汪若塵,丁彥姝,孫 東,丁仁凱,孟祥鵬
?
基于路面激勵(lì)自適應(yīng)的液電饋能懸架動(dòng)力學(xué)性能協(xié)調(diào)控制
汪若塵,丁彥姝,孫 東,丁仁凱,孟祥鵬
(江蘇大學(xué)汽車與交通工程學(xué)院,鎮(zhèn)江 212013)
針對(duì)液電式饋能懸架在被動(dòng)模式下無法實(shí)現(xiàn)車輛全局工況最優(yōu),該文以路面激勵(lì)頻率作為切換閾值,設(shè)計(jì)了一種具有舒適、運(yùn)動(dòng)和綜合3種模式的液電式饋能懸架,在改善車輛乘坐舒適性及操縱穩(wěn)定性的同時(shí)回饋振動(dòng)能量。提出了將DC-DC變換器引入懸架饋能電路中,通過實(shí)時(shí)調(diào)節(jié)DC-DC變換器中MOS管開關(guān)信號(hào)占空比以改變液電式饋能減振器阻尼力,并制定了天棚-地棚控制結(jié)合模糊PID控制的雙環(huán)半主動(dòng)控制方案。仿真結(jié)果表明,引入路面頻率自適應(yīng)的液電式饋能懸架相比單一天棚-地棚控制懸架在車身共振區(qū)的車身加速度幅值減小22.92%,在車輪共振區(qū)的輪胎動(dòng)載荷幅值減小24.27%,并回收66.70 W振動(dòng)能量,實(shí)現(xiàn)了懸架動(dòng)力學(xué)性能和饋能特性的協(xié)調(diào)控制。臺(tái)架試驗(yàn)結(jié)果表明,各時(shí)段內(nèi)車身加速度試驗(yàn)與仿真結(jié)果峰峰值的相對(duì)誤差分別為1.36%、15.72%、4.86%和13.6%,輪胎動(dòng)載荷的相對(duì)誤差分別為9.34%、13.62%、7.82%和15.47%;各頻段內(nèi)車身加速度試驗(yàn)與仿真結(jié)果峰值的相對(duì)誤差分別為7.55%、10.18%、10.56%、和6.35%,輪胎動(dòng)載荷的相對(duì)誤差分別為9.64%、11.72%、10.39%和11.27%。時(shí)域和頻域的相對(duì)誤差均在16%之內(nèi),驗(yàn)證了仿真結(jié)果的正確性和系統(tǒng)的可行性。研究結(jié)果可為液電式饋能懸架的產(chǎn)品升級(jí)提供參考。
車輛;懸架;控制;液電式饋能;雙環(huán)方案;多模式切換;路面頻率自適應(yīng)
液電饋能懸架相比于被動(dòng)懸架,不僅能回收利用懸架耗散的能量,實(shí)現(xiàn)節(jié)能,還能改善車輛動(dòng)力學(xué)性能[1-6]。近年來,國內(nèi)外學(xué)者對(duì)液電饋能懸架的改進(jìn)進(jìn)行了廣泛研究。Wendel等[7-9]提出一種低頻饋能型主動(dòng)懸架系統(tǒng),將減振器中的油液引出以驅(qū)動(dòng)液壓馬達(dá)來回收能量。麻省理工學(xué)院[10]開發(fā)了一款集成式機(jī)-電-液饋能式減振器,該機(jī)構(gòu)利用液壓能驅(qū)動(dòng)馬達(dá)帶動(dòng)微型電機(jī)發(fā)電。何仁等[11-13]提出一種新型液壓饋能型懸架,該結(jié)構(gòu)將懸架振動(dòng)過程中油液的壓力能儲(chǔ)存在蓄能器中,實(shí)現(xiàn)能量回收。張晗等[14-16]基于一種液電饋能式減振器結(jié)構(gòu),研究了饋能減振器非線性因素對(duì)示功特性的影響。張晗等[17]基于四分之一液電饋能式懸架,設(shè)計(jì)了半主動(dòng)LQG控制器,雖提高了懸架的饋能功率,但犧牲了部分動(dòng)力學(xué)性能。Nguyen等[18]將路面頻率自適應(yīng)用于磁流變半主動(dòng)懸架控制中,改善了車輛在全頻域路面上的行駛平順性和操作穩(wěn)定性。
上述分析表明,國內(nèi)外學(xué)者分別針對(duì)液電式饋能懸架和基于路面頻率自適應(yīng)的半主動(dòng)控制做了大量、深入的研究,但鮮有文獻(xiàn)能將兩者結(jié)合,實(shí)現(xiàn)懸架系統(tǒng)動(dòng)力學(xué)性能和饋能特性的協(xié)調(diào)控制。此外,車輛的乘坐舒適性與操作穩(wěn)定性存在相互制約的關(guān)系,二者在懸架單一模式控制下的矛盾問題仍然突出[19-20]。
針對(duì)上述問題,本文基于改進(jìn)的液電饋能懸架,引入路面頻率自適應(yīng)模塊,以路面激勵(lì)頻率作為切換閾值,設(shè)計(jì)了舒適、運(yùn)動(dòng)和綜合3種工作模式,基于饋能電路制定了雙環(huán)半主動(dòng)控制方案,以實(shí)現(xiàn)液電式饋能懸架的動(dòng)力學(xué)性能和饋能特性的協(xié)調(diào)控制,并進(jìn)行臺(tái)架試驗(yàn)驗(yàn)證模型和控制方法的有效性。
液電饋能懸架結(jié)構(gòu)如圖1所示,液電饋能減振器取代傳統(tǒng)減振器,為系統(tǒng)提供阻尼力。液電饋能減振器由液壓缸、液壓整流橋、液壓馬達(dá)、蓄能器、液壓管路、旋轉(zhuǎn)電機(jī)等組成,其中,液壓整流橋由4個(gè)單向閥構(gòu)成[21]。饋能電路部分由DC-DC變換器與超級(jí)電容組成,直流電機(jī)的輸出端與DC-DC變換器相連,具體結(jié)構(gòu)如圖2所示。當(dāng)懸架受到路面沖擊時(shí),液壓缸上下腔之間的油液形成交互、往復(fù)流動(dòng)的油液驅(qū)動(dòng)馬達(dá)旋轉(zhuǎn)最終帶動(dòng)電機(jī)工作產(chǎn)生電能并儲(chǔ)存起來,從而回收部分懸架振動(dòng)能量。
液電饋能懸架二自由度動(dòng)力學(xué)模型如圖3所示。
液電饋能式懸架的運(yùn)動(dòng)學(xué)微分方程為
路面輸入模型為
式中0為下截止頻率,Hz;()為數(shù)學(xué)期望為0的高斯白噪聲;0為路面不平度系數(shù),m3;為車速,m/s。
1.液壓缸 2.液壓整流橋 3.蓄能器a 4.液壓馬達(dá) 5.旋轉(zhuǎn)電機(jī) 6.蓄能器b 7.饋能電路
圖2 饋能電路原理圖
注:mb為簧載質(zhì)量,kg;mw為非簧載質(zhì)量,kg;ks為懸架彈簧剛度,kN·m-1;kt為輪胎剛度,kN·m-1;F為液電饋能減振器阻尼力,N;zb、zw和zr分別為車身垂直位移、車輪垂直位移以及路面輸入位移,m。
Fig3. Two-degree-of-freedom dynamic model of hydraulic electrical energy-regenerative suspension
液電饋能減振器的阻尼力包括2部分,即油液流過液壓元件產(chǎn)生的阻力F和發(fā)電機(jī)產(chǎn)生的電磁阻尼力F。
若液壓元件產(chǎn)生的等效阻尼為c,則
液壓馬達(dá)在油液壓力下工作,輸出轉(zhuǎn)矩以驅(qū)動(dòng)電機(jī)旋轉(zhuǎn),從而完成系統(tǒng)內(nèi)油液壓力能向機(jī)械能的轉(zhuǎn)換。液壓馬達(dá)的轉(zhuǎn)速、轉(zhuǎn)矩T可表示為
式中n為液壓馬達(dá)轉(zhuǎn)速,r/min;為系統(tǒng)流量,m3/min;q為液壓馬達(dá)排量,m3/r;η為容積效率;Δp為油液經(jīng)過馬達(dá)產(chǎn)生的壓降,Pa;η為機(jī)械效率。此外,發(fā)電機(jī)產(chǎn)生的感應(yīng)電動(dòng)勢與輸入轉(zhuǎn)矩為
因?yàn)橐簤厚R達(dá)與發(fā)電機(jī)同軸聯(lián)接,故二者轉(zhuǎn)速相同,轉(zhuǎn)矩相等。油液經(jīng)過液壓馬達(dá)產(chǎn)生的壓降可表示為
發(fā)電機(jī)產(chǎn)生的電磁阻尼力F可表示為馬達(dá)壓降與截面積(m2)的乘積。
所以,液電饋能減振器的輸出力為
液電饋能懸架的半主動(dòng)控制基于饋能電路實(shí)現(xiàn)。饋能電路的DC-DC變換器可工作于Boost(升壓)和Buck(降壓)2種模式[22]。S1恒通,S2斬波時(shí),DC-DC變換器處于Boost模式;S1斬波,S2斷開時(shí),DC-DC變換器處于Buck模式。Boost模式和Buck模式下的等效電路分別如圖4所示。
MOS管1個(gè)開關(guān)周期內(nèi)信號(hào)的占空比決定了饋能電路電流的大小。升壓模式和降壓模式下電流的穩(wěn)態(tài)值分別如式(10)、式(11)所示。
汽車行駛時(shí)的路面激勵(lì)頻率一般分布在0~25 Hz之間,在該頻帶范圍內(nèi),懸架振動(dòng)存在低頻車身型振動(dòng)和高頻車輪型振動(dòng)2種現(xiàn)象。根據(jù)懸架系統(tǒng)在不同路面頻率下的性能需求所制定的液電饋能半主動(dòng)懸架工作模式、工作頻帶與控制目標(biāo)如表1所示。
懸架的半主動(dòng)控制方案如圖5所示,該方案為雙環(huán)結(jié)構(gòu),其中,內(nèi)環(huán)為天棚-地棚控制[23-24],外環(huán)為模糊PID控制[25-27]。系統(tǒng)根據(jù)路面信號(hào)識(shí)別路面頻率,確定懸架的工作模式,調(diào)整內(nèi)環(huán)控制的天棚與地棚阻尼系數(shù),實(shí)時(shí)計(jì)算饋能減振器理想阻尼力U與實(shí)際阻尼力的差值以作為輸入信號(hào)傳送給外環(huán)控制器,模糊PID控制輸出合適的DC-DC變換器MOS管開關(guān)信號(hào)占空比,來實(shí)時(shí)調(diào)節(jié)電路中的電流,最終實(shí)現(xiàn)懸架的半主動(dòng)控制。此外,卡爾曼濾波器的作用是估計(jì)車身和輪胎的絕對(duì)速度,為內(nèi)環(huán)天棚-地棚控制提供懸架狀態(tài)變量。
注:Ue為DC-DC變換器兩端電壓,V;Uc為超級(jí)電容兩端電壓,V;i為DC-DC變換器電流,A。
表1 半主動(dòng)控制的工作模式
圖5 路面頻率自適應(yīng)半主動(dòng)控制方案
內(nèi)環(huán)天棚-地棚控制計(jì)算出的饋能減振器理想阻尼力U可表示為
式中c和c分別為天棚阻尼和地棚阻尼系數(shù),N·s/m。
液電饋能減振器可提供的阻尼力大小受阻尼力可調(diào)范圍的限制。min和max分別為減振器可提供的最小和最大阻尼力,則減振器的阻尼力為
為確定理想阻尼力U,需要得到各工作模式下的天棚阻尼系數(shù)c和地棚阻尼系數(shù)c。Robert在文獻(xiàn)[28]中提出了一種針對(duì)線性時(shí)不變系統(tǒng),使次優(yōu)控制策略效果接近最優(yōu)控制策略的實(shí)現(xiàn)方案。對(duì)于1/4懸架系統(tǒng),LQG(linear quadratic gaussian)控制是最優(yōu)控制策略[29]。其性能指標(biāo)的定義如式(14)所示。
式中1、2和3分別為輪胎動(dòng)位移、懸架動(dòng)行程和車身加速度平方的加權(quán)系數(shù);為采樣時(shí)間,s。1、2和3的取值由遺傳算法[30-31]確定,各模式的適應(yīng)度函數(shù)如下:
舒適模式
式中BA是被動(dòng)懸架的車身加速度峰峰值,m/s2;BA是LQG控制懸架的車身加速度峰峰值,m/s2。
運(yùn)動(dòng)模式
式中DTD是被動(dòng)懸架的輪胎動(dòng)位移峰峰值,m;DTD是LQG控制懸架的輪胎動(dòng)位移峰峰值,m。
綜合模式
經(jīng)過遺傳算法優(yōu)化,液電饋能半主動(dòng)懸架各模式對(duì)應(yīng)的LQG控制加權(quán)系數(shù)如表2所示。
表2 懸架各工作模式對(duì)應(yīng)的加權(quán)系數(shù)
注:1為輪胎動(dòng)位移加權(quán)系數(shù);2為懸架動(dòng)行程加權(quán)系數(shù);3為車身加速度平方加權(quán)系數(shù)。
Note:1is the dynamic displacement weighting coefficient of tyre;2is the weighting coefficient of suspension;3is the weighting coefficient of body acceleration square.
半主動(dòng)控制方案中,內(nèi)環(huán)天棚-地棚控制器的輸入變量,即次優(yōu)控制的測量變量為
令
式中為轉(zhuǎn)換矩陣,且
使用系統(tǒng)測量變量計(jì)算最優(yōu)控制力
式中為次優(yōu)控制反饋增益矩陣;為天棚-地棚阻尼系數(shù)矩陣,即
次優(yōu)控制反饋增益矩陣的近似解可以利用最小范數(shù)法求出,首先,構(gòu)造目標(biāo)函數(shù)
要使和接近,該目標(biāo)函數(shù)應(yīng)盡可能小,則近似解為
天棚-地棚阻尼系數(shù)矩陣為
優(yōu)化后的各模式天棚-地棚阻尼系數(shù)如表3所示。
表3 優(yōu)化后的天棚-地棚阻尼系數(shù)
液電饋能減振器在半主動(dòng)控制下輸出的阻尼力為
選取系統(tǒng)狀態(tài)變量為
則將式(1)表示成狀態(tài)方程的形式,即為
式中=()為高斯輸入,矩陣和為
式中0為路面下截止頻率,Hz。
觀測矩陣為
以隨機(jī)路面工況為例,仿真分析卡爾曼濾波器的狀態(tài)估計(jì)效果。仿真參數(shù)設(shè)置如表4所示。
表4 懸架系統(tǒng)仿真參數(shù)
在卡爾曼濾波器估計(jì)精度趨于穩(wěn)定時(shí),各狀態(tài)變量估計(jì)效果如圖6所示??梢钥闯?,卡爾曼濾波器對(duì)車身絕對(duì)速度和車輪絕對(duì)速度的估計(jì)較為準(zhǔn)確。
本文采用一階過零檢測法估計(jì)路面輸入的頻率,即利用路面輸入的速度譜信號(hào),通過檢測其過零點(diǎn)的方式,對(duì)當(dāng)前路面進(jìn)行頻率估計(jì)。一階過零檢測法原理如圖7所示。
則當(dāng)前的路面輸入頻率可以表示為
本文模糊控制器選擇二維模糊控制器,輸入信號(hào)為理想阻尼力U和實(shí)際阻尼力的差值及其變化率,基本論域均為[-6,6]。其輸出信號(hào)為PID控制器的系數(shù)修正量ΔK、ΔK和ΔK,基本論域也均設(shè)置為[-6,6]。輸入和輸出變量的模糊語言值選定為{NB(負(fù)大),NM(負(fù)中),NS(負(fù)?。?,ZE(零),PS(正?。琍M(正中),PB(正大)};隸屬度函數(shù)選擇三角型,并制定合適的模糊規(guī)則。
圖8顯示了液電饋能半主動(dòng)懸架系統(tǒng)的實(shí)際阻尼力對(duì)理想阻尼力的跟蹤效果,跟蹤精度計(jì)算公式如下:
注:ta為當(dāng)前時(shí)間段內(nèi)速度信號(hào)第一個(gè)零點(diǎn)處的時(shí)刻,s;tb為第三個(gè)零點(diǎn)處時(shí)刻,s;A1~A4分別為當(dāng)前路面信號(hào)速度譜上的4個(gè)點(diǎn)。
根據(jù)式(26)的計(jì)算方法對(duì)圖8所示的仿真數(shù)據(jù)進(jìn)行阻尼力跟蹤精度計(jì)算,結(jié)果為98.23%,表明阻尼力跟蹤效果較高。
圖8 阻尼力跟蹤效果
為驗(yàn)證路面頻率自適應(yīng)液電饋能懸架在全局工況下協(xié)調(diào)動(dòng)力學(xué)性能和饋能特性的優(yōu)越性,本節(jié)仿真分析了分段正弦路面下被動(dòng)懸架、單一天棚地棚控制液電饋能懸架和路面頻率自適應(yīng)液電饋能懸架的動(dòng)力學(xué)性能和饋能特性,選取的路面信息如表5所示。
表5 分段正弦路面參數(shù)
3種懸架動(dòng)態(tài)性能的時(shí)域仿真結(jié)果如圖9所示。參考文獻(xiàn)[32],采用峰峰值(peak-to-peak, PTP)的評(píng)價(jià)方法分析懸架動(dòng)力學(xué)性能的時(shí)域響應(yīng),計(jì)算公式如下:
式中()表示系統(tǒng)響應(yīng)輸出;為時(shí)間,s。
根據(jù)式(27)的計(jì)算方法對(duì)圖9所示的仿真數(shù)據(jù)進(jìn)行峰峰值計(jì)算,分段正弦路面懸架動(dòng)力學(xué)性能響應(yīng)輸出的峰峰值見表6。
由圖9a、9b和表6可知:1)0~2 s內(nèi),單一天棚-地棚控制懸架的車身加速度峰峰值相比被動(dòng)懸架減小了11.3%,而路面自適應(yīng)懸架此時(shí)工作在舒適模式,車身加速度比單一控制懸架減小了13.75%,車輛乘坐舒適性得到顯著改善;2)4~6 s內(nèi),單一天棚-地棚控制懸架的輪胎動(dòng)載荷相比被動(dòng)懸架減小了16.89%,此時(shí)路面自適應(yīng)懸架工作在運(yùn)動(dòng)模式,輪胎動(dòng)載荷相比單一控制懸架減小17.76%,操縱穩(wěn)定性大大提高。計(jì)算結(jié)果說明路面頻率自適應(yīng)懸架的性能要優(yōu)于單一天棚-地棚控制懸架,能夠解決車輛全局工況下操作穩(wěn)定性和行駛平順性的矛盾問題;3)2~4 s和6~8 s內(nèi),單一天棚-地棚懸架的車身加速度和輪胎動(dòng)載荷較被動(dòng)懸架分別減小了15.42%、21.08%和6.73%、5.95%,此時(shí)路面自適應(yīng)懸架工作在綜合模式,其動(dòng)力學(xué)性能比單一天棚-地棚懸架分別減小了6.6%、19.31%和23.27%、3.23%,操縱穩(wěn)定性和乘坐舒適性都明顯改善。
3種控制方法的懸架動(dòng)力學(xué)性能幅頻特性對(duì)比結(jié)果如圖10所示,以各頻段內(nèi)的峰值進(jìn)行分析,結(jié)果如表7所示,由表7可知:1)0~5 Hz頻段內(nèi)各指標(biāo)幅值的峰值出現(xiàn)在2 Hz(下同),此時(shí)單一天棚-地棚懸架控制的車身加速度峰值比被動(dòng)懸架控制減小10.61%,但輪胎動(dòng)載荷增加了11.25%。而路面自適應(yīng)懸架工作在舒適模式,車身加速度較被動(dòng)懸架減小31.07%,輪胎動(dòng)載荷也減小14.17%,車輛行駛平順性得到顯著提升而操縱穩(wěn)定性并無惡化;2)11 Hz路面頻率下,單一天棚-地棚懸架控制的輪胎動(dòng)載荷較被動(dòng)懸架控制減小14.85%,但車身加速度增加18.49%。此時(shí)路面自適應(yīng)懸架工作在運(yùn)動(dòng)模式,其輪胎動(dòng)載荷較被動(dòng)懸架控制減小了35.52%,車身加速度也減小了10.93%,車輛操縱穩(wěn)定性得到顯著提升而行駛平順性沒有惡化;3)6 和16 Hz激勵(lì)時(shí),單一天棚-地棚懸架控制的車身加速度和輪胎動(dòng)載荷較被動(dòng)懸架控制分別減小了10.48%、15.62%和2.27%、10.27%。此時(shí)路面自適應(yīng)懸架工作在綜合模式,其車身加速度和輪胎動(dòng)載荷比單一天棚-地棚懸架控制減小了6.78%、18.09%和8.18%、14.18%。
圖9 3種懸架控制方法的動(dòng)態(tài)性能時(shí)域仿真結(jié)果
表6 3種懸架控制方法的動(dòng)力學(xué)性能指標(biāo)峰峰值對(duì)比
圖10 3種懸架控制方法的動(dòng)力學(xué)性能幅頻特性對(duì)比Fig.10 Amplitude frequency characteristic comparison of dynamic performance of three suspension control methods
由圖9c可知:1)從能量守恒角度,懸架動(dòng)力學(xué)性能改善越明顯,回收的能量必定越少。路面頻率自適應(yīng)懸架在4種路面下的動(dòng)力學(xué)性能均優(yōu)于單一天棚-地棚控制,因此其平均饋能功率也均小于單一天棚-地棚控制;2)0~2 s和4~6 s分別為車身和車輪共振頻段,懸架振動(dòng)劇烈,因此饋能懸架回收的能量較大。由表8統(tǒng)計(jì)數(shù)據(jù)可知:此時(shí)路面頻率自適應(yīng)懸架控制的平均饋能功率較單一天棚-地棚控制分別減小了10.52%和8.5%;3)2~4 s和6~8 s時(shí),路面自適應(yīng)懸架處于綜合模式,同時(shí)優(yōu)化了車身加速度和輪胎動(dòng)載荷,因此饋能功率遠(yuǎn)小于單一控制懸架。但這2個(gè)頻段的饋能功率基體很小,因此對(duì)懸架全局工況的饋能性能影響不大。4)全局工況下,路面自適應(yīng)懸架控制的饋能功率較單一天棚-地棚控制降低12.9%。
綜上所述,單一天棚-地棚控制的液電饋能懸架不能根據(jù)路面頻率自適應(yīng)地切換工作模式,無法解決車輛在全局工況下操作穩(wěn)定性和乘坐舒適性的矛盾問題。而本文設(shè)計(jì)的路面頻率自適應(yīng)液電饋能懸架控制在各頻率下的車身加速度和輪胎動(dòng)載荷均優(yōu)于單一天棚-地棚懸架控制,且全局饋能功率只減小了12.9%,實(shí)現(xiàn)了懸架系統(tǒng)動(dòng)力學(xué)性能和饋能特性的協(xié)調(diào)控制。
表7 各頻段內(nèi)3種懸架控制方法的動(dòng)力學(xué)性能指標(biāo)峰值對(duì)比
表8 3種懸架控制方法的饋能功率均方根值
為驗(yàn)證液電饋能半主動(dòng)懸架動(dòng)力學(xué)性能及饋能特性,試制了液電饋能減振器原理樣機(jī),搭建了四分之一懸架試驗(yàn)臺(tái),進(jìn)行了臺(tái)架試驗(yàn),臺(tái)架布置如圖11所示。
試驗(yàn)系統(tǒng)的主要儀器設(shè)備包括:INSTRON公司研發(fā)生產(chǎn)的8800型單通道數(shù)控液壓伺服激振臺(tái);PCB公司的3711E1110G和3711E1150G型加速度傳感器;LMS公司研發(fā)生產(chǎn)的LMS數(shù)據(jù)采集系統(tǒng);dSPACE硬件平臺(tái)以及饋能電路。
在激振臺(tái)上對(duì)四分之一液電饋能懸架進(jìn)行分段正弦路面激勵(lì),設(shè)定車速為72km/h,選取的路面信息與仿真相同,動(dòng)力學(xué)性能試驗(yàn)結(jié)果如表9和圖12、圖13所示。
1.簧載質(zhì)量 2.懸架彈簧 3.液電饋能減振器 4.輪胎等效彈簧 5.加速度傳感器
表9 試驗(yàn)結(jié)果與仿真結(jié)果對(duì)比
圖12 懸架動(dòng)態(tài)性能試驗(yàn)與仿真結(jié)果時(shí)域?qū)Ρ?/p>
圖13 懸架動(dòng)力學(xué)性能幅頻特性的試驗(yàn)與仿真結(jié)果對(duì)比 Fig.13 Comparison of test and simulation results of amplitude frequency characteristics of suspension dynamic performance
由圖12和表9可知,各時(shí)段內(nèi),車身加速度試驗(yàn)與仿真結(jié)果峰峰值的相對(duì)誤差分別為1.36%、15.72%、4.86%和13.6%;輪胎動(dòng)載荷的相對(duì)誤差分別為9.34%、13.62%、7.82%和15.47%。由圖13和表9可知,各頻段內(nèi)車身加速度試驗(yàn)與仿真結(jié)果峰值的相對(duì)誤差分別為7.55%、10.18%、10.56%、和6.35%;輪胎動(dòng)載荷的相對(duì)誤差分別為9.64%、11.72%、10.39%和11.27%。時(shí)域和頻域所有的相對(duì)誤差均在16%之內(nèi),驗(yàn)證了仿真結(jié)果的正確性。
由圖12c和表10可知,由于管路損耗的存在,試驗(yàn)中回收的能量相比于仿真結(jié)果較少,全局饋能功率的相對(duì)誤差為17.72%。試驗(yàn)與仿真的結(jié)果均表明,舒適模式與運(yùn)動(dòng)模式饋能較多,而綜合模式幾乎無能量回收。
表10 饋能功率試驗(yàn)與仿真結(jié)果的均方根值
1)本文將DC-DC變換器引入液電饋能懸架的饋能電路,通過實(shí)時(shí)調(diào)節(jié)變換器中MOS管占空比,可以實(shí)現(xiàn)液電饋能減振器實(shí)際阻尼力對(duì)理想阻尼力的精確跟蹤,進(jìn)而改善控制效果。
2)以路面激勵(lì)頻率為閾值,劃分了舒適模式、安全模式和綜合模式3種懸架工作模式。仿真結(jié)果表明,時(shí)域分析中,舒適模式下的液電饋能半主動(dòng)懸架的車身加速度峰峰值比單一天棚-地棚控制懸架減小13.75%,比被動(dòng)懸架減小23.49%;運(yùn)動(dòng)模式的輪胎動(dòng)載荷峰峰值比單一控制懸架減小17.76%,比被動(dòng)懸架減小31.65%;綜合模式的車身加速度與輪胎動(dòng)載荷均優(yōu)于單一控制和被動(dòng)控制懸架。頻域分析中,舒適模式的車身加速度幅值峰值比單一控制懸架減小22.92%,比被動(dòng)懸架減小31.07%;運(yùn)動(dòng)模式的輪胎動(dòng)載荷峰值比單一控制懸架減小24.27%,比被動(dòng)控制懸架減小35.52%;綜合模式的車身加速度與輪胎動(dòng)載荷也均優(yōu)于單一控制懸架和被動(dòng)控制懸架。
3)試驗(yàn)結(jié)果與仿真結(jié)果誤差不超過16%,證明了基于路面頻率自適應(yīng)的液電饋能半主動(dòng)懸架控制能夠?qū)崿F(xiàn)車輛全局工況性能最優(yōu),協(xié)調(diào)控制懸架系統(tǒng)的動(dòng)力學(xué)性能和饋能特性。
[1] Xu Lin, Guo Xuexun. Hydraulic transmission electromagnetic energy-regenerative active suspension and its working principle[C]// International Workshop on Intelligent Systems and Applications. IEEE, 2010: 1-5.
[2] Fang Zhigang, Guo Xuexun, Xu Lin, et al. Researching on valve system of hydraulic electromagnetic energy-regenerative shock absorber[J]. Applied Mechanics & Materials, 2012(157/158): 911-914.
[3] Fang Zhigang, Guo Xuexun, Xu Lin, et al. Experimental Study of Damping and Energy Regeneration Characteristics of a Hydraulic Electromagnetic Shock Absorber[J]. Advances in Mechanical Engineering, 2013, http://journals.sagepub. com/doi/10.1155/2013/943528.
[4] 彭明,過學(xué)迅,張杰,等. 基于液電饋能式懸架的整車道路仿真研究[J]. 機(jī)械設(shè)計(jì),2015,32(8):12-16.
Peng Ming, Guo Xuexun, Zhang Jie, et al. Vehicle road test simulation based on the hydraulic electromagnetic energy-regenerative suspension[J]. Journal of Machine Design, 2015, 32(8):12-16. (in Chinese with English abstract)
[5] Guo S, Chen Z, Guo X, et al. Vehicle Interconnected Suspension System based on Hydraulic Electromagnetic Energy Harvest: Design, Modeling and Simulation Tests[C]// SAE Commercial Vehicle Engineering Congress, 2014: 192-202.
[6] Lin X, Bo Y, Guo X, et al. Simulation and performance evaluation of hydraulic transmission electromagnetic energy-regenerative active suspension[C]// Intelligent Systems. IEEE, 2011: 58-61.
[7] Wendel G R , Stecklein G L . A regenerative active suspension system[C]// SAE Publication SP-861, Michigan, 1991: 129-135.
[8] Wendel G R, Steiber J, Stecklein G L. Regenerative active suspension on rough terrain vehicles[J]. Journal of Commercial Vehicle, 1994, 103(2): 20-30.
[9] Wendel G R. Development of a retractable compressible fluid suspension system. task 1[R]. Texas: Southwest Research Inst San Antonio, 1988.
[10] 電子發(fā)燒友網(wǎng)工程師. 盤點(diǎn)2009最具創(chuàng)意的汽車電子產(chǎn)[EB/OL].(2009-1-14).[2009-12-23].http://www.elecfans.com/qichedianzi/154522.html
[11] 何仁,陳士安,陸森林. 饋能型懸架的工作原理與結(jié)構(gòu)方案評(píng)價(jià)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(5):5-9. He Ren, Chen Shi’an, Lu Senlin. Operation theory and structure evaluation of reclaiming energy suspension[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(5): 5-9. (in Chinese with English abstract)
[12] 陳士安,何仁,陸森林. 饋能型懸架綜合性能評(píng)價(jià)體系[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(7):14-18. Chen Shi’an, He Ren, Lu Senlin. Evaluating system of reclaiming energy suspension comprehensive performance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(7): 14-18. (in Chinese with English abstract)
[13] 陳士安,何仁,陸森林. 新型饋能型懸架及其工作原理[J]. 機(jī)械工程學(xué)報(bào),2007,43(11):177-182. Chen Shi’an, He Ren, Lu Senlin. New reclaiming energy suspension and its working principle[J]. Chinese Journal of Mechanical Engineering, 2007, 43(11): 177-182. (in Chinese with English abstract)
[14] 張晗,過學(xué)迅,方志剛,等. 饋能式懸架能量回收潛力試驗(yàn)研究[J]. 振動(dòng).測試與診斷,2015,35(2):225-230. Zhang Han, Guo Xuexun, Fang Zhigang, et al. Potential energy harvesting analysis and test on energy-regenerative suspension system[J]. Journal of Vibration Measurement & Diagnosis, 2015, 35(2): 225-230. (in Chinese with English abstract)
[15] 張晗,過學(xué)迅,徐琳,等. 液電式饋能減振器外特性仿真與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(2):38-46. Zhang Han, Guo Xuexun, Xu Lin, et al. Simulation and test for hydraulic electromagnetic energy-regenerative shock absorber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 38-46. (in Chinese with English abstract)
[16] Guo X, Hu S, Fang Z. The ride comfort and energy-regenerative characteristics analysis of hydraulic-electricity energy regenerative suspension[J]. Journal of Vibroengineering, 2016, 18(3): 1765-1782.
[17] 張晗,過學(xué)迅,胡三寶,等. 液電式饋能半主動(dòng)懸架控制特性仿真分析與能量回收驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):64-71. Zhang Han, Guo Xuexun, Hu Sanbao, et al. Simulation analysis on hydraulic-electrical energy regenerative semi-active suspension control characteristic and energy recovery validation test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 64-71. (in Chinese with English abstract)
[18] Nguyen L H, Hong K S, Park S . Road-frequency adaptive control for semi-active suspension systems[J]. International Journal of Control, Automation, and Systems, 2010, 8(5): 1029-1038.
[19] 汪若塵,葉青,孫澤宇,等. 液壓互聯(lián)ISD懸架系統(tǒng)模式切換研究[J]. 機(jī)械工程學(xué)報(bào),2017,53(6):110-115. Wang Ruochen, Ye Qing, Sun Zeyu, et al. A study of the hydraulically interconnected inerter-spring-damper suspension system[J]. Journal of Mechanical Engineering, 2017, 53(6): 110-115. (in Chinese with English abstract)
[20] 汪若塵,馬曉煒,丁仁凱,等. 基于模型參考的混合懸架多模式切換控制研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(7):353-360.Wang Ruochen, Ma Xiaowei, Ding Renkai, et al. Multi-mode switching control system for hybrid suspension based on model reference[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 353-360. (in Chinese with English abstract)
[21] Hedlund J D. Hydraulic regenerative vehicle suspension [D]. Minnesota: Univ. of Minnesota, 2010.
[22] 汪若塵,蔣秋明,葉青,等. 液壓互聯(lián)饋能懸架特性分析與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(8):350-357.Wang Ruochen, Jiang Qiuming, Ye Qing, et al. Characteristics analysis and experiment of hydraulic interconnected energy-regenerative suspension[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 350-357. (in Chinese with English abstract)
[23] 郭孔輝,王金珠,郭耀華,等. 基于混合阻尼控制的車輛半主動(dòng)懸架可調(diào)性研究[J]. 汽車技術(shù),2013(3):1-5. Guo Konghui, Wang Jinzhu, Guo Yaohua, et al. Study on the adjustability of semi-active suspension based on hybrid damping control[J]. Automobile Technology, 2013(3): 1-5. (in Chinese with English abstract)
[24] 江洪,劉如奎. 磁流變半主動(dòng)空氣懸架混合天地棚控制策略研究[J]. 科學(xué)技術(shù)與工程,2014,14(28):135-139. Jiang Hong, Liu Rukui. Research on the mixed sky-hook and ground-hook control strategy based on magneto-rheological semi-active air suspension[J]. Science Technology & Engineering, 2014, 14(28): 135-139. (in Chinese with English abstract)
[25] 郭全民,雷蓓蓓. 半主動(dòng)懸架PID控制的研究和優(yōu)化[J]. 國外電子測量技術(shù),2015,34(4):60-63. Guo Quanmin, Lei Beibei. Research and optimization for semi-active suspension PID control[J]. Foreign Electronic Measurement Technology, 2015, 34(4): 60-63.. (in Chinese with English abstract)
[26] Mouleeswaran S. Development of active suspension system for automobiles using PID controller[C]// International conference of mechanical engineering. 2008: 2266-2270.
[27] Caponetto R, Diamante O, Fargione G, et al. A soft computing approach to fuzzy sky-hook control of semiactive suspension[J]. IEEE Transactions on Control Systems Technology, 2003, 11(6): 786-798.
[28] Kosut R. Suboptimal control of linear time-invariant systems subject to control structure constraints[J]. IEEE Transactions on Automatic Control, 2003, 15(5): 557-563.
[29] 鄭玲,鄧兆祥,李以農(nóng). 基于電流變減振器的汽車半主動(dòng)懸架最優(yōu)控制[J]. 重慶大學(xué)學(xué)報(bào),2003,26(7):1-5. Zheng Ling, Deng Zhaoxiang, Li Yinong. Optimal control of semi-active suspensions with ER shock absorber[J]. Journal of Chongqing University, 2003. (in Chinese with English abstract)
[30] 趙陽,王興貴,狄長春,等. 基于神經(jīng)網(wǎng)絡(luò)和遺傳算法的懸掛系統(tǒng)優(yōu)化設(shè)計(jì)[J]. 計(jì)算機(jī)測量與控制,2005,13(10):1083-1084. Zhao Yang, Wang Xinggui, Di Changchun, et al. Optimal design of suspension system based on bp network and genetic algorithm[J]. Computer Automated Measurement & Control, 2005. (in Chinese with English abstract)
[31] 潘云偉,胡啟國,羅天洪,等. 基于遺傳算法的懸架系統(tǒng)的優(yōu)化和仿真[J]. 重慶交通大學(xué)學(xué)報(bào):自然科學(xué)版,2013,32(5):1068-1070. Pan Yunwei, Hu Qiguo, Luo Tianhong, et al. Simulation and optimization of suspension system based on genetic algorithm[J]. Journal of Chongqing Jiaotong University: Natural Science, 2013, 32(5): 1068-1070. (in Chinese with English abstract)
[32] 聶佳梅,張孝良. 車輛被動(dòng)天棚阻尼懸架系統(tǒng)臺(tái)架試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):66-71. Niu Jiamei, Zhang Xiaoliang. Experiment of vehicle passive skyhook damping suspension system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 66-71. (in Chinese with English abstract)
Dynamic performance coordination control of hydraulic electrical energy-regenerative suspension based on road excitation self-adaptation
Wang Ruochen, Ding Yanshu, Sun Dong, Ding Renkai, Meng Xiangpeng
(,,212013,)
Compared with the passive suspension, the hydraulic electrical energy-regenerative suspension can not only recycle the energy dissipated by the suspension, but also improve the dynamic performance of vehicle, which has attracted extensive attention of scholars at domestic and abroad. However, the most of research focuses on the analysis of energy-feedback characteristics,without considering how to improve the dynamic performance of vehicles adaptively according to complex road conditions while restoring energy considered. In addition, the ride comfort and handling stability of vehicle are mutually constrained, and the contradiction between them is still prominent under the passive mode. In order to meet the optimal performance of hydraulic electrical energy-regenerative suspension during the global operating condition, a hydraulic electrical energy-regenerative suspension with 3 working modes focusing on comfort, sport and comprehensiveness modes was designed to regenerate vibration energy while improving the ride comfort and handling stability of the vehicle in this paper. The road excitation frequency was chosen as the suspension mode switching threshold. The hydraulic electrical energy-regenerative shock absorber was composed of a hydraulic cylinder, a hydraulic rectifier bridge, a hydraulic motor, 2 accumulators, the hydraulic pipeline, a rotary motor, etc., wherein the hydraulic rectifier bridge consisted of 4 one-way valves. The DC-DC converter was introduced into the suspension energy-regenerative circuit. Based on this, the damping force formula of the shock absorber was derived. The double loop semi-active control scheme consisting of skyhook-groundhook control and fuzzy PID control was designed. The semi-active control of the hydraulic electrical energy-regenerative suspension was achieved based on the energy-regenerative circuit. The DC-DC converter could work in both boost and buck modes. The duty cycle of the MOS tube switching signal in the DC-DC converter was adjusted real time to change the damping force of the damper. Moreover, the Kalman Filter algorithm was introduced to accurately obtain the suspension state variables to track the ideal damping force. The first-order zero-crossing detection method was introduced to identify the main frequency of the road input, which was used as the switching threshold of each suspension working mode. The simulation results showed that the hydraulic electrical energy-regenerative semi-active suspension could switch the working mode adaptively according to the road frequency, and improve the vehicle dynamic performance effectively than the single mode control of semi-active suspension while regenerating energy. The proposed hydraulic electrical energy-regenerative suspension combined with road frequency self-adaption could coordinate suspension dynamic performance with energy-regenerative characteristics. The vehicle body acceleration in the comfort mode was reduced by 13.75% compared with that of the single mode control suspension, and the tire dynamic load was reduced by 17.76% in the sport mode. To verify the effectiveness of the simulation, a bench test was performed. The deviations of the PTP(peak-to-peak) value of test and simulation data of vehicle body acceleration were 1.36%, 15.72%, 4.86%, and 13.6%, respectively, and the ones of the tire dynamic load were 9.34%, 13.62%, 7.82%, and 15.47%, respectively. The errors between the test and simulation results was within 16%, which verified the correctness of the simulation results and the feasibility of the semi-active suspension system. The study provides an important reference for the performance upgrade of the hydraulic electrical energy-regenerative suspension.
vehicles; suspension; control; hydraulic electrical energy-regenerative; double loop scheme; multi-mode switching; road frequency self-adaption
2018-07-23
2019-01-20
國家自然科學(xué)基金(51575240);江蘇省重點(diǎn)研發(fā)計(jì)劃(BE2016147)
汪若塵,教授,博士生導(dǎo)師,主要從事車輛動(dòng)態(tài)性能模擬與控制研究。Email:wrc@ujs.edu.cn.
10.11975/j.issn.1002-6819.2019.06.007
U 463.33
A
1002-6819(2019)-06-0055-10
汪若塵,丁彥姝,孫 東,丁仁凱,孟祥鵬. 基于路面激勵(lì)自適應(yīng)的液電饋能懸架動(dòng)力學(xué)性能協(xié)調(diào)控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(6):55-64. doi:10.11975/j.issn.1002-6819.2019.06.007 http://www.tcsae.org
Wang Ruochen, Ding Yanshu, Sun Dong, Ding Renkai, Meng Xiangpeng. Dynamic performance coordination control of hydraulic electrical energy-regenerative suspension based on road excitation self-adaptation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 55-64. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.06.007 http://www.tcsae.org