汗尼薩·庫(kù)地?zé)崽? 郭志福
摘要:主動(dòng)脈瘤(AAA)是因動(dòng)脈中層結(jié)構(gòu)破壞,動(dòng)脈壁不能承受血流沖擊的壓力所致永久性局部或廣泛血管擴(kuò)張。相關(guān)研究證實(shí),在主動(dòng)脈瘤中被鑒定出來(lái)的先天性和獲得性免疫細(xì)胞,包括嗜中性粒細(xì)胞、巨噬細(xì)胞、肥大細(xì)胞等可促進(jìn)主動(dòng)脈瘤的發(fā)展。形成AAA的主要危險(xiǎn)因素有吸煙和家族史,然而在組織學(xué)層面上,AAA的發(fā)病特征包括炎癥、平滑肌細(xì)胞凋亡,細(xì)胞外基質(zhì)降解,氧化應(yīng)激等。炎癥反應(yīng)在AAA中起著至關(guān)重要的作用,且主要影響主動(dòng)脈壁重塑的決定性因素。本綜述關(guān)注于主動(dòng)脈瘤中的巨噬細(xì)胞的起源及巨噬細(xì)胞在AAA發(fā)展過(guò)程中的作用,充分描述巨噬細(xì)胞的潛在應(yīng)用。
關(guān)鍵詞:腹主動(dòng)脈瘤;巨噬細(xì)胞;炎癥反應(yīng)
中圖分類(lèi)號(hào):R543.1? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?DOI:10.3969/j.issn.1006-1959.2019.06.020
文章編號(hào):1006-1959(2019)06-0060-04
Abstract:Aortic aneurysm (AAA) is a permanent local or extensive vasodilation due to the destruction of the middle layer of the arteries and the inability of the arterial wall to withstand the effects of blood flow. Related studies have confirmed that congenital and acquired immune cells identified in aortic aneurysms, including neutrophils, macrophages, mast cells, etc., can promote the development of aortic aneurysms. The main risk factors for the formation of AAA are smoking and family history. However, at the histological level, the pathogenesis of AAA includes inflammation, smooth muscle cell apoptosis, extracellular matrix degradation, and oxidative stress. The inflammatory response plays a crucial role in AAA and primarily affects the determinants of aortic wall remodeling. This review focuses on the origin of macrophages in aortic aneurysms and the role of macrophages in the development of AAA, fully describing the potential applications of macrophages.
Key words:Abdominal aortic aneurysm;Macrophage;Inflammatory response
腹主動(dòng)脈瘤(abdominal aortic aneurysm,AAA)是由多種因素引起的具有潛在破裂風(fēng)險(xiǎn)的主動(dòng)脈病理擴(kuò)張性疾病。大多數(shù)AAA患者常無(wú)癥狀,而瘤體一旦破裂,病死率極高,危害很大,相關(guān)文獻(xiàn)[1]指出美國(guó)每年約有14000人死于腹主動(dòng)脈瘤,占成人死亡原因中第13位,早期診斷、早期治療是降低該病死亡率的惟一有效手段。目前,沒(méi)有藥物干預(yù)措施可以減緩AAA的生長(zhǎng)并能防止破裂。永久性擴(kuò)張或膨出的腹主動(dòng)脈直徑>正常的50%以上,就可以診斷為動(dòng)脈瘤。一旦動(dòng)脈瘤達(dá)到女性5.0 cm或男性5.5 cm,處理標(biāo)準(zhǔn)就是機(jī)械干預(yù)。雖在臨床上開(kāi)放或介入手術(shù)治療方面有了顯著進(jìn)展,但是治療性藥物的缺乏,促使我們探討主動(dòng)脈瘤發(fā)生和進(jìn)展相關(guān)機(jī)制的認(rèn)識(shí)。
1 AAA中巨噬細(xì)胞的來(lái)源
幾十年來(lái),組織巨噬細(xì)胞被認(rèn)為是從骨髓單核細(xì)胞滲入而來(lái)。然而,巨噬細(xì)胞個(gè)體發(fā)育的進(jìn)步已經(jīng)重新證實(shí)了這一概念。組織巨噬細(xì)胞起源于胚胎和胎兒期間遷移到組織中的胚胎祖細(xì)胞,并且在穩(wěn)定狀態(tài)下,大部分組織巨噬細(xì)胞在成年期間自主維持,獨(dú)立在于骨髓祖細(xì)胞[2,3]。局部組織巨噬細(xì)胞的增殖參與心血管疾病的部分過(guò)程[4,5]并且與對(duì)照組主動(dòng)脈相比,動(dòng)脈瘤主動(dòng)脈巨噬細(xì)胞中有更多的細(xì)胞增殖指數(shù)[6]。組織巨噬細(xì)胞和來(lái)自循環(huán)單核細(xì)胞的巨噬細(xì)胞浸潤(rùn)、增值可引起血管損傷[7]。研究表明[8],外周儲(chǔ)存巨噬細(xì)胞的動(dòng)員是致主動(dòng)脈炎的主要機(jī)制,推測(cè)巨噬細(xì)胞在維持動(dòng)脈粥樣硬化的血管壁完整性方面也起著重要作用。
2巨噬細(xì)胞在AAA中的作用
2.1細(xì)胞外基質(zhì)降解和血管壁重塑? 巨噬細(xì)胞積聚于動(dòng)脈瘤主動(dòng)脈壁對(duì)組織損傷反應(yīng)起著關(guān)鍵作用。人類(lèi)AAA的病理學(xué)研究及動(dòng)物模型顯示[9,10],AAA的病理學(xué)特征包括細(xì)胞外基質(zhì)(ECM)降解和血管平滑肌細(xì)胞(VSMC)喪失,其與炎細(xì)胞浸潤(rùn)于血管壁內(nèi)外膜層有關(guān),然而促進(jìn)血管壁重塑、主動(dòng)脈壁減弱。巨噬細(xì)胞通過(guò)抑制ECM重塑、促進(jìn)和消除炎癥反應(yīng),使破壞性組織重塑和修復(fù)性組織愈合失衡。ECM重塑是蛋白酶與其抑制劑活性之間平衡的結(jié)果。在AAA發(fā)展過(guò)程中,蛋白酶如組織蛋白酶和基質(zhì)金屬蛋白酶(MMPs)水平增加,這些酶的缺陷可保護(hù)AAA免受AAA的影響。相反,在缺乏金屬蛋白酶組織抑制劑(TIMPs)的小鼠中觀察到AAA進(jìn)一步加重。與ECM降解有關(guān)的另一個(gè)過(guò)程是組織內(nèi)的巨噬細(xì)胞侵襲和遷移。2017年發(fā)表的一項(xiàng)研究[11]顯示,巨噬細(xì)胞滲入動(dòng)脈瘤壁增加podosomes(是一種富含細(xì)胞骨架蛋白的結(jié)構(gòu))的形成。Krüppel樣因子(KLF)5的基因和蛋白質(zhì)水平在小鼠和人AAA中的巨噬細(xì)胞中增加。KLF5通過(guò)上調(diào)Myo9b轉(zhuǎn)錄并抑制RHOA信號(hào)促進(jìn)podosome的形成和巨噬細(xì)胞的遷移,并且KLF5的存在增加對(duì)實(shí)驗(yàn)AAA的可感性。然而,巨噬細(xì)胞中KFL5依賴(lài)性的動(dòng)脈瘤效應(yīng)是否需要podosome本身暫不明確。
2.2炎癥反應(yīng)? 除了ECM降解、血管壁重塑之外,炎癥是動(dòng)脈瘤病理生理學(xué)的主要特征之一。巨噬細(xì)胞產(chǎn)生并影響炎癥介質(zhì)[12]。動(dòng)脈瘤壁中的巨噬細(xì)胞是趨化因子CXCL1的主要來(lái)源,它吸引和召集產(chǎn)生白介素-6(IL-6)的嗜中性粒細(xì)胞。如上所述,在動(dòng)脈瘤形成期間增加的IL-6水平促進(jìn)單核細(xì)胞分化為分泌CCL2的激活大分子噬菌體,其繼而促進(jìn)更多單核細(xì)胞聚集于主動(dòng)脈。細(xì)胞因子是炎癥反應(yīng)的重要介質(zhì),也是主動(dòng)脈壁各種免疫和非免疫細(xì)胞的重要調(diào)節(jié)因子。相關(guān)細(xì)胞因子在AAA中直接作用的大部分認(rèn)識(shí)來(lái)自于不完整的動(dòng)物實(shí)驗(yàn)研究。典型炎性通路組(Nlrp3,Pycard,Casp1或Il1b)105,106或Tnf107或IL-6的不完整性實(shí)質(zhì)上限制了AAA的發(fā)展。相反,編碼免疫抑制細(xì)胞因子減少金屬蛋白酶(MMP)活化、保持ECM完整性的全部缺失加重AAA的形成[13]。有趣的是,在人類(lèi)AAA外植體培養(yǎng)物中發(fā)現(xiàn)IL-6和IL-10產(chǎn)生負(fù)相關(guān),這兩種細(xì)胞因子之間平衡似乎可調(diào)節(jié)主動(dòng)脈壁免疫應(yīng)答[14]。在具有髓樣細(xì)胞特異性KLF6(Kruppel-like factor 6)基因缺陷的動(dòng)物模型例子提供了白細(xì)胞,特別是巨噬細(xì)胞對(duì)AAA炎癥過(guò)程中直接作用的更好證據(jù)。KLF6是一種在巨噬細(xì)胞中穩(wěn)健產(chǎn)生的轉(zhuǎn)錄因子[15]。全身性缺失KLF6雜合的小鼠以及骨髓細(xì)胞特異性KLF6缺失的小鼠具有AAA惡化的表現(xiàn),具有巨噬細(xì)胞在主動(dòng)脈壁的浸潤(rùn)增加和主動(dòng)脈壁中IL-6的高表達(dá)。研究人員表明,粒細(xì)胞巨噬細(xì)胞集落刺激因子(GMCSF)是KLF6的直接靶點(diǎn),使巨噬細(xì)胞增加的GMCSF的產(chǎn)生促進(jìn)了AAA的發(fā)展[16]。此外,除趨化因子和細(xì)胞因子以外的多種因素能調(diào)節(jié)巨噬細(xì)胞炎性活性,可以影響AAA的發(fā)展[17]。
2.3組織愈合和修復(fù)促進(jìn)? ECM降解、炎癥反應(yīng)之外,巨噬細(xì)胞噬菌體對(duì)于組織愈合反應(yīng)期間的重塑極其重要。AAA發(fā)展期間聚集主動(dòng)脈壁的組織碎片和毒性產(chǎn)物,如細(xì)胞外血紅蛋白[18]可被巨噬細(xì)胞吞噬。目前指出AAA期間一些巨噬細(xì)胞亞組的保護(hù)作用——介導(dǎo)血紅蛋白清除,調(diào)節(jié)氧化應(yīng)激和炎癥反應(yīng)。值得注意的是,盡管它們?cè)谇宄卸井a(chǎn)物方面起作用,但巨噬細(xì)胞可以產(chǎn)生大量的活性氧。然而,AAA期間氧化應(yīng)激對(duì)巨噬細(xì)胞活性的影響似乎比最初預(yù)期的更復(fù)雜。例如,在血栓調(diào)節(jié)蛋白缺陷小鼠中觀察到的抗AAA形成的保護(hù)部分歸因于巨噬細(xì)胞產(chǎn)生活性氧物的減少[19]。然而,AAA中巨噬細(xì)胞依賴(lài)性氧化應(yīng)激的作用需要進(jìn)一步研究[20]??傊奘杉?xì)胞通過(guò)參與ECM重塑,炎癥和氧化應(yīng)激而在AAA病理生理學(xué)中具有致病和保護(hù)功能。這些功能的調(diào)節(jié)極其復(fù)雜,因受到微環(huán)境影響,在疾病進(jìn)展不同的階段可發(fā)生變化。除上述作用之外,可認(rèn)為巨噬細(xì)胞在AAA發(fā)病機(jī)制中的其他功能值得進(jìn)一步探討。例如,巨噬細(xì)胞參與凋亡碎片的清除。減弱吞胞作用改變動(dòng)脈粥樣硬化[21,22]和缺血性心血管疾病[23,24]進(jìn)展,且體外細(xì)胞病可能與AAA背景下的組織重塑和修復(fù)高度相關(guān)。產(chǎn)生凝血因子Ⅷa的CXCR3+巨噬細(xì)胞以CXCL10依賴(lài)的方式積累在人類(lèi)AAA外膜中,可以促進(jìn)基質(zhì)交聯(lián)并限制主動(dòng)脈壁的動(dòng)脈瘤擴(kuò)張[25]。2016年發(fā)表的一項(xiàng)研究證實(shí)血管周?chē)奘杉?xì)胞對(duì)非病理狀態(tài)下血管通透性的作用[26]。AAA壁增厚往往與顯微解剖相關(guān),并假設(shè)AAA外膜巨噬細(xì)胞調(diào)節(jié)血管滲透性的作用是可行性的。皮膚巨噬細(xì)胞通過(guò)血管內(nèi)皮生長(zhǎng)因子C(VEGFC)依賴(lài)于淋巴毛細(xì)血管網(wǎng)絡(luò)的調(diào)節(jié)來(lái)調(diào)節(jié)鹽依賴(lài)性[27]。主動(dòng)脈壁巨噬細(xì)胞是否也具有這樣的作用尚不清楚,值得進(jìn)一步研究,因已知間質(zhì)液壓調(diào)節(jié)主動(dòng)脈瘤發(fā)病機(jī)制中起作用以及對(duì)主動(dòng)脈夾層中有易感[28]。
3潛在應(yīng)用
巨噬細(xì)胞可作為AAA診斷和預(yù)后的生物標(biāo)志物。除了作為循環(huán)生物標(biāo)志物的潛在用途之外,實(shí)驗(yàn)研究還表明巨噬細(xì)胞可以用作成像目標(biāo)。通過(guò)檢測(cè)超小型超順磁性氧化鐵顆粒(USPIO)的吞噬作用,可通過(guò)MRI追蹤巨噬細(xì)胞活性。表明該技術(shù)在評(píng)估巨噬細(xì)胞依賴(lài)過(guò)程對(duì)體內(nèi)AAA進(jìn)展的影響方面具有潛在效用。在AAA治療中炎癥細(xì)胞-巨噬細(xì)胞可作為治療靶點(diǎn)。結(jié)合使用更有針對(duì)性的抗炎治療方法來(lái)檢測(cè)具有活性炎癥成分的AAA,可能有助于AAA患者的治療。這種聯(lián)合診斷和治療方法的另一個(gè)實(shí)例是檢測(cè)AAA中18FFDG攝取增加,表明糖酵解活性高,隨后使用糖酵解抑制劑以限制巨噬細(xì)胞活化[29]。這種方法已被證明在AAA155的動(dòng)物模型中是成功的,需要考慮將來(lái)轉(zhuǎn)化為人類(lèi)環(huán)境。然而,巨噬細(xì)胞表型和活性的調(diào)節(jié)是另一種治療選擇。實(shí)驗(yàn)證明,靜脈注射M2巨噬細(xì)胞對(duì)氯化鈣誘導(dǎo)的動(dòng)脈瘤具有保護(hù)作用,如存活率的提高,主動(dòng)脈擴(kuò)張的減少和彈性蛋白的保存等等[30]。因此,已知對(duì)巨噬細(xì)胞極化有影響的治療策略或藥物可能是有意義的。
4展望
根據(jù)實(shí)驗(yàn)和臨床研究的發(fā)現(xiàn),可以提出基礎(chǔ)研究和轉(zhuǎn)化研究的幾個(gè)未來(lái)方向。即使已確定不同巨噬細(xì)胞亞群及其獨(dú)特起源,作用和功能似乎比預(yù)期更復(fù)雜,降低主動(dòng)脈壁促炎M1破骨細(xì)胞樣巨噬胞NOS2+巨噬細(xì)胞ECM降解、膨脹性重塑、顯微切割、新血管形成等各方面仍待闡明。流行病學(xué)研究突出了AAA與危險(xiǎn)因素之間的關(guān)聯(lián),包括年齡、男性、吸煙、高血壓和低HDL膽固醇水平,并且這些因素可以影響巨噬細(xì)胞的活性和功能[31-36]。需要進(jìn)一步的研究來(lái)探索這些危險(xiǎn)因素與巨噬細(xì)胞對(duì)AAA作用的分子途徑。近十年來(lái)AAA實(shí)驗(yàn)?zāi)P偷陌l(fā)展,為研究巨噬細(xì)胞在AAA發(fā)病機(jī)制中的作用提供了巨大的機(jī)會(huì)。然而,這些模型都沒(méi)有完整的人體研究,提示開(kāi)發(fā)相關(guān)模型的真正需求[37,38]。
5總結(jié)
在從初始發(fā)育到發(fā)生顯微解剖和破裂的AAA形成的所有階段中,巨噬細(xì)胞均起作用。在過(guò)去的幾十年中,我們?cè)诹私饩奂軗p傷部位的巨噬細(xì)胞及其分化、增殖、激活和表型轉(zhuǎn)換機(jī)制方面取得了令人矚目的進(jìn)展,并且得到了先進(jìn)成像技術(shù)發(fā)展的支持。該技術(shù)用于檢測(cè)和追蹤巨噬細(xì)胞在體內(nèi)的積累和活化,開(kāi)發(fā)新的抗炎理論以及其他技術(shù)改進(jìn),這些改進(jìn)將能夠選擇性操縱各種巨噬細(xì)胞功能。我們確信這些創(chuàng)新方法將會(huì)改善AAA患者的分層和管理。
參考文獻(xiàn):
[1]Erica M.C. Kemmerling,Robert A.Peattie.Abdominal Aortic Aneurysm Pathomechanics: Current Understanding and Future Directions[J].Advancesin Experimental Medicine and Biology,2018,1097(10):157-179.
[2]Perdiguero EG,Geissmann F.The development and maintenance of resident macrophages[J].Nature Immunology,2016,17(1):2-8.
[3]Ginhoux F,Guilliams M.Tissue-Resident Macrophage Ontogeny and Homeostasis[J].Immunity,2016,44(3):439-449.
[4]Lhoták S,Gyulay G,Cutz Jean-Claude,et al.Characterization of Proliferating Lesion-Resident Cells During All Stages of Atherosclerotic Growth[J].Journal of the American Heart Association,2016,5(8):e003945.
[5]Lavine KJ,Epelman S,Uchida K,et al.Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart[J].Proceedings of the National Academy of Sciences,2014,111(45):16029-16034.
[6]Dutertre CA,Clement M,Morvan M,et al.Deciphering the Stromal and Hematopoietic Cell Network of the Adventitia from Non-Aneurysmal and Aneurysmal Human Aorta[J].PLoS One,2014,9(2):e89983.
[7]Woollard KJ,Geissmann F.Monocytes in atherosclerosis: subsets and functions[J].Nature Reviews Cardiology,2010,7(2):77-86.
[8]Ensan S,Li A,Besla R,et al.Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth[J].Nat Immunol,2016,17(2):159-168.
[9]Hong H,Yang Y,Liu B,et al.Imaging of Abdominal Aortic Aneurysm: The Present and the Future[J].Current Vascular Pharmacology,2010,8(6):808-819.
[10]Trollope A,Moxon JV,Moran CS,et al.Animal models of abdominal aortic aneurysm and their role in furthering management of human disease[J].Cardiovascular Pathology,2011,20(2):114-123.
[11]Ma D,Zheng B,Suzuki T,et al.Inhibition of KLF5-Myo9b-RhoA Pathway-Mediated Podosome Formation in Macrophages Ameliorates Abdominal Aortic Aneurysm[J].Circulation Research,2017,120(5):799-815.
[12]Mallat Z.Macrophages[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2014,34(10):2509-2519.
[13]Ait-Oufella H,Wang Y,Herbin O,et al.Natural Regulatory T Cells Limit AngiotensinⅡ-Induced Aneurysm Formation and Rupture in Mice[J].Arteriosclerosis Thrombosis and Vascular Biology,2013,33(10):2374-2379.
[14]Vucevic D,Maravic-Stojkovic V,Vasilijic S,et al.Inverse production of IL-6 and IL-10 by abdominal aortic aneurysm explant tissues in culture[J].Cardiovascular Pathology,2012,21(6):482-489.
[15]Date D,Das R,Narla G,et al.Kruppel-like Transcription Factor 6 Regulates Inflammatory Macrophage Polarization[J].Journal of Biological Chemistry,2014,289(15):10318-10329.
[16]Son BK,Sawaki D,Tomida S,et al.Granulocyte macrophage colony-stimulating factor is required for aortic dissection/intramural haematoma[J].Nature Communications,2015,29(6):6994.
[17]Tazume H,Miyata K,Tian Z,et al.Macrophage-derived angiopoietin-like protein 2 accelerates development of abdominal aortic aneurysm[J].Arteriosclerosis Thrombosis & Vascular Biology,2012,32(6):1400-1409.
[18]Rifkind JM,Mohanty JG,Nagababu E.The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions[J].Front Physiol,2014(5):500.
[19]Wang K,Li Y,Shi G,et al.Membrane-Bound Thrombomodulin Regulates Macrophage Inflammation in Abdominal Aortic Aneurysm[J].Arteriosclerosis Thrombosis & Vascular Biology,2015,35(11):2412-2422.
[20]Sharma AK,Salmon MD,Lu G,et al.Mesenchymal Stem Cells Attenuate NADPH Oxidase-Dependent High Mobility Group Box 1 Production and Inhibit Abdominal Aortic Aneurysms[J].Arteriosclerosis Thrombosis & Vascular Biology,2016,36(5):908-918.
[21]Kojima Y,Downing K,Kundu R,et al.Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis[J].Journal of Clinical Investigation,2014,124(3):1083-1097.
[22]Kojima Y,Volkmer JP,McKenna K,et al.CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis[J].Nature,2016,536(7614):86-90.
[23]Wan E,Yeap XY,Dehn S,et al.Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction[J].Circulation Research,2013,113(8):1004-1012.
[24]Howangyin KY,Zlatanova I,Pinto C,et al.Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor[J].Circulation,2016,133(9):826-839.
[25]Zhou J,Tang PCY,Qin L,et al.CXCR3-dependent accumulation and activation of perivascular macrophages is necessary for homeostatic arterial remodeling to hemodynamic stresses[J].Journal of Experimental Medicine,2010,207(9):1951-1966.
[26]He H,Mack JJ,Gü? E,et al.Perivascular Macrophages Limit Permeability[J].Arteriosclerosis Thrombosis & Vascular Biology,2016,59(9):2203-2212.
[27]Machnik A,Neuhofer W,Jantsch J,et al.Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism[J].Nat Med,2009,15(5):545-552.
[28]Mallat Z,Tedgui A,Henrion D.Role of microvascular tone and extracellular matrix contraction in the regulation of interstitial fluid: implications for aortic dissection[J].Arterioscler Thromb Vasc Biol,2016,36(9):1742-1747.
[29]Tsuruda T,Hatakeyama K,Nagamachi S,et al.Inhibition of Development of Abdominal Aortic Aneurysm by Glycolysis Restriction[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2012,32(6):1410-1417.
[30]Dale MA,Xiong W,Carson JS,et al.Elastin-Derived Peptides Promote Abdominal Aortic Aneurysm Formation by Modulating M1/M2 Macrophage Polarization[J].Journal of Immunology,2016,196(11):4536-4543.
[31]Howangyin KY,Zlatanova I,Pinto C,et al.Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor[J].Circulation,2016,133(9):826-839.
[32]Fulop T,Dupuis G,Baehl S,et al.From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation[J].Biogerontology,2015,17(1):147-157.
[33]Campesi I,Marino M,Montella A,et al.Sex differences in estrogen receptor α and β levels and activation status in LPS-stimulated human macrophages[J].Journal of Cellular Physiology,2017,232(2):340-345.
[34]Aruna B,Kaur SH,Gurpreet K.Sex Hormones and Immune Dimorphism[J].Scientific World Journal,2014(11):159150.
[35]Qiu F,Liang CL,Liu H,et al.Impacts of cigarette smoking on immune responsiveness: Up and down or upside down?[J].Oncotarget,2017,8(1):268-284.
[36]Wright MD,Binger KJ.Macrophage heterogeneity and renin-angiotensin system disorders[J].Pflügers Archiv-European Journal of Physiology,2017,469(3-4):445-454.
[37]Sénémaud J,Caligiuri G,Etienne H,et al.Translational Relevance and Recent Advances of Animal Models of Abdominal Aortic Aneurysm[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2017,37(3):401-410.
[38]Raffort J,Lareyre F,Clément M,et al.Monocytes and macrophages in abdominal aortic aneurysm[J].Nature Reviews Cardiology,2017,14(8):457-471.
收稿日期:2018-12-16;修回日期:2018-12-27
編輯/楊倩