施藥器械(不同粒徑的噴頭)會(huì)產(chǎn)生不同粒徑的霧滴,霧滴粒徑將直接影響霧滴在作物冠層的沉積和分布,從而影響殺蟲劑的效果以及害蟲對(duì)殺蟲劑抗性的發(fā)展速度。研究結(jié)果表明,以大霧滴和小霧滴施藥,草地貪夜蛾均會(huì)對(duì)氯氰菊酯產(chǎn)生抗性,但是在大霧滴沉積模式下抗性發(fā)生速度顯著高于小霧滴。小霧滴的沉積覆蓋度和均勻度高于大霧滴,因而在作物葉面上有效成分的沉積量高于大霧滴。而且,霧滴的分布會(huì)影響害蟲的運(yùn)動(dòng)和取食行為,殺蟲劑分布不均勻時(shí),部分個(gè)體接觸到的殺蟲劑會(huì)更少;Al-Sarar等的研究結(jié)果表明,小霧滴施藥,草地貪夜蛾幼蟲會(huì)移動(dòng)到葉片的邊緣,取食面積小,僅在葉片上留下小洞。而大霧滴沉積模式下,草地貪夜蛾幼蟲會(huì)待在某個(gè)地方持續(xù)取食,取食面積大[29]。同樣,Adams等發(fā)現(xiàn),大小均勻的氯菊酯霧滴對(duì)小菜蛾取食的抑制能力更強(qiáng)[30]。綜上,小霧滴沉積模式下,幼蟲通過取食將接觸到致死劑量的藥劑,而大霧滴沉積模式下,幼蟲可能接觸到亞致死劑量的藥劑,從而誘導(dǎo)害蟲的多基因抗性[31]。

6?不同作用機(jī)制殺蟲劑對(duì)草地貪夜蛾的交互抗性

采自Puerto Rico地區(qū)的草地貪夜蛾對(duì)Cry1F毒素產(chǎn)生了7 717倍的高水平抗性,同時(shí)該種群對(duì)乙酰甲胺磷產(chǎn)生了19倍的交互抗性。生化研究結(jié)果表明:堿性磷酸酶活性的降低介導(dǎo)了草地貪夜蛾對(duì)Cry1F毒素的抗性,而羧酸酯酶和谷胱甘肽S-轉(zhuǎn)移酶活性的升高介導(dǎo)了其對(duì)乙酰甲胺磷的抗性[32]。從佛羅里達(dá)州北部采集的2個(gè)草地貪夜蛾種群對(duì)甲萘威產(chǎn)生了高水平抗性(分別為626倍和1 159倍),對(duì)甲基對(duì)硫磷產(chǎn)生了中等水平抗性(分別為30倍和39倍)。然而,這兩個(gè)草地貪夜蛾種群對(duì)茚蟲威不存在交互抗性。進(jìn)一步的研究結(jié)果表明,這兩個(gè)種群的解毒代謝酶(微粒體氧化酶、谷胱甘肽S-轉(zhuǎn)移酶及酯酶)活性顯著升高,但這些解毒代謝酶活性的升高并沒有誘導(dǎo)其對(duì)茚蟲威的抗性[33]。類似的研究結(jié)果發(fā)現(xiàn):對(duì)茚蟲威產(chǎn)生100倍抗性的果蠅對(duì)菊酯類、有機(jī)磷類、氨基甲酸酯類及氯代烴類殺蟲劑僅表現(xiàn)為低水平抗性[34]。而且,對(duì)氯菊酯產(chǎn)生高水平抗性(RR=987)的小菜蛾對(duì)茚蟲威也不存在交互抗性[32]。因此,茚蟲威作為一種作用機(jī)制獨(dú)特的殺蟲劑可以與有機(jī)磷類、氨基甲酸酯類和擬除蟲菊酯類殺蟲劑輪換使用,從而延緩草地貪夜蛾抗性的發(fā)展速度。

7?化學(xué)殺蟲劑與生物殺蟲劑對(duì)草地貪夜蛾協(xié)同增效作用

島甲腹繭蜂Chelonus insularis 是一種可以寄生草地貪夜蛾的重要寄生蜂。Zenner等的研究結(jié)果表明:被島甲腹繭蜂寄生的草地貪夜蛾2齡幼蟲對(duì)毒死蜱的敏感性提高了3.93倍,對(duì)滅多威的敏感性提高了3.71倍,對(duì)氯氰菊酯的敏感性提高了14.11倍,而島甲腹繭蜂寄生對(duì)蘇云金芽孢桿菌的毒力影響較小。這種增效作用可能是由于天敵寄生對(duì)寄主幼蟲的削弱作用導(dǎo)致其解毒代謝酶活性降低[35]。因此,島甲腹繭蜂可以與滅多威、氯氰菊酯等殺蟲劑復(fù)配使用,從而起到協(xié)同增效、減少殺蟲劑用量的目的。此外,Rivero-Borja等[36]報(bào)道,乙基毒死蜱和多殺霉素與球孢白僵菌Beauveria bassiana和金龜子綠僵菌Metarhizium anisopliae同時(shí)使用可以顯著提高兩種菌的毒力。當(dāng)這兩種真菌單獨(dú)使用時(shí),<1%的幼蟲會(huì)有真菌孢子形成,而與毒死蜱和多殺霉素同時(shí)使用時(shí),31%~47%的幼蟲會(huì)有真菌孢子形成,死蟲則有68%~93%有真菌孢子形成。同時(shí),當(dāng)球孢白僵菌(Bb88)與多殺霉素同時(shí)使用時(shí),可以將多殺霉素的致死率提高34%;然而,當(dāng)球孢白僵菌(Bb88)與毒死蜱同時(shí)使用或先于毒死蜱使用,或者金龜子綠僵菌先于毒死蜱使用時(shí),會(huì)使幼蟲的死亡率分別降低31%、27%和19%[36]。因此,當(dāng)殺蟲劑與蟲生真菌聯(lián)合使用防治草地貪夜蛾時(shí)需注意使用的次序,才能達(dá)到協(xié)同增效的目的。

8?植物生長(zhǎng)調(diào)節(jié)劑和助劑使用對(duì)草地貪夜蛾防治的增效機(jī)制

相關(guān)研究表明,植物生長(zhǎng)調(diào)節(jié)劑壬二酸(AA)、苯并噻二唑(BTH)、赤霉酸(GA3)、效應(yīng)蛋白(harpin)、茉莉酸(JA)可以激活植物的信號(hào)通路,導(dǎo)致次生代謝物產(chǎn)生和其他抗性相關(guān)信號(hào)增強(qiáng),從而降低蚜蟲等害蟲在玉米、棉花、水稻和大豆等作物上的適應(yīng)性,阻礙它們的進(jìn)食,并吸引有益昆蟲[3738]。研究發(fā)現(xiàn)茉莉酸(JA)可以誘導(dǎo)雙子葉作物棉花和大豆對(duì)草地貪夜蛾的抗性,然而對(duì)單子葉作物玉米和水稻卻影響不大。加入有機(jī)硅助劑(Dyne-Amic)、非離子表面活性劑(penetrator plus)和高分子助劑(Triton X-100、Tween-20)不會(huì)增加茉莉酸對(duì)棉花和大豆的抗性誘導(dǎo)作用,但從有害生物綜合防控的角度來看,助劑的添加有助于茉莉酸在作物葉片上的滲透和吸收,可以降低茉莉酸的用量,具有很好的經(jīng)濟(jì)效益[39]。

[8]?PITRE H N. Chemical control of the fall armyworm (Lepidoptera:Noctuidae):an update [J]. Florida Entomologist, 1986, 69(3):570578.

[9]?BROOKES G, BARFOOT P. Environmental impacts of genetically modified (GM) crop use 1996-2015:impacts on pesticide use and carbon emissions[J]. GM Crops Food,2017, 8(2):117147.

[10]IRAC.Integrated pest management (IPM) & insect resistance management (IRM) for fall armyworm in South African maize[R/OL].IRAC South Africa.www.irac-oline.org,May 2018.

[11]MOTA-SANCHEZ D, WISE J C. Arthropod pesticide resistance database [DB/OL]. Michigan State University. https:∥www.pesticideresistance.org/, 2019.

[12]BLANCO C A, PORTILLA M, JURAT-FUENTES J L, et al. Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera:Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis [J]. Southwestern Entomologist, 2010, 35:409415.

[13]STORER N P, BABCOKE J M, SCHLENZ M, et al. Discovery and characterization of field resistance to Bt maize:Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico [J]. Journal of Economic Entomology, 2010, 103(4):10311038.

[14]HUANG Fangneng, QURESHI J A, MEAGHER R L, et al. Cry1F resistance in fall armyworm Spodoptera frugiperda:single gene versus pyramided Bt maize[J/OL]. PLoS ONE, 2014, 9(11):e112958.

[15]LI Guoping, DOMINIC R, MIAO Jin, et al. Frequency of Cry1F non-recessive resistance alleles in north Carolina field populations of Spodoptera frugiperda (Lepidoptera:Noctuidae)[J/OL]. PLoS ONE, 2016, 11(4):e0154492.

[16]HUANG F, QURESHI J A, HEAD G P, et al. Frequency of Bacillus thuringiensis Cry1A.105 resistance alleles in field populations of the fall armyworm, Spodoptera frugiperda, in Louisiana and Florida [J]. Crop Protection, 2016, 83:8389.

[17]OMOTO C, BERNARDI O, SALMERON E, et al. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil [J]. Pest Management Science, 2016, 72:17271736.

[18]FARIAS J R, ANDOW D A, HORIKOSHI R J, et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera:Noctuidae) in Brazil [J].Crop Protection, 2014, 64:150158.

[19]BERNARDI O, SORGATTO R J, BARBOSA A D, et al. Low susceptibility of Spodoptera cosmioides,Spodoptera eridania and Spodoptera frugiperda (Lepidoptera:Noctuidae) to genetically-modified soybean expressing Cry1Ac protein[J]. Crop Protection, 2014, 58:3340.

[20]CHANDRASENA D I, SIGNORINI A M, ABRATTI G, et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina[J]. Pest Management Science, 2017, 74:746754.

[21]GUTIERREZ-MORENO R, MOTA-SANCHEZ D, BLANCO C A, et al. Field-evolved resistance of the fall armyworm (Lepidoptera:Noctuidae) to synthetic insecticides in Puerto Rico and Mexico[J]. Journal of Economic Entomology, 2019, 112:792802.

[22]YU S J, NGUYEN S N, ABO-ELGHAR G E. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E.Smith)[J]. Pesticide Biochemistry and Physiology, 1991, 39(1):8491.

[23]YU S J. Insensitivity of acetylcholinesterase in a field strain of the fall armyworm, Spodoptera frugiperda (J. E. Smith)[J].Pesticide Biochemistry and Physiology,2006,84(2):135142.

[24]CARVALHO R A, OMOTO C, FIELD L M, et al. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda [J/OL]. PLoS ONE, 2013, 8(4):e62268.

[25]BOAVENTURA D, BOLZAN A, PADOVEZ F, et al. Detection of a ryanodine receptor target-site mutation in diamide insecticide resistant fall armyworm, Spodoptera frugiperda [J/OL]. Pest Management Science, 2019. DOI:10.1002/ps.5505.

[26]BOWLING C C, FLINCHUM W T. Interaction of propanil with insecticides applied as seed treatments on rice [J]. Entomological Society of America, 1968, 61(1):6769.

[27]THRASH B, ADAMCZYK J J, LORENZ G, et al. Laboratory evaluations of Lepidopteran-active soybean seed treatments on survivorship of fall armyworm (Lepidoptera:Noctuidae) larvae [J]. Florida Entomologist, 2013, 96(3):724728.

[28]GONTIJO P C, ABBADE NETO D O, OLIVEIRA R L, et al. Non-target impacts of soybean insecticidal seed treatments on the life history and behavior of Podisus nigrispinus, a predator of fall armyworm [J]. Chemosphere, 2017, 191:342349.

[29]AL-SARAR A, HALL F R, DOWNER R A. Impact of spray application methodology on the development of resistance to cypermethrin and spinosad by fall armyworm Spodoptera frugiperda (J. E. Smith)[J]. Pest Management Science, 2006, 62:10231031.

[30]ADAMS J A, HOY C W, HALL F R, et al. Larval feeding and movement in two Plutella xylostella (Lepidoptera:Plutellidae) populations exposed to discrete deposits of permethrin[J]. Pest Management Science,2010, 35(3):243247.

[31]PRAAT J P, MANKTELOW D, SUCKLING D M, et al. Can application technology help to manage pesticide resistance?[C]∥Proceedings of the 49th New Zealand Plant Protection Conference, 1996:177182.

[32]ZHU Yucheng, BLANCO C A, PORTILLA M, et al. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda [J]. Pesticide Biochemistry and Physiology, 2015, 122:1521.

[33]YU S J, MCCORD E. Lack of cross-resistance to indoxacarb in insecticide-resistant Spodoptera frugiperda (Lepidoptera:Noctuidae) and Plutella xylostella (Lepidoptera:Yponomeutidae)[J]. Pest Management Science, 2007, 63(1):6367.

[34]SHONO T, ZHANG L, SCOTT J G. Indoxacarb resistance in the house fly, Musca domestica [J]. Pesticide Biochemistry and Physiology, 2004, 80:106112.

[35]ZENNER I, LVAREZ A, BARRETO S, Influence of parasitism by Chelonus insularis Cresson (Hymenoptera:Braconidae) on the susceptibility of Spodoptera frugiperda (J.E. Smith) (Lepidoptera:Noctuidae) to insecticides [J]. Neotropical Entomology, 2006, 35(6):818822.

[36]RIVERO-BORJA M, GUZMAN-FRANCO A W, RODRIGUEZ-LEYVA E, et al. Interaction of Beauveria bassiana and Metarhizium anisopliae with chlorpyrifos ethyl and spinosad in Spodoptera frugiperda larvae [J]. Pest Management Science, 2018, 74:20472052.

[37]COTTRELL T E, WOOD B W, NI Xinzhi. Application of plant growth regulators mitigates chlorotic foliar injury by the black pecan aphid (Hemiptera:Aphididae)[J]. Pest Management Science, 2010, 66(11):12361242.

[38]BAKERC J, ORLANDI E W, MOCK N M. Harpin, an elicitor of hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells[J]. Plant Physiology, 1993, 102:13411344.

[39]GORDY J W, LEONARD B R, BLOUIN D, et al. Comparative effectiveness of potential elicitors of plant resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera:Noctuidae) in four crop plants [J/OL]. PLoS ONE, 2015, 10(9):e0136689.

[40]KUHN C W, JELLUM M D, ALL J N. Effect of carbofuran treatment on corn yield, maize chlorotic dwarf and maize dwarf mosaic virus diseases, and leafhopper populations [J].Phytopathology, 1975, 65(9):10171020.

[41]YOUNG J R. Fall armyworm:control with insecticides [J]. The Florida Entomologist, 1979, 62(2):130133.

[42]HERZOG G A, LAMBERT W R, LAW S E, et al. Evaluation of an electrostatic spray application system for control of insect pests in cotton[J]. Journal of Economic Entomology, 1983, 76(3):637640.

[43]GROSS H R, YOUNG J R, WISEMAN B R. Relative susceptibility of a summer-planted dent and tropical flint corn variety to whorl stage damage by the fall armyworm (Lepidoptera:Noctuidae)[J]. Journal of Economic Entomology, 1982, 75(6):11531156.

[44]TAMEZ-GUERRA P, TAMAYO-MEJIA F, GOMEZ-FLORES R, et al. Increased efficacy and extended shelf life of spinosad formulated in phagostimulant granules against Spodoptera frugiperda [J]. Pest Management Science, 2018, 74:100110.

(責(zé)任編輯:楊明麗)

猜你喜歡
種子處理草地貪夜蛾化學(xué)防治
永靖縣草地貪夜蛾監(jiān)測(cè)防控技術(shù)策略
不同農(nóng)藥防治甜玉米草地貪夜蛾的藥效對(duì)比試驗(yàn)
草地貪夜蛾對(duì)山東省玉米的危害風(fēng)險(xiǎn)及其監(jiān)測(cè)防控研究進(jìn)展
安徽省草地貪夜蛾入侵概況及其防治措施
云南怒江州瀘水縣楤木栽培技術(shù)
試析水稻田主要病害防治技術(shù)
植物鐮刀菌枯萎病防治的研究進(jìn)展
淺議植樹造林方法及撫育管理技術(shù)
科技資訊(2015年5期)2016-01-14 17:48:53
厚樸種子處理技術(shù)及苗期生長(zhǎng)規(guī)律研究
嘉义县| 顺义区| 颍上县| 满城县| 周至县| 上饶县| 遵义县| 苏尼特右旗| 本溪市| 壤塘县| 宁强县| 临猗县| 扶风县| 凤山市| 古浪县| 昌黎县| 女性| 灵武市| 镇康县| 德江县| 鹤壁市| 岳阳县| 东辽县| 阿克苏市| 青海省| 万载县| 霍城县| 手机| 新化县| 永登县| 松桃| 萍乡市| 深圳市| 旬邑县| 永济市| 台前县| 美姑县| 香港 | 资源县| 昆山市| 通榆县|