李善強(qiáng) 彭秀艷 李強(qiáng)
關(guān)鍵詞:混沌系統(tǒng);時(shí)變時(shí)滯;有限時(shí)間同步;自適應(yīng)控制
DOI:10.15938/j.emc.2019.06.000
中圖分類號(hào)文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1007 -449X(2019)06 -0000 -00
Abstract:In this paper, the issue of adaptive finitetime synchronization of multiple chaotic systems with timevarying delay is investigated. The chaotic systems with different structures and timevarying state delays are considered. Firstly, by designing appropriate adaptive update law, the gain of the controller can be updated online to achieve faster convergence speed. The design method of adaptive controller is presented. Then by using Lyapunov stability theorem and finitetime stability theory, it is proved that the designed adaptive controller and the corresponding control gain adaptive update law can guarantee the synchronization of states of multiple error dynamic systems in finite time, and the estimation of synchronization settling time is also given. Finally, the feasibility and effectiveness of the proposed adaptive finitetime synchronization control method is further validated by numerical simulation of three typical chaotic systems i.e. Lorenz system, Chen system and Lü system.
Keywords:chaotic systems; timevarying delay; finitetime synchronization; adaptive control
0 引 言
混沌系統(tǒng)同步問題具有廣闊的工程應(yīng)用前景,例如物理、生物和信息科學(xué)以及混沌系統(tǒng)的同步在保密通信領(lǐng)域中起著重要作用[1-2]。因此,近年來混沌系統(tǒng)的同步控制問題得到研究者的廣泛關(guān)注。最初,研究者只是研究?jī)蓚€(gè)混沌系統(tǒng)的同步控制問題,例如文獻(xiàn)[3]研究了兩個(gè)時(shí)變時(shí)滯混沌神經(jīng)網(wǎng)絡(luò)的有限時(shí)間同步控制問題。隨后,具有時(shí)變時(shí)滯和有界擾動(dòng)的混沌系統(tǒng)的有限時(shí)間同步控制已在文獻(xiàn)[4]中討論。文獻(xiàn)[5-6]研究了混沌系統(tǒng)的自適應(yīng)有限時(shí)間同步問題。文獻(xiàn)[7]研究了兩個(gè)時(shí)滯混沌神經(jīng)網(wǎng)絡(luò)的間歇同步控制問題。兩個(gè)不同的具有時(shí)變時(shí)滯混沌系統(tǒng)的投影同步在文獻(xiàn)[8]中被研究。利用脈沖控制方法,文獻(xiàn)[9]對(duì)混沌系統(tǒng)的延遲同步進(jìn)行了分析。而文獻(xiàn)[10]針對(duì)帶有執(zhí)行器故障的不確定混沌系統(tǒng),研究了魯棒自適應(yīng)容錯(cuò)同步問題。對(duì)于兩個(gè)混沌系統(tǒng)的同步,相對(duì)簡(jiǎn)單。而且,很多文獻(xiàn)都是假設(shè)兩個(gè)混沌系統(tǒng)的結(jié)構(gòu)完全相同,在不同初始條件下,使得驅(qū)動(dòng)系統(tǒng)和響應(yīng)系統(tǒng)達(dá)到同步。
對(duì)于多個(gè)時(shí)滯混沌系統(tǒng)的同步控制研究變得越來越復(fù)雜,且面臨著更大的挑戰(zhàn)。文獻(xiàn)[11-14]研究了多個(gè)混沌系統(tǒng)同步控制問題,但是這些文獻(xiàn)均沒有考慮系統(tǒng)的時(shí)變時(shí)滯現(xiàn)象。因此,關(guān)于具有時(shí)變時(shí)滯的多個(gè)結(jié)構(gòu)不同的混沌系統(tǒng)的有限時(shí)間同步控制是一個(gè)較復(fù)雜的研究問題,目前尚未見有關(guān)研究結(jié)果。
基于上述分析,本文研究了多個(gè)時(shí)滯混沌系統(tǒng)的有限時(shí)間同步控制問題。文章的主要貢獻(xiàn)如下:1)多個(gè)混沌系統(tǒng)具有不同的結(jié)構(gòu);2)給出了自適應(yīng)控制器和自適應(yīng)律的設(shè)計(jì)方法;3)引入投影比例因子,研究多個(gè)混沌系統(tǒng)的投影同步控制。適當(dāng)?shù)剡x擇投影因子,可知投影同步包括了通常的完全同步問題;4)給出了保證多個(gè)時(shí)滯混沌系統(tǒng)達(dá)到有限時(shí)間同步的充分條件。
4 結(jié) 論
研究了多個(gè)不同的具有時(shí)變時(shí)滯的混沌系統(tǒng)的有限時(shí)間投影同步問題。利用自適應(yīng)控制的方法設(shè)計(jì)了有限時(shí)間同步自適應(yīng)控制器。根據(jù)Lyapunov穩(wěn)定性定理和有限時(shí)間穩(wěn)定理論證明了所提自適應(yīng)控制器可以保證多個(gè)的混沌系統(tǒng)有限時(shí)間投影同步。最后,通過算例仿真驗(yàn)證了自適應(yīng)控制器的可行性和有效性。
參 考 文 獻(xiàn):
[1] HADI D, MILAD M. Robust finitetime synchronization of nonidentical fractionalorder hyperchaotic systems and its application in secure communication [J]. IEEE/CAA Journal of Automatica Sinica, 2016:1.
[2] XU X H. Generalized function projective synchronization of chaotic systems for secure communication[J]. Eurasip Journal on Advances in Signal Processing, 2011, 11(1):14.
[3] WU H Q, ZHANG X W, LI R X, et al. Finitetime synchronization of chaotic neural networks with mixed timevarying delays andstochastic disturbance [J]. Memetic Computing, 2015, 7(3): 231.
[4] SHI L, YANG X S, LI Y C, et al. Finitetime synchronization of nonidentical chaotic systems with multiple timevarying delays and bounded perturbations [J]. Nonlinear Dynamics, 2016. 83(1-2): 75.
[5] MOHAMMDA M A, HASAN P A. Adaptive finitetime synchronization of nonautonomous chaotic systems with uncertainty [J]. Journal of Computational and Nonlinear Dynamics, 2013, 8(3):1.
[6] GUAN H, WANG Z, ZHANG H. Adaptive synchronization of different kinds of chaotic neural networks [J]. Control Theory and Technology, 2008, 6(2):201.
[7] LI Y, LI C. Complete synchronization of delayed chaotic neural networksby intermittent control with two switches in a control period [J]. Neurocomputing, 2016, 173(3):1341.
[8] FENG C F. Projective synchronization between two different timedelayed chaotic systems using active control approach [J]. Nonlinear Dynamics, 2010, 62(1-2): 453.
[9] WU R C, CAO D X. Lag synchronization of chaotic systems with timedelayed linear terms via impulsive control [J]. Pramana, 2013, 81(5): 727.
[10] 鄧立為, 宋歌, 高俊山. 不確定混沌系統(tǒng)的魯棒自適應(yīng)容錯(cuò)同步控制[J]. 電機(jī)與控制學(xué)報(bào), 2017,21(8): 114.
DENG Liwei, SONG Ge, GAO Junshan.Robust adaptive faulttolerant synchronization control for uncertain chaotic systems [J]. Electric Machines and Control, 2017, 21(8):114.
[11] CHEN X Y, CAO J D, QIU J L, et al. Adaptive control of multiple chaotic systems with unknown parameters in two different synchronization modes [J]. Advances in Difference Equations, 2016, 231:1.
[12] CHEN X Y, CAO J D, QIU J L, et al. Transmission synchronization control of multiple nonidentical coupled chaotic systems[J], Advances in Neural Networks, 2016:284.
[13] CHEN X Y, PARK J H, CAO J D, et al. Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control[J]. Neurocomputing, 2018, 273(17):9.
[14] CHEN X Y, PARK J H, CAO J D, et al. Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances [J]. Applied Mathematics and Computation, 2017, 308: 161.
[15] TANG Y. Terminal sliding mode control for rigid robots [J].Automatica, 1998, 34(1): 51.
[16] ABDUJELIL A, JIANG H J, TENG Z D. Finitetime synchronization for fuzzy cellular neural networks with timevarying delays [J]. Fuzzy Sets and Systems, 2016, 297:96.
(編輯:賈志超)