宋康華 黎宇婷 張魯斌
摘? 要? 乙烯是影響果實(shí)品質(zhì)形成的重要植物激素,乙烯信號(hào)轉(zhuǎn)導(dǎo)途徑研究已經(jīng)在不同果實(shí)中廣泛開展,但其轉(zhuǎn)錄調(diào)控機(jī)制研究基本處于起步階段。本文重點(diǎn)綜述了AP2/ERF的果實(shí)品質(zhì)轉(zhuǎn)錄調(diào)控研究進(jìn)展,討論了果實(shí)品質(zhì)轉(zhuǎn)錄調(diào)控存在問(wèn)題和研究趨勢(shì)。
關(guān)鍵詞? 乙烯;AP2/ERF;轉(zhuǎn)錄調(diào)控;果實(shí)品質(zhì)
中圖分類號(hào)? S31? ? ? 文獻(xiàn)標(biāo)識(shí)碼? A
Abstract? Ethylene is an important plant hormone that affects the quality of fruit. Studies of ethylene signal transduction pathway have been widely carried out in different kinds of fruits, but its transcriptional regulation mechanism is still at the beginning stage. This paper summarized the progresses in the transcriptional regulation of fruit quality based on the AP2/ERF results. Perspective and problems for further exploration of AP2/ERF on the fruit quality improvement were also discussed.
Keywords? etheylene; AP2/ERF; transcriptional regulation; fruit quality
DOI? 10.3969/j.issn.1000-2561.2019.05.028
乙烯作為氣態(tài)的植物激素調(diào)控著植物的整個(gè)生長(zhǎng)發(fā)育過(guò)程,如種子萌發(fā)、細(xì)胞伸長(zhǎng)、果實(shí)成熟、器官的衰老與脫落、細(xì)胞程序死亡、激素調(diào)節(jié)以及對(duì)各種脅迫與病原體的響應(yīng)[1]。近年來(lái)越來(lái)越多結(jié)果表明乙烯不僅影響躍變型果實(shí)和非躍變型果實(shí)的采后衰老,也參與調(diào)控果實(shí)品質(zhì)相關(guān)基因的表達(dá),影響了果實(shí)顏色、風(fēng)味、質(zhì)地等品質(zhì)的形成與轉(zhuǎn)變。隨著模式植物(如擬南芥和水稻等)轉(zhuǎn)錄因子研究的重要突破,果實(shí)成熟和衰老過(guò)程中的轉(zhuǎn)錄調(diào)控機(jī)制已成為采后生物學(xué)研究的新熱點(diǎn)與重點(diǎn)之一,近年來(lái),隨著基因組學(xué)、蛋白組學(xué)、轉(zhuǎn)錄組學(xué)及代謝組學(xué),以及DNA-蛋白質(zhì)和蛋白質(zhì)-蛋白質(zhì)互作等技術(shù)的發(fā)展,已相繼從各種果實(shí)中分離和鑒定出多種與成熟和衰老相關(guān)的轉(zhuǎn)錄因子,如EIN3/EIL、AP2/ERF、MADS-box、NAC 和SBP/SPL等[2],EIN3/EILs和AP2/ERF是兩類植物特異的轉(zhuǎn)錄因子,乙烯反應(yīng)是由涉及EIN3/EILs和ERF的轉(zhuǎn)錄因子家族的轉(zhuǎn)錄級(jí)聯(lián)反應(yīng)介導(dǎo)的[3],AP2/ERF家族轉(zhuǎn)錄因子作為乙烯信號(hào)通路中的最終目的基因,可通過(guò)調(diào)控各種下游靶基因的表達(dá)來(lái)參與植物整個(gè)生命周期的生長(zhǎng)發(fā)育和各種逆境脅迫,可以調(diào)節(jié)植物激素的生物合成,包括乙烯、細(xì)胞分裂素、赤霉素和脫落酸,此外,AP2/ERF也參與了生長(zhǎng)素、細(xì)胞分裂素、脫落酸和茉莉酸信號(hào)的響應(yīng),是連接植物激素信號(hào)的關(guān)鍵調(diào)節(jié)器。AP2/ERF的這種多重調(diào)節(jié)作用逐步被挖掘,既有有利的一面也有不利的一面,比如引起衰老、阻礙生長(zhǎng)等,只有深入的探索和研究AP2/ERFs才能趨利避害,為果實(shí)品質(zhì)生物學(xué)理論提供支撐。
本文著眼于乙烯信號(hào)轉(zhuǎn)導(dǎo)途徑AP2/ERF類轉(zhuǎn)錄因子,介紹乙烯調(diào)控果實(shí)產(chǎn)品品質(zhì)的轉(zhuǎn)錄機(jī)制研究進(jìn)展,明確基于AP2/ERF的果實(shí)品質(zhì)轉(zhuǎn)錄調(diào)控研究重點(diǎn)與方向。
1? AP2/ERF轉(zhuǎn)錄因子簡(jiǎn)介
AP2/ERF是一個(gè)龐大的基因家族, 根據(jù)AP2結(jié)構(gòu)域的數(shù)目和結(jié)構(gòu)特點(diǎn),AP2/ERF可以分為4個(gè)亞族ERF、DREB、AP2、RAV和單獨(dú)成員soloist[4-5],AP2亞類的成員含兩個(gè)相似度很高并且串聯(lián)重復(fù)出現(xiàn)的AP2/ERF結(jié)構(gòu)域,少數(shù)成員包含1個(gè)AP2結(jié)構(gòu)域,在調(diào)節(jié)植物生長(zhǎng)發(fā)育過(guò)程中起著非常重要的作用;RAV蛋白家族含有1個(gè)AP2/ERF和1個(gè)B3結(jié)構(gòu)域,在乙烯響應(yīng)、油菜素內(nèi)酯響應(yīng)、生物和非生物脅迫響應(yīng)過(guò)程中發(fā)揮重要的作用;CBF/DREB家族和ERF家族只含有1個(gè)AP2/ERF結(jié)構(gòu)域,CBF/DREB家族成員可以識(shí)別干旱和冷誘導(dǎo)響應(yīng)元件(DRE/CRT, A/ GCCGAC),在植物抵抗非生物脅迫過(guò)程中起著非常重要的作用;ERF 家族成員可以識(shí)別GCC盒(AGCCGCC),在植物抵抗生物脅迫過(guò)程中發(fā)揮重要的作用;Soloist類的AP2/ERF轉(zhuǎn)錄因子與其他成員間的進(jìn)化關(guān)系最遠(yuǎn),成員數(shù)較少,如擬南芥中只報(bào)道1個(gè)成員[6]。目前主要報(bào)道了AP2和ERF兩類亞家族與果實(shí)成熟和衰老有關(guān)。AP2/ERF成員在不同果實(shí)中已被廣泛分離,且多個(gè)物種涉及基因組水平,在番茄[7]中分離得到112個(gè)ERFs、黃瓜[8]中分離得到131個(gè)ERFs、蘋果[9]中分離得到259個(gè)ERFs、桃[10]中分離得到131個(gè)ERFs、柑橘[11]中分離得到126個(gè)ERFs、白梨(碭山酥梨)[12]分離得到155個(gè)ERFs,獼猴桃[18]中分離得到105個(gè)ERFs,大棗中分離得到119個(gè)ERFs[13]、辣椒中分離得到141個(gè)ERFs[14]。
AP2/ERF蛋白是植物體內(nèi)特有的也是植物中最大的轉(zhuǎn)錄因子家族之一,AP2/ERF在乙烯信號(hào)轉(zhuǎn)導(dǎo)下游發(fā)揮作用且高度保守,該族成員在植物生長(zhǎng)發(fā)育、衰老過(guò)程中發(fā)揮重要作用,且涉及各種對(duì)周圍環(huán)境的生物脅迫及非生物脅迫[15]。Mishra[16]近年來(lái)研究發(fā)現(xiàn)罌粟中PsAP2在煙草中可以結(jié)合DRE和GCC順式作用元件進(jìn)而響應(yīng)各種生物脅迫和非生物脅迫,另外AP2/ERF還可以與其它植物激素代謝與互作,近年來(lái)研究表明AP2/ERF在果實(shí)成熟品質(zhì)方面具有重要的調(diào)節(jié)作用,如顏色,質(zhì)地,風(fēng)味、芳香、抗逆性等,但是由于大部分模式植物不具有品質(zhì)優(yōu)良的肉質(zhì)果實(shí)以及多年生果樹的遺傳轉(zhuǎn)化周期漫長(zhǎng)等困難,因此AP2/ERF在果實(shí)品質(zhì)性狀的轉(zhuǎn)錄調(diào)控研究方面鮮見(jiàn)報(bào)道。
2? AP2/ERF轉(zhuǎn)錄因子參與調(diào)控果實(shí)品質(zhì)概述
2.1? 果實(shí)成熟軟化
乙烯在控制果實(shí)成熟(包括呼吸躍變型和非呼吸躍變型)發(fā)揮著重要的作用,調(diào)節(jié)果實(shí)中不同的成熟響應(yīng)的乙烯信號(hào)通路下游ERF轉(zhuǎn)錄因子主要為ERF亞類和AP2亞類。AP2/ERF轉(zhuǎn)錄因子可以與乙烯合成相關(guān)基因相互作用來(lái)調(diào)節(jié)乙烯合成或者與單獨(dú)或與其他轉(zhuǎn)錄因子結(jié)合后作用在與成熟軟化相關(guān)的靶基因上來(lái)調(diào)控果實(shí)的成熟軟化,在果實(shí)成熟軟化方面的研究主要集中在呼吸躍變型果實(shí)中,最先在番茄中進(jìn)行研究,后在香蕉、蘋果、獼猴桃等中相繼展開研究。比如在番茄中鑒定的AP2a,可以作用在RIN、NOR、CNR的下游,負(fù)調(diào)控果實(shí)的成熟[18]。Liu等[17]發(fā)現(xiàn)番茄基因組中有77個(gè)ERF轉(zhuǎn)錄因子,其中27個(gè)在果實(shí)成熟中上調(diào)表達(dá),28個(gè)呈現(xiàn)負(fù)表達(dá),這表明不同的ERF在果實(shí)發(fā)育成熟過(guò)程中扮演不同的角色。通過(guò)檢測(cè)番茄成熟突變體RIN、Nor、Nr中ERF的表達(dá)情況,發(fā)現(xiàn)11個(gè)ERF在突變體中低度表達(dá),3個(gè)ERF出現(xiàn)積累,3個(gè)副族E成員ERF則在突變體中出現(xiàn)劇烈下調(diào),預(yù)示它們?cè)诠麑?shí)成熟中發(fā)揮著重要作用。Feng等[19]從香蕉果實(shí)中通過(guò)酵母雙雜交和雙分子熒光互補(bǔ)分析表明MaDof23和MaERF9之間存在物理相互作用,前期研究表明MaDof23參與香蕉成熟調(diào)控,為轉(zhuǎn)錄抑制子,而MaERF9是轉(zhuǎn)錄激活子,二者相互拮抗共同調(diào)控10余個(gè)包括MaEXP1、MaEXP2、MaEXP3、MaEXP5、MaXET7、MaPG1、MaPME3、MaPL2、MaCAT、MaPDC在內(nèi)的與香蕉成熟相關(guān)的基因。Fan等[20]從香蕉果實(shí)中鑒定了一個(gè)ERF亞家族的轉(zhuǎn)錄因子MaDEAR1,發(fā)現(xiàn)其表達(dá)和啟動(dòng)子活性可以受到乙烯和成熟的抑制,推測(cè)其表達(dá)可能部分受到組蛋白修飾調(diào)節(jié),MaDEAR1可以直接結(jié)合到與果實(shí)軟化相關(guān)的細(xì)胞壁修飾基因包括MaEXP1、MaEXP3、MaPG1、MaXTH10、MaPL3和MaPME3的啟動(dòng)子來(lái)抑制其活性,進(jìn)而調(diào)控果實(shí)的成熟。目前從獼猴桃數(shù)據(jù)庫(kù)中分離得到119個(gè)AcERF基因,其中8個(gè)ERF被確定參與果實(shí)的成熟軟化,AdERF10、AdERF14、AdERF15和AdERF75為正調(diào)控因子而AdERF7、AdERF8、AdERF19、AdERF21為負(fù)調(diào)控因子[21]。Xiao等[22]在香蕉中發(fā)現(xiàn)MaERF9可與乙烯合成途徑中的MaACS1、MaACO1的啟動(dòng)子結(jié)合來(lái)正向調(diào)控其活性,進(jìn)而參與香蕉果實(shí)成熟的調(diào)控。在蘋果中MdERF2可以結(jié)合到MdACS1 的啟動(dòng)子上抑制其表達(dá)進(jìn)而負(fù)調(diào)控乙烯合成,MdERF2也可與MdERF3的啟動(dòng)子結(jié)合或者直接與MdERF3互作從而負(fù)調(diào)控乙烯合成[23],茉莉酸通過(guò)調(diào)節(jié)MdMYC2與MdERF3啟動(dòng)子結(jié)合來(lái)激活MdACS1的轉(zhuǎn)錄活性或者通過(guò)與MdERF2互作來(lái)增強(qiáng)MdACS1轉(zhuǎn)錄活性進(jìn)而促進(jìn)乙烯的合成[24]。類似結(jié)果也在白梨品種鴨梨中有所報(bào)道,鴨梨中ERF24可直接結(jié)合在ACO54的啟動(dòng)子上進(jìn)而啟動(dòng)成熟相關(guān)基因的表達(dá)[25]。Leida等[26]在葡萄中鑒定一個(gè)漿果中特異表達(dá)的VviERF045,進(jìn)一步分析表明該基因可調(diào)節(jié)蠟的生物合成和角質(zhì)層的形態(tài),并與另外6個(gè)VviERF相互協(xié)作共同調(diào)控果實(shí)的成熟。Palumbo等[27]也報(bào)道VviERF045在漿果成熟過(guò)程中起著總開關(guān)的作用。
果實(shí)質(zhì)地包括果實(shí)的軟化和果實(shí)木質(zhì)化,在果實(shí)成熟過(guò)程中合成的一系列細(xì)胞壁降解酶可以引起細(xì)胞壁結(jié)構(gòu)和成分的改變從而導(dǎo)致果實(shí)軟化,推遲果實(shí)后熟過(guò)程中采取的延緩果實(shí)軟化腐爛的措施(比如低溫)往往會(huì)影響果實(shí)的其他方面的品質(zhì)[28],韓延超等[29]研究發(fā)現(xiàn)MaERF11作為轉(zhuǎn)錄抑制子,可以通過(guò)對(duì)乙烯合成基因MaACO1和果實(shí)軟化相關(guān)基因MaEXP2、MaEXP7、MaEXP8的抑制作用來(lái)調(diào)控乙烯的合成和果實(shí)的軟化。軟化是決定芒果果實(shí)貨架期的重要因素之一,Chidley等[30]發(fā)現(xiàn)乙烯處理明顯提高了阿方索芒果中β-D-半乳糖苷酶的轉(zhuǎn)錄活性,表明乙烯通過(guò)調(diào)控β-D-半乳糖苷酶和α-D-甘露糖苷酶在芒果軟化中發(fā)揮著極為重要的作用。與果實(shí)軟化相比,ERF參與果實(shí)木質(zhì)化的研究嚴(yán)重滯后。有證據(jù)表明,APETALA2/ethylene response factor(AP2/ERF)乙烯響應(yīng)因子可能與板藍(lán)根中木脂素的生物合成密切相關(guān),即通過(guò)調(diào)節(jié)木質(zhì)素類化合物合成過(guò)程中的相關(guān)基因和調(diào)節(jié)SA合成兩條途徑來(lái)控制木質(zhì)素類化合物的合成[31]。Zeng等[32]從低溫貯藏過(guò)的枇杷果實(shí)采后木質(zhì)化過(guò)程中分離出18個(gè)AP2/ERF基因,其中,EjAP2-1作為轉(zhuǎn)錄抑制子,其表達(dá)與木質(zhì)化呈負(fù)相關(guān),進(jìn)一步研究表明EjAP2-1與木質(zhì)素合成相關(guān)的EjMYB1 和 EjMYB2存在蛋白質(zhì)-蛋白質(zhì)間的互作,EjAP2-1與EjMYB1 或 EjMYB2的結(jié)合抑制Ej4CL1啟動(dòng)子的活性。Li等[33]發(fā)現(xiàn)1-MCP能夠加劇獼猴桃在低溫下出現(xiàn)冷害木質(zhì)化的現(xiàn)象,而POD基因可能在獼猴桃果實(shí)冷害木質(zhì)化過(guò)程中扮演了重要角色,張魯斌等則發(fā)現(xiàn)ERF可能通過(guò)調(diào)控POD基因進(jìn)而調(diào)控菜心低溫冷藏過(guò)程中乙烯誘導(dǎo)的木質(zhì)化(待發(fā)表)。Wang[34]研究發(fā)現(xiàn)桃果實(shí)低溫馴化可通過(guò)一系列差異表達(dá)的ERFs來(lái)促進(jìn)軟化和脂質(zhì)成分的變化進(jìn)而保持細(xì)胞膜的穩(wěn)定性,達(dá)到減輕褐變和冷害的目的。
2.2? 果實(shí)色澤
色澤是果實(shí)重要的外觀品質(zhì),有呈綠色的葉綠素、呈紫色的花色苷、呈橙色的類胡蘿卜素、呈紅色的番茄素等。茉莉酸在許多物種中可以促進(jìn)葉片衰老[35],Tan等[36]在菜心中鑒定了一個(gè)可響應(yīng)茉莉酸加速葉片衰老的BrERF72基因,進(jìn)一步試驗(yàn)表明BrERF72可直接結(jié)合在BrLOX4, BrAOC3,和BrOPR3的GCC-box及DRE/CRT順式元件上進(jìn)而激活該基因的表達(dá)。 在水果諸如柑橘中,褪綠是促進(jìn)果實(shí)品質(zhì)形成重要的發(fā)展階段,果實(shí)色澤的轉(zhuǎn)錄調(diào)控研究主要為基于MYB的花青苷代謝研究和基于AP2/ERF的類胡蘿卜素代謝研究。Yin等[37]從甜橙變種—紐荷爾果果皮褪綠過(guò)程中分離了一個(gè)響應(yīng)乙烯的乙烯響應(yīng)因子CitERF13,CitERF13的功能在擬南芥和番茄中保守,與AtERF17、SlERF16同源作為PPH基因的激活子和葉綠素降解的促進(jìn)劑。在蘋果中已發(fā)現(xiàn)AP2/ERF類轉(zhuǎn)錄因子可調(diào)控類胡蘿卜素生物合成途徑中關(guān)鍵酶的表達(dá),Han等[38]在史密斯青蘋果果皮中未檢測(cè)到ERF17的表達(dá),而補(bǔ)充 MaERF17促進(jìn)了青蘋果果皮中葉綠素的降解及果皮的紅色著色,說(shuō)明可能存在ERF17調(diào)控蘋果果皮脫綠的信號(hào)網(wǎng)絡(luò)。Zhang等[39]在番茄果實(shí)成熟過(guò)程鑒定了一個(gè)能夠抑制乙烯合成和類胡蘿卜素積累的MADS-box基因SlCMB1,進(jìn)一步研究發(fā)現(xiàn)它和SlAP2a存在互作關(guān)系。Yao等[40]發(fā)現(xiàn)梨果實(shí)中PyERF3通過(guò)與PyMYB114以及PybHLH3互作來(lái)共同調(diào)控花青素的合成。巴良杰等[41]在紅肉火龍果果肉中得到HpERF1、HpERF2和HpERF3, 雙熒光素酶瞬時(shí)表達(dá)分析顯示,HpERFs可以激活紅肉火龍果甜菜紅素合成途徑上關(guān)鍵基因HpCyt P450-like1的啟動(dòng)子活性,推測(cè)HpERFs可能通過(guò)調(diào)控甜菜紅素合成相關(guān)基因表達(dá)來(lái)參與紅肉火龍果果實(shí)品質(zhì)形成過(guò)程。Wang等[42]研究認(rèn)為ABA在花青素合成中起著更為重要的作用而乙烯則在葉綠素降解過(guò)程中起著更為重要的作用。在荔枝中ABA含量和乙烯釋放量隨著葉綠素的降解和花色素苷的合成而升高,而外施乙烯可顯著促進(jìn)葉綠素的降解,在荔枝果皮成熟轉(zhuǎn)錄本中鑒定了3個(gè)ERFs,表明其參與了荔枝果皮成熟過(guò)程[43]。
2.3? 果實(shí)風(fēng)味
果實(shí)風(fēng)味是決定果實(shí)品質(zhì)的重要因素,主要包括涉及糖酸代謝的糖酸比、澀味等,研究更多圍繞生理生化水平和代謝途徑展開,較少見(jiàn)轉(zhuǎn)錄調(diào)控相關(guān)研究。激素乙烯調(diào)節(jié)果實(shí)糖代謝的研究報(bào)道比較少見(jiàn),前人報(bào)道抑制乙烯生物合成和乙烯作用對(duì)果實(shí)可溶性固形物含量沒(méi)有影響[44],然而一些報(bào)道認(rèn)為乙烯與糖代謝之間相互作用可能與糖的類型有關(guān)[45]。Macarena等[46]研究了乙烯對(duì)兩種成熟類型呼吸躍變型日本李及其芽變品種非呼吸躍變型日本李果實(shí)糖代謝的影響,發(fā)現(xiàn)乙烯可以降低蔗糖的分解代謝,誘導(dǎo)蔗糖生物合成,同時(shí)可刺激山梨醇分解降低山梨醇生物合成。此外,乙烯可正調(diào)控半乳糖代謝,與在非躍變型日本李中含量較高的半乳糖醇、棉子糖、肌醇和海藻糖含量成負(fù)相關(guān),進(jìn)而調(diào)控果實(shí)耐貯藏能力。
Chidley等[47]研究發(fā)現(xiàn)乙烯處理成熟及未成熟芒果均提高β-D-半乳糖苷酶和α-D-甘露糖苷酶的轉(zhuǎn)錄活性及還原性糖和非還原糖的積累。有機(jī)酸對(duì)果實(shí)風(fēng)味至關(guān)重要,液泡氫離子轉(zhuǎn)運(yùn)腺苷三磷酸酶(V-ATPase)在有機(jī)酸轉(zhuǎn)運(yùn)和積累中起著重要作用,有研究報(bào)道[48]在柑橘中,CitVHA-c4與CitERF13基因在蛋白水平上相互作用協(xié)同調(diào)控檸檬酸水平,在擬南芥中,過(guò)表達(dá)CitERF13或AtERF17導(dǎo)致檸檬酸顯著積累。呂靜祎等[49]用乙烯處理蘋果發(fā)現(xiàn)常溫貯藏早期乙烯可促進(jìn)TA下降,但對(duì)TSS沒(méi)有影響。袁莎等[50]在20 ℃用不同添加量的乙烯催熟(20 ℃)“紅陽(yáng)”獼猴桃3~5 d,發(fā)現(xiàn)其對(duì)獼猴桃TSS和TA影響不顯著。
果實(shí)澀味主要由可溶性單寧引起,主要是柿(最顯著)、葡萄等少數(shù)果實(shí)。成熟的澀柿果實(shí)需進(jìn)行采后脫澀方可食用,常用的處理為CO2、乙烯、高溫等[51]。研究發(fā)現(xiàn)AP2/ERF基因參與了柿果實(shí)澀味脫除的轉(zhuǎn)錄調(diào)控。Park等[52]發(fā)現(xiàn)DKEIL、DKERF2、DKERF5 和DKERF8可以響應(yīng)柿果實(shí)(25 ℃)乙烯處理進(jìn)而促使柿果實(shí)較15 ℃更快脫澀軟化。Wang等[53]發(fā)現(xiàn)了柿果實(shí)脫澀過(guò)程中響應(yīng)缺氧的3個(gè)ERF轉(zhuǎn)錄因子(DkERF8、DkERF16、DkERF19),雙熒光素酶實(shí)驗(yàn)證實(shí)DkERFs能夠激活DkXTH9啟動(dòng)子進(jìn)而參與細(xì)胞壁代謝。張慧敏等[54]研究發(fā)現(xiàn)黃瓜中CsERF在酵母和煙草體內(nèi)均能夠激活Bi基因啟動(dòng)子,說(shuō)明CsERF能夠特異結(jié)合Bi基因啟動(dòng)子的順式作用元件,正調(diào)控Bi基因的表達(dá),導(dǎo)致黃瓜中葫蘆素C積累形成苦味。
2.4? 果實(shí)芳香
貯藏溫度和乙烯是影響果實(shí)采后貯藏果實(shí)香氣的兩個(gè)重要因素。在番茄果實(shí)中香氣物質(zhì)合成的LOX途徑是依賴乙烯的過(guò)程[55],HJD等[56]發(fā)現(xiàn)施用外源乙烯利可顯著提高芒果的呼吸速率,內(nèi)源乙烯生產(chǎn)量和果實(shí)成熟過(guò)程中的脂肪酸含量,外源乙烯利的使用增加了總芳香揮發(fā)物、單萜、倍半萜、醛類、總酯、醇類和十四烷的產(chǎn)生。Jin等[57]在蘋果中研究發(fā)現(xiàn)1-MCP處理可顯著降低粉紅女士酯類、醇類和烷類香氣的種類和相對(duì)含量,在冷藏條件下1-MCP處理可以保持果實(shí)品質(zhì),但抑制了香氣的產(chǎn)生。類似的結(jié)果在花牛蘋果中也有報(bào)道,吳小華等[58]發(fā)現(xiàn)1-MCP可顯著降低呼吸和乙烯產(chǎn)生,延緩呼吸高峰和乙烯釋放高峰出現(xiàn)時(shí)間,但同時(shí)也抑制了與花牛蘋果香氣合成相關(guān)酶的活性。王貴章[59]發(fā)現(xiàn)乙烯通過(guò)ERF基因調(diào)控LOX、ALDH等家族基因的轉(zhuǎn)錄,進(jìn)而影響己醛、苯甲醛、反-2-已烯醛、反-2-己烯醇等青草型香氣物質(zhì)的合成;同時(shí)調(diào)控TPS14和MCS基因的表達(dá)和芳樟醇的合成。前人研究表明MaDREB2與香蕉果實(shí)成熟關(guān)系密切,并且可結(jié)合并激活香氣合成基因MaADH1和MaPDC的啟動(dòng)子[60]。
2.5? 果實(shí)營(yíng)養(yǎng)
果實(shí)的營(yíng)養(yǎng)價(jià)值與果實(shí)中的抗氧化活性物質(zhì)密切相關(guān),這些物質(zhì)包含酚類物質(zhì)、萜類物質(zhì)、維生素等,此前已有AP2/ERF調(diào)控藥用植物及其他作物代謝產(chǎn)物生物合成方面的研究[61],如AP2/ERF轉(zhuǎn)錄因子TAR1正調(diào)控青蒿素合成;東北紅豆杉中AP2類轉(zhuǎn)錄因子TcDREB可能參與異戊二烯代謝途徑產(chǎn)物紫杉醇的合成;長(zhǎng)春花中AP2/ERF類轉(zhuǎn)錄因子ORC1正調(diào)控幾個(gè)編碼參與煙堿生物合成的結(jié)構(gòu)基因的酶;紫草中 LeERF-1可能對(duì)紫草素的生物合成起正向調(diào)節(jié)作用,Li等[62]已鑒定EREB58調(diào)控玉米倍半萜烯合成,AP2/ERF轉(zhuǎn)錄因子在采后貯藏過(guò)程中對(duì)果實(shí)營(yíng)養(yǎng)物質(zhì)影響的研究較少,目前在蘋果中報(bào)道AP2/ERF類轉(zhuǎn)錄因子可調(diào)控類胡蘿卜素生物合成途徑中關(guān)鍵酶的表達(dá)[63],葡萄中也發(fā)現(xiàn)AP2/ERF類轉(zhuǎn)錄因子參與果實(shí)成熟過(guò)程ACC氧化酶、萜類合酶和脂氧合酶的基因表達(dá)調(diào)控[64],Costa等[65]對(duì)不同品種藍(lán)莓進(jìn)行乙烯處理發(fā)現(xiàn)乙烯對(duì)花青素組分的影響取決于品種,乙烯可促進(jìn)部分品種花色苷總量的增加,提高藍(lán)莓采后果實(shí)的抗氧化能力,在蘋果愈傷組織中過(guò)表達(dá)MdERF1B可顯著增加膳食花青素和原花青素的積累[66]。
2.6? 果實(shí)抗逆性
采后貯藏過(guò)程中果實(shí)面臨各種生物脅迫及非生物脅迫,AP2/ERF轉(zhuǎn)錄因子家族中包含有DRE結(jié)合蛋白(DREBs),通過(guò)與DRE/CRT順式作用元件的特異性結(jié)合來(lái)激活非生物脅迫相關(guān)基因的表達(dá)[67]。冷害是果實(shí)采后低溫貯運(yùn)的主要脅迫,在番茄中研究表明ERFs可以在低溫下被誘導(dǎo)表達(dá),最近研究表明番木瓜中ERF1可以與多個(gè)順式作用元件結(jié)合并激活逆境脅迫相關(guān)基因和ABA合成相關(guān)基因,從而引起ABA含量升高進(jìn)而提高耐鹽性和耐低溫性[68],在黃瓜中也有ERFs參與冷鍛煉調(diào)控冷害發(fā)生的報(bào)道[69]。西葫蘆果實(shí)容易發(fā)生冷害,但對(duì)低溫貯藏的反應(yīng)與品種有關(guān),目前已篩選出包含AP2/ERF在內(nèi)的一系列轉(zhuǎn)錄因子均參與了西葫蘆耐冷性的調(diào)節(jié)[70]。Qi等[71]研究表明香蕉果實(shí)中存在的轉(zhuǎn)錄抑制子MaERF10可招募MaJAZ3來(lái)抑制茉莉酸合成相關(guān)基因表達(dá)進(jìn)而調(diào)控香蕉果實(shí)的耐冷性。低溫脅迫還會(huì)促使石榴果實(shí)PgERF1和PgERF2基因表達(dá)來(lái)誘導(dǎo)乙烯合成,進(jìn)而增強(qiáng)低溫抗性[72]。Irene等[73]從高CO2濃度處理葡萄果實(shí)中鑒定一個(gè)VviERF2-c,發(fā)現(xiàn)其可與PR病程相關(guān)基因的順式作用元件GCC-box結(jié)合從而更好保持低溫下的果實(shí)品質(zhì)。PHBs一直被認(rèn)為是細(xì)胞周期負(fù)調(diào)控因子,Kong等[74]在擬南芥根發(fā)育中發(fā)現(xiàn)PHB3可通過(guò)限制響應(yīng)活性氧的轉(zhuǎn)錄因子ERF115、ERF114和ERF109部分表達(dá)來(lái)維持QC和DSC并控制根分裂活性。Wang等[75]發(fā)現(xiàn)LTC (0 ℃貯藏之前8 ℃預(yù)貯5天)可以提高乙烯生成量,通過(guò)ERFs維持膜結(jié)構(gòu)穩(wěn)定降低褐變并減輕梨果實(shí)的冷害。糖苷生物堿是植物本身固有的抗菌物質(zhì),且具有廣泛的藥理活性[76],Thagun等[77]在番茄果實(shí)發(fā)現(xiàn)了一組響應(yīng)茉莉酸的ERF轉(zhuǎn)錄因子,在轉(zhuǎn)基因番茄中過(guò)表達(dá)和反義表達(dá)該基因均引起了甾體糖生物堿的劇烈變化,JRE4可激活甾體糖生物堿合成基因啟動(dòng)子中的GCC-box從而調(diào)控該結(jié)構(gòu)基因的表達(dá)。在果實(shí)衰老方面,Kuang等[78]用一氧化氮(NO)處理可以延緩龍眼果實(shí)的衰老,發(fā)現(xiàn)組蛋白去乙?;富駾lHD2可以與DlERF1互作共同調(diào)控龍眼果實(shí)的衰老。
3? 問(wèn)題與展望
乙烯在果實(shí)的生長(zhǎng)發(fā)育、成熟衰老及采收、貯藏到銷售等各階段都發(fā)揮著重要作用,是影響果實(shí)采后品質(zhì)及貯藏期最重要的因素之一,在采后保鮮中抑制乙烯的作用可以延緩果實(shí)的成熟衰老,但同時(shí)也影響了果實(shí)品質(zhì),如何在采后保鮮過(guò)程中合理控制和使用乙烯是果實(shí)采后品質(zhì)研究的重要方面。通過(guò)對(duì)AP2/ERF調(diào)控果實(shí)品質(zhì)的研究,對(duì)提高果實(shí)采后貨架期品質(zhì)具有深刻的指導(dǎo)意義,然而由于AP2/ERF轉(zhuǎn)錄因子家族成員眾多且成員之間存在功能交織和功能冗余的問(wèn)題,給AP2/ERF功能的進(jìn)一步研究帶來(lái)諸多挑戰(zhàn)[79]。目前對(duì)AP2/ERF轉(zhuǎn)錄調(diào)控機(jī)制和功能解析主要集中在模式果實(shí)番茄中,而多年生果樹中主要開展相關(guān)基因分離和轉(zhuǎn)錄分析研究,較為深入的轉(zhuǎn)錄調(diào)控機(jī)制研究?jī)H在蘋果、獼猴桃、香蕉等少數(shù)果實(shí)中報(bào)道,且相關(guān)成員的功能驗(yàn)證鮮見(jiàn)報(bào)道。
順境出產(chǎn)量,逆境出品質(zhì),AP2/ERF轉(zhuǎn)錄因子做為控制潛在的抗性相關(guān)基因表達(dá)的開關(guān)之一[80],其深入研究對(duì)于提高果實(shí)品質(zhì)及抗逆性等具有重要的理論指導(dǎo)意義,比如通過(guò)對(duì)耐貯存,營(yíng)養(yǎng)品質(zhì)高的優(yōu)良果實(shí)品種ERFs轉(zhuǎn)錄因子的挖掘,可對(duì)分子育種提供參考;再比如施用低濃度的乙烯是否可增強(qiáng)果實(shí)品質(zhì)(特別是在非躍變呼吸型果實(shí)中)而又不引起果實(shí)的成熟衰老?乙烯催熟到底對(duì)果品品質(zhì)有沒(méi)有影響等。目前雖然國(guó)內(nèi)外對(duì)AP2/ERF轉(zhuǎn)錄因子已經(jīng)有較多報(bào)道,但對(duì)于果實(shí)特異的品質(zhì)性狀轉(zhuǎn)錄調(diào)控機(jī)制研究及功能解析還不夠深入和準(zhǔn)確,AP2/ERF對(duì)果蔬品質(zhì)影響的共同規(guī)律有待于繼續(xù)探討,離實(shí)際生產(chǎn)應(yīng)用更是相隔甚遠(yuǎn),篩選到符合實(shí)際需求的ERFs,對(duì)產(chǎn)前提高果實(shí)商品品質(zhì)(色澤、風(fēng)味、芳香、營(yíng)養(yǎng)),產(chǎn)后降低冷害發(fā)生等具有實(shí)際意義,對(duì)進(jìn)一步應(yīng)用基因編輯技術(shù)對(duì)品種進(jìn)行改良具有重要價(jià)值。
參考文獻(xiàn)
Abeles F B, Morgan P W, Saltveit Jr M E. Ethylene in plant biology[M]. New York: Academic Press, 1992.
范中奇, 鄺健飛, 陸旺金, 等. 轉(zhuǎn)錄因子調(diào)控果實(shí)成熟和衰老機(jī)制研究進(jìn)展[J]. 園藝學(xué)報(bào), 2015, 42(9): 1649-1663.
Fu C C, Han Y C, Kuang J F, et al. Papaya CpEIN3a and CpNAC2 cooperatively regulate carotenoid biosynthesis related genes CpPDS2/4, CpLCY-e and CpCHY-b during fruit ripening[J]. Plant and Cell Physiology, 2017, 58(12): 2155-2165.
Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved indehydration and cold inducible gene expression[J]. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009.
Zhuang J, Peng R H, Cheng Z M, et al. Genome-wide analysis of the putative AP2/ERF family genes in Vitis vinifera[J]. Scientia Horticulture, 2009, 123(1): 73-81.
徐? 倩, 殷學(xué)仁, 陳昆松. 基于乙烯受體下游轉(zhuǎn)錄因子的果實(shí)品質(zhì)調(diào)控機(jī)制研究進(jìn)展[J]. 園藝學(xué)報(bào), 2014, 41(9): 1913-1923.
Pirrello J, Prasad B C N, Zhang W S, et al. Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene[J]. BMC Plant Biology, 2012, 12(1): 190.
Hu L, Liu S. Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers[J]. Genetics and Molecular Biology, 2011, 34(4): 624-634.
Girardi C L, Rombaldi C V, Dal Cero J, et al. Genome-wide analysis of the AP2/ERF superfamily in apple and transcriptional evidence of ERF involvement in scab pathogenesis[J]. Scientia Horticulturae, 2013, 151: 112-121.
Zhang C H, Shangguan L F, Ma R J, et al. Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica)[J]. Genetics and Molecular Research, 2012, 11(4): 4789-4809.
Xie X L, Shen S L, Yin X R, et al. Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus[J]. Molecular Biology Reports, 2014, 41(7): 4261-4271.
Li X L, Tao S T, Wei S W, et al. The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus)[J]. BMC Plant Biology, 2018, 18: 46.
Zhang Z, Li X G. Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube[J]. Scientific Reports, 2018, 10: 23.
Jin J H, Wang M, Zhang H X, et al. Genome-wide identification of the AP2/ERF transcription factor family in pepper (Capsicum annuum L.)[J]. Genome, 2018, 61(9): 663-674.
Wang X, Liu S, Tian H, et al. The small ethylene response factor ERF96 is involved in the regulation of the abscisic acid response in Arabidopsis[J]. Frontiers in Plant Sciencc, 2016, 6: 1064.
Mishra, S, Phukan, U J, Tripathi V, et al. PsAP2, an AP2/ERF family transcription factor from papaver somniferum enhances abiotic and biotic stress tolerance in transgenic tobacco[J]. Plant Molecular Biology, 2015, 89(1-2): 173-186.
Liu M C, Lima G B, Mila I, et al. Comperhensive profiling of ethylene response factor expression identifies ripening associated ERF genes and their link to key regulators of fruit ripening in tomato (Solanum lycopersicum)[J]. Plant physiology, 2016, 170(3): 1732
Karlova R, Rosin F M, Busscher-Lange J, et al. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening[J]. Plant Cell, 2011, 23(3): 923-941.
Feng B H, Han Y C, Xiao Y Y, et al. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes[J]. Journal of Experimental Botany, 2016, 8(67): 2263-2275.
Fan Z Q, Kuang J F, Fu C C, et al. The banana transcriptional repressor MaDEAR1 negatively cell wall-modifying genes involved in fruit ripening[J]. Frontiers in Plant Science, 2016, 7: 1021.
Zhang A D, Hu X, Kuang S, et al. Isolation, classification and transcription profiles of the ethylene response factors (ERFs) in ripening kiwi fruit[J]. Scientia Horthiculture, 2016, 199: 209-215.
Xiao Y Y, Chen J Y, Kuang J F, et al. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosythesis genes[J]. Journal of Experimental Botany, 2013, 64(8): 2499-2510.
Li T, Jiang Z Y, Zhang L C, et al. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription[J]. The Plant Journal, 2016, 88(5): 735-748.
Li T, Xu Y X, Zhang L C, et al. The jasmonate-activated transcription factor MdMYC2 regulates ethylene response factor and ethylene biosynthesis genes to promote ethylene biosynthesis during fruit ripening[J]. The Plant Cell, 2017, 29(6): 1316-1334
Hao P P, Wang G M, Cheng H Y, et al. Transcriptome analysis unravels an ethylene response factor involved in regulating fruit ripening in pear[J]. Physiologia Plantarum, 2018, 163(1): 124-135.
Leida C, Dal Rì A, Dalla Costa L, et al. Insights into the role of the berry-specific ethylene responsive factor VviERF045 [J]. Frontiers in Plant Science, 2016, 7: 1793.
Palumbo M C, Zenoni S, Fasoli M, et al. Integrated network analysis identifies fight-club nodes as a class of hubs encompassing key putative switch genes that induce major transcriptome reprogramming during grapevine development[J]. Plant Cell, 2014, 26: 4617-4635.
Greg T, Yin X R, Zhang A D, et al. Ethylene and fruit softening[J]. Food Quality and Safety, 2017, 1(4): 253-267.
韓延超. 組蛋白去乙?;竻⑴cERF 轉(zhuǎn)錄因子調(diào)控的香蕉果實(shí)成熟機(jī)制研究[D]. 廣州: 華南農(nóng)業(yè)大學(xué), 2016.
Hemangi G C, Ashish B D, Pranjali S O, et al. Effect of postharvest ethylene treatment on sugar content, glycosidase activity and its gene expression in mango fruit[J]. Journal of the Science of Food & Agriculture, 2017, 97(5): 1624.
Ma R F, Xiao Y, Lv Z Y, et al. AP2/ERF transcription factor, Ii049, positively regulates lignin biosynthesis in Isatis indigotica through activating salicylic acid signaling and lignan/lignin pathway genes[J]. Frontiers in Plant Science, 2017, 8: 1361.
Zeng J K, Li X, Xu Q, et al. EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors[J]. Plant Biotechnology Journal, 2015, 13: 1325-1334.
Li H, Suo J T, Han Y, et al. The effect of 1-methylcyclopropene, methyl jasmonate and methyl salicylate on lignin accumulation and gene expression in postharvest “Xuxiang”kiwifruit during cold storage[J]. Postharvest Biology and Technology, 2017, 124: 107-118.
Wang K, Yin X R, Zhang B, et al. Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit.[J]. Plant Cell Environment, 2017, 40(8): 1531-1551.
Zhu X. Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes[J]. Plant Journal, 2015, 84(3): 597-610 .
Tan X L, Fan Z Q, Shan W, et al. Association of BrERF72 with methyljasmonate-induced leaf senescence of Chinese flowering cabbage through activating JA biosynthesis-related genes[J]. Horticulture Research, 2018, 5: 22.
Yin X R, Xie X L, Xia X J, et al. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening[J]. The Plant Journal, 2016, 86(5): 403-412.
Han Z Y, Hu Y N, Lv Y D, et al. Natural variation underlies differences in etheylene response facton17 activity in fruit peel degreening[J]. Plant Physiology, 2018, 176(3): 2292-2304.
Zhang J L, Hu Z L, Yao Q Y, et al. A tomato MADS-box protein, SICMB1 regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening[J]. Scientific Reports, 2018, 8: 3413.
Yao G, Ming M, Allan A C, et al. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis[J]. Plant Journal, 2017, 92: 437-451.
巴良杰, 羅冬蘭, 戴衛(wèi)軍, 等. 紅肉火龍果HpERF1/2/3轉(zhuǎn)錄因子的特性及對(duì)HpCytP450-like1的調(diào)控[J]. 保鮮與加工, 2018, 18(1): 32-40.
Wang H C, Huang H B, Huang X M. Differential effects of abscisic acid and ethylene on the fruit maturation of Litchi Chinensis Sonn[J]. Plant Growth Regulation, 2007, 52(3): 189-198.
Lai B, Hu B, Qin Y H, et al. Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyII degradation and flavonoid biosynthesis[J]. BMC Genomics, 2015, 16: 225.
Menniti A, Gregori R, Donati I. 1-Methylcyclopropene retards postharvest softening of plums[J]. Postharvest Biology Technology, 2004, 31: 269-275.
Li D, Mou W, Wang Y, et al. Exogenous sucrose treatment accelerates postharvest tomato fruit ripening through the influence on itsmetabolism and enhancing ethylene biosynthesis and signaling[J]. Acta Physiology Plant, 2016, 38: 225.
Macarena F, Rosa M R, Avi S, et al. Ethylene regulation of sugar metabolism in climacteric and non-climacteric plums [J]. Postharvest Biology and Technology, 2018, 139: 20-30.
Chidley H G, Deshpande A B, Oak P S, et al. Effect of postharvest ethylene treatment on sugar content, glycosidase activity and its gene expression in mango fruit[J]. Journal of the Science of Food and Agriculture, 2017, 97(5): 1624-1633.
呂靜祎, 周? 影, 葛永紅, 等. 1-MCP和乙烯利處理對(duì)采后“金冠”蘋果常溫貯藏過(guò)程中生理變化及活性氧代謝的影響[J]. 食品工業(yè)科技, 2017, 38(5): 339-344.
袁? 莎, 李華佳, 朱永清, 等.“紅陽(yáng)”獼猴桃乙烯催熟特性[J]. 食品科學(xué), 2018, 39(9): 244-251.
Li S J, Yin X R, Xie X L, et al. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4[J]. Scientific Reports, 2016, 2(3): 1-10.
冷? 平, 李? 寶, 張? 文, 等. 磨盤柿的二氧化碳脫澀技術(shù)研究[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2003, 36(11): 1333-1336.
Do S P, Shimeles T, Jae Y H, et al. Quality and expression of ethylene response genes of “Daebong”persimmon fruit during ripening at different temperatures[J]. Postharvest Biology and Technology, 2017, 133: 57-63.
Wang M M, Zhu Q G, Deng C L, et al. Hypoxia-responsive ERFs involved in post-deastringency softening of persimmon fruit[J]. Plant Biotechnology Journal, 2017, 15(11): 1409-1419.
張慧敏, 張? 雷, 馬永碩, 等. 調(diào)控黃瓜苦味基因Bi的AP2/ERF家族轉(zhuǎn)錄因子[J]. 園藝學(xué)報(bào), 2014, 41(4): 672-680.
梁馨元, 郭星秀, 齊紅巖. 乙烯與脂氧合酶在番茄果實(shí)香氣合成中的作用[J]. 園藝學(xué)報(bào), 2017, 44(11): 2117-2125.
Lalel H, Singh Z, Tan S. The role of ethylene in mango fruit aroma volatiles biosynthesis[J]. Journal of Horticultural Science and Biotechnology, 2003, 78(4): 485-496.
Jin H, Hui W, Ding Y R, et al. Fruit aroma component of “Pink Lady”apple during cold storage with 1-MCP treatment[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(4): 754-761.
吳小華, 頡敏華, 王寶春, 等. 1-MCP對(duì)冷藏花牛蘋果生理活性及香氣合成相關(guān)酶活性的影響[J]. 甘肅農(nóng)業(yè)科技, 2018, 56(2): 1-5.
王貴章. 乙烯對(duì)采后低溫冷藏桃果實(shí)香氣合成調(diào)控的分子機(jī)理研究[D]. 北京: 中國(guó)林業(yè)科學(xué)研究院, 2014.
禹? 梅. 香蕉成熟相關(guān)轉(zhuǎn)錄因子MaDREB2互作蛋白的篩選與鑒定[D]. 廣州: 華南農(nóng)業(yè)大學(xué), 2016.
吳素瑞, 高? 珂, 劉? 璇, 等. AP2/ERF 轉(zhuǎn)錄因子調(diào)控藥用植物活性成分生物合成的研究進(jìn)展[J]. 中草藥, 2016, 47(9): 1605-1613.
Li S, Wang H, Li F, et al. The maize transcription factor EREB58 mediates jasmonate-induced production of sesquiterpene volatiles[J]. Plant Journal, 2015, 84(2): 296-308.
Charles A D, Nicky D, David L, et al. The phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content [J]. BMC Plant Biology, 2015, 15: 185.
Grant R C, Ryan G, Karen A S. Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin [J]. BMC Plant Biology, 2014, 14: 370.
Daniela V T, Domingos P F, E P. Effect of postharvest application of ethylene on phenolic acids and anthocyanins profile in three blueberry cultivars (Vaccinium corymbosum)[J]. Journal of the Science of Food & Agriculture, 2018, 98(13): 5052-5061.
Zhang J, Xu H F, Wang N, et al. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple[J]. Plant Molecular Biology, 2018, 98(3): 205-218.
Junya M, Kazuo S, Kazuko Y. AP2/ERF family transcription factors in plant abiotic stress response[J]. Biochimica Biophysica Acta, 2012, 1819(2): 86-96.
Zou Y, Zhang L, Rao S, et al. The relationship between the expression of ethylene-related genes and papaya fruit ripening disorder caused by chilling injury[J]. PLoS One, 2014, 9(12): 1-24.
王曉晨. ERFs參與調(diào)控黃瓜果實(shí)貯藏冷害機(jī)制研究[D]. 廣州: 華南農(nóng)業(yè)大學(xué), 2016.
Carvajal F, Rosales R, Palma F, et al. Transcripomic changes in Cucurbita pepo fruit after cold storage: differential response between two cultivars contrasting in chilling sensitivity[J]. BMC Genomics, 2018, 19: 125.
Qi X N, Xiao Y Y, Fan Z Q, et al. A banana fruit transcriptional repressor MaERF10 interacts with MaJAZ3 to strengthen the repression of JA biosynthetic genes involved in MeJA-mediated cold tolerance[J]. Postharvest Biology and Technology, 2016, 120: 222-231.
關(guān)曉彎. 不同溫度貯藏對(duì)采后石榴品質(zhì)的影響及相關(guān)基因的表達(dá)[D]. 合肥: 安徽農(nóng)業(yè)大學(xué), 2016.
Irene R, Maria V H, Escribano M I, et al. Expression profiles and DNA-Binding affinity of five ERF genes in bunches of Vitis vinifera cv. Cardinal treated with high levels of CO2 at low temperature[J]. Frontiers in Plant Science, 2016, 7(370): 1748.
Kong X P, Tian H Y, Yu Q Q, et al. PHB3 maintains root stem cell niche identity through ROS-responsive AP2/ERF transcription factors in Arabidopsis[J]. Cell Reports, 2018, 22(5): 1350.
Wang K, Yin X R, Zhang B, et al. Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit[J]. Plant Cell & Environment, 2017, 40(8): 1531-1551.
趙驥民. 茄科植物糖苷生物堿Chaconine, Solanine和Tomatine抗真菌的防御作用及生態(tài)意義[D]. 長(zhǎng)春: 東北師范大學(xué), 2006.
Chonprakun T, Shunsuke I, Toru K, et al. Jasmonate- responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato[J]. Plant and Cell Physiology, 2016, 57(5): 961-975.
Kuang J F, Chen J Y, Luo M, et al. Histone deacetylase HD2 interacts with ERF1 and is involved in longan fruit senescence[J]. Journal of Experimental Botany, 2012, 63(1): 441-454.
Wang L, Sun Y, Li Y. Research Advances of AP2/ERF transcription factors[J]. Advances in Biological Sciences Research, 2017, (6): 24-31.
Ligia E, Sunitibala D H, Grosser J W, et al. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants[J]. Plant Cell, 2018, 132(1): 1-25.