羅 娟,趙立欣,姚宗路,孟海波,李秀金,馮 晶,袁海榮,于佳動,黃開明
?
NaOH預(yù)處理甘蔗葉與豬糞-牛糞混合厭氧消化工藝參數(shù)優(yōu)化
羅 娟1,2,趙立欣1,姚宗路1,孟海波1※,李秀金2,馮 晶1,袁海榮2,于佳動1,黃開明1
(1. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院,農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)廢棄物能源化利用重點實驗室,北京 100125;2. 北京化工大學(xué)化學(xué)工程學(xué)院,北京 100029)
為探究NaOH預(yù)處理甘蔗葉與豬糞、牛糞混合厭氧消化性能,該文在研究甘蔗葉分別與豬糞、牛糞不同配比厭氧消化性能及動力學(xué)特性的基礎(chǔ)上,采用Box-Behnken試驗設(shè)計方法開展3種物料混合厭氧消化試驗,并運用響應(yīng)曲面法模擬和優(yōu)化溫度、混配比、C/N 3個工藝參數(shù)。結(jié)果表明,甘蔗葉與動物糞便混合厭氧消化時產(chǎn)生了協(xié)同作用,累積沼氣產(chǎn)量比假設(shè)未產(chǎn)生協(xié)同作用的理論計算值提高了8.13%~15.01%;修正的Gompertz 模型可以較好地模擬2種物料混合厭氧消化的動力學(xué)過程,相關(guān)度系數(shù)大于0.998;甘蔗葉與豬糞/牛糞(1∶1)混合(甘蔗葉與糞比為1)厭氧消化的最優(yōu)工藝條件為:溫度36.5 ℃,C/N比27∶1,該條件下混合物料的單位干物質(zhì)產(chǎn)沼氣量實測值為337.5 mL/g,與預(yù)測值(331.92 mL/g)非常接近。
沼氣;糞;甘蔗葉;豬糞;牛糞;混合厭氧消化
甘蔗是中國種植面積最大的糖料作物,在常年糖料種植面積中占比超過85%[1],主要集中在廣東、廣西、云南、貴州、海南等省區(qū)。自2000年開始,中國甘蔗種植面積和總產(chǎn)量一直保持世界第三的位置,僅次于巴西和印度[2]。據(jù)中國統(tǒng)計年鑒,2016年中國甘蔗播種面積為152.7萬hm2,總產(chǎn)量11 382.5萬t。在甘蔗收獲的同時,產(chǎn)生大量甘蔗葉等廢棄物,產(chǎn)量高達(dá)3 600萬t[3],但利用率不到20%,大量甘蔗葉被廢棄、焚燒,對環(huán)境造成污染。與此同時,中國南方地區(qū)是傳統(tǒng)畜牧養(yǎng)殖優(yōu)勢區(qū),2016年底上述5個省份的豬存欄量8 751.3萬頭,牛存欄量2 293.3萬頭(中國統(tǒng)計年鑒),按照每頭豬、牛每天分別產(chǎn)生糞便2和20 kg來估算,年總產(chǎn)生量高達(dá)23 129.54萬t。
厭氧消化技術(shù)是種植、養(yǎng)殖廢棄物資源化和能源化利用的一種有效手段。國內(nèi)外研究表明,在秸稈類原料中添加動物糞便進(jìn)行混合厭氧消化具有諸多優(yōu)點,可以平衡發(fā)酵原料的營養(yǎng)成分,避免單一物料發(fā)酵時的不足,有利于提高沼氣產(chǎn)量[4-5]。溫度是影響厭氧微生物生命活動過程最重要的因素之一,適宜的溫度有利于厭氧消化過程的進(jìn)行[6]。目前不少學(xué)者對常見秸稈與畜禽糞便的混合厭氧消化開展了研究,Li Jiang等[7]以牛糞與玉米秸稈、麥稈、稻草3種秸稈為原料開展了半連續(xù)厭氧消化產(chǎn)沼氣研究,發(fā)現(xiàn)秸稈與牛糞質(zhì)量比為1∶1時沼氣產(chǎn)量最高,且產(chǎn)甲烷過程需要適宜的氮、磷以及微量元素;吳愛兵等[8]的研究表明麥秸與牛糞混合堆漚預(yù)處理可以改善混合物料的厭氧干發(fā)酵產(chǎn)氣特性。甘蔗葉中富含粗蛋白和粗纖維[9-10],是一種優(yōu)良的沼氣發(fā)酵原料,但是由于含有大量纖維木質(zhì)素,在厭氧消化時易出現(xiàn)降解率低、發(fā)酵時間長等問題[11-12]。研究發(fā)現(xiàn),適當(dāng)?shù)念A(yù)處理可有效提高甘蔗葉[13-14]、玉米秸[15-17]、麥秸[18]等高纖維素含量物料的厭氧消化性能,且NaOH去除木質(zhì)素的效果較好[19]。因此,本文以NaOH預(yù)處理后的甘蔗葉以及豬糞、牛糞為原料,開展了甘蔗葉分別與2種動物糞便在不同配比條件下的厭氧消化試驗,并使用修正的Gompertz 模型對產(chǎn)沼氣過程進(jìn)行了動力學(xué)分析,最后開展了三元物料混合厭氧消化試驗,運用響應(yīng)曲面法優(yōu)化溫度、混合比、C/N等關(guān)鍵工藝參數(shù),以期為改善混合物料厭氧消化性能、提高產(chǎn)氣效率提供理論參考和科學(xué)支撐。
試驗所用甘蔗葉取自廣東省茂名市電白區(qū),自然條件下風(fēng)干后用粉碎機粉碎至粒徑1 cm以下,于陰涼通風(fēng)處備用;豬糞、牛糞分別取自北京市大興區(qū)生豬和奶牛養(yǎng)殖場;接種用活性污泥取自農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院沼氣實驗室長期運行的厭氧消化器。試驗物料特性見表1。
表1 物料特性
注:a基于干物質(zhì);ND表示未測定。
Note:adry basis; ND means not determined.
1.2.1 二元物料混合厭氧消化
甘蔗葉的C/N較高,如果僅采用添加動物糞便的方式來調(diào)節(jié)C/N到較佳的范圍內(nèi),甘蔗葉的用量極少,不能達(dá)到本文主要使用厭氧消化技術(shù)來處理甘蔗葉的目的,因此,同時采用添加尿素的方法來調(diào)控C/N?;谇捌谠囼灲Y(jié)果,采用質(zhì)量分?jǐn)?shù)為6%的NaOH(相對于甘蔗葉干物質(zhì)質(zhì)量)添加到甘蔗葉中,用去離子水將物料含固率調(diào)至12%,充分?jǐn)嚢枋顾懈收崛~均受到NaOH溶液的潤濕,之后將混合物放入廣口瓶內(nèi),密封并置于25 ℃的恒溫培養(yǎng)箱內(nèi),5 d后取出并使用果汁壓榨器對其進(jìn)行固液分離,將固體部分干燥后得到試驗用甘蔗葉。隨后進(jìn)行甘蔗葉與豬糞、甘蔗葉與牛糞的二元物料混合厭氧消化試驗,混合物料的干物質(zhì)量比均為2∶1、1∶1、1∶2、1∶0、0∶1,總干物質(zhì)量為20 g,總有機負(fù)荷調(diào)至65 g/L左右。按照上述配比將10組發(fā)酵原料分別放入?yún)捬醢l(fā)酵瓶內(nèi),加入100 g活性污泥,再將物料混合均勻。采用中溫(35±1)℃發(fā)酵,日產(chǎn)沼氣量采用排飽和食鹽水法測定。每天定時將發(fā)酵瓶取出并搖晃1次,每組試驗各設(shè)置3個平行。
研究表明,修正的Gompertz模型可以很好地模擬物料厭氧消化產(chǎn)沼氣過程[20-21],因此本研究采用該模型對甘蔗葉與豬糞、牛糞兩兩混合厭氧消化過程進(jìn)行擬合,并得出產(chǎn)沼氣動力學(xué)參數(shù),其模型公式如式(1)所示。
式中表示第天的物料累積產(chǎn)沼氣量,mL/g;0表示最大的或最終的產(chǎn)沼氣量,mL/g;μ表示最大的產(chǎn)沼氣速率,mL/(g?d);表示遲滯時間,d;表示消化時間,d;e為自然常數(shù),2.718 282。
1.2.2 三元物料混合厭氧消化及參數(shù)優(yōu)化
以NaOH預(yù)處理甘蔗葉、牛糞、豬糞為原料進(jìn)行3種物料混合厭氧消化試驗。根據(jù)前述試驗結(jié)果以及相關(guān)文獻(xiàn)[22],確定牛糞、豬糞的混配比為1∶1,混合物料總干物質(zhì)量為20 g,總有機負(fù)荷調(diào)至65 g/L左右。采用Box-Behnken方法設(shè)計三因素三水平的混料試驗,考察溫度(30、35、40 ℃)、混合物料配比(1∶2、1∶1、2∶1)、C/N(20∶1、25∶1、30∶1,使用尿素進(jìn)行調(diào)節(jié))對厭氧消化性能的影響,因素水平編碼及試驗設(shè)計方案如表4所示。采用響應(yīng)曲面法優(yōu)化上述3個工藝參數(shù)。
1.2.3 分析與測試方法
1)加權(quán)沼氣產(chǎn)量計算方法
不同物料進(jìn)行混合厭氧消化時可產(chǎn)生“協(xié)同作用”。協(xié)同作用是指進(jìn)行混合厭氧消化的物料在各自理論沼氣產(chǎn)量之外多出的部分沼氣量,也就是加權(quán)沼氣產(chǎn)量(weighting experimental biogas yeild,WEBY)。加權(quán)沼氣產(chǎn)量可以通過公式(2)來計算。
WEBY=WBY-(EBYs×s+EBYa×a) (2)
式中WEBY是指混合物料厭氧消化的加權(quán)沼氣產(chǎn)量,WBY指混合物料的實際沼氣產(chǎn)量,EBYs和EBYa分別指甘蔗葉和動物糞便的單位TS質(zhì)量試驗沼氣產(chǎn)量(理論沼氣產(chǎn)量),s和a分別指甘蔗葉和動物糞便的總TS質(zhì)量。
2)測試方法
原料的總固體(total solid,TS)與揮發(fā)性固體(volatile solid,VS)采用質(zhì)量法測定,其中樣品烘干與灼燒使用的儀器為分析天平(BSA223S-CW,賽多利斯,德國)、電熱恒溫鼓風(fēng)干燥箱(DGG-9240B,上海森信)與高效節(jié)能快速升溫馬弗爐(2200型,北京華北)。日產(chǎn)沼氣量和累積產(chǎn)氣量利用排飽和食鹽水水法測定。沼氣中甲烷含量采用氣相色譜分析(Model 7890A,Agilent,美國)??偺己涂偟糠謩e用元素分析儀分析(Vario EL Cube, Elementar Inc.,德國)。纖維素、半纖維素和木質(zhì)素含量采用Van Soest和Wine描述的方法來檢測。pH值采用便攜式pH計(IQ150)測定。
2.1.1 產(chǎn)沼氣特性
NaOH預(yù)處理甘蔗葉分別與豬糞、牛糞以不同比例混合后的日產(chǎn)氣量如圖1a、b所示,累積產(chǎn)氣量如圖1c、d所示。由圖1a、b可知,各組物料在厭氧消化過程中出現(xiàn)若干個產(chǎn)氣高峰,其中產(chǎn)氣最高峰出現(xiàn)在第8~10天??偟膩砜?,前20天的沼氣產(chǎn)量維持在相對較高水平,隨后呈現(xiàn)出逐漸降低趨勢。單一甘蔗葉的最高日產(chǎn)沼氣量最大,為563.6 mL/d。單一豬糞和單一牛糞在厭氧消化前期(約前15天)的沼氣產(chǎn)量較高,后期產(chǎn)氣下降較為明顯,說明動物糞便比甘蔗葉的降解速度要快。與甘蔗葉與牛糞的混合物相比,甘蔗葉與豬糞的混合物產(chǎn)氣更為均衡,產(chǎn)氣效果更好,這可能是由于豬糞中的揮發(fā)性固體含量相對更高(表1)?;旌衔锪系睦鄯e產(chǎn)氣量要高于單一物料,其中甘蔗葉和動物糞便(豬糞、牛糞)的混配比約為1∶1時累積產(chǎn)氣量最高,分別為6 075.57和5 903.61 mL。
圖1 不同混配比例甘蔗葉與動物糞便日產(chǎn)氣量與累積產(chǎn)氣量
甘蔗葉與動物糞便不同混配比例下實際產(chǎn)沼氣量與理論沼氣產(chǎn)量、加權(quán)沼氣產(chǎn)量如表2所示。從表2看可以看出,與理論沼氣產(chǎn)量相比,SL∶PM分別為2∶1、1∶1、1∶2和 SL∶DM分別為2∶1、1∶1、1∶2的實際沼氣產(chǎn)量分別提高了10.14%、15.01%、8.13%、9.72%、14.28%和7.09%。說明甘蔗葉與動物糞便在厭氧消化過程產(chǎn)生了一定的相互作用,即“協(xié)同作用”[23],該作用促進(jìn)了甘蔗葉和動物糞便的降解,提高了有機物的轉(zhuǎn)化率,使沼氣產(chǎn)量增加。這可能是由于甘蔗葉與動物糞便的營養(yǎng)成分差異較大,經(jīng)過混合后,平衡了營養(yǎng)元素,使底物更易于被厭氧菌群分解利用,提高微生物活性,促進(jìn)其生長繁殖。
表2 甘蔗葉與動物糞便不同混配比例下實際沼氣產(chǎn)量與理論沼氣產(chǎn)量比較
2.1.2 pH值變化
圖2為10組物料在厭氧消化過程中的pH值變化曲線,可以看出整個反應(yīng)過程中各組pH值的趨勢大致相同,且維持在產(chǎn)甲烷菌適宜的pH值范圍(6.5~7.5[24])內(nèi)。在反應(yīng)的啟動階段,物料pH值相對較高(7.18~7.62),這是由于采用NaOH進(jìn)行預(yù)處理的甘蔗葉pH值較高。隨著反應(yīng)的進(jìn)行,各組物料的pH值出現(xiàn)較大幅度下降,這可能是由于產(chǎn)酸菌不斷生長繁殖,將有機物降解為乙酸、丙酸、丁酸等酸性物質(zhì),并在發(fā)酵瓶內(nèi)不斷累積,使得pH值快速降低。從第8~9天開始,物料的pH值略有上升并基本保持平穩(wěn),這可能是因為由產(chǎn)酸菌分解產(chǎn)生的酸性物質(zhì)逐漸被產(chǎn)甲烷菌所轉(zhuǎn)化利用,且產(chǎn)酸菌和產(chǎn)甲烷菌的代謝活動維持在較為平衡的狀態(tài);在反應(yīng)后期,隨著可降解利用有機物不斷被消耗,產(chǎn)酸菌的代謝活動逐漸減弱,產(chǎn)甲烷菌略占優(yōu)勢,pH值呈現(xiàn)出略有上升的趨勢。反應(yīng)停止時10組試驗的pH值為6.92~7.11。
2.1.3 沼氣中甲烷含量變化
由圖3可以看出,各組物料的甲烷含量在反應(yīng)前期迅速增加并達(dá)到較高值,隨后基本維持在該水平(50%~63%),在反應(yīng)后期呈現(xiàn)略有下降的趨勢。混合物料組的甲烷含量明顯高于單一物料組(尤其是單一動物糞便組),沼氣質(zhì)量較優(yōu),其中甘蔗葉與動物糞便混配比為1∶1時甲烷含量平均值最高,累積甲烷產(chǎn)量比單一物料組提高了10.88%~39.16%。這說明2種不同類型物料混合后厭氧消化,可以促進(jìn)底物的轉(zhuǎn)化利用,提高了產(chǎn)甲烷率,改善了厭氧消化性能。
圖2 混合物料的pH值變化
圖3 沼氣中甲烷含量變化
2.1.4產(chǎn)沼氣動力學(xué)分析
采用修正的Gompertz 模型進(jìn)行甘蔗葉與豬糞、牛糞兩兩混合條件下厭氧消化產(chǎn)沼氣擬合的結(jié)果如表3所示,得到了不同配比物料厭氧消化的理論最大產(chǎn)沼氣量、最大產(chǎn)沼氣速率以及遲滯時間。
表3 預(yù)處理甘蔗葉與動物糞便厭氧消化產(chǎn)沼氣動力學(xué)模擬結(jié)果
各組數(shù)據(jù)的擬合結(jié)果的相關(guān)度2adj值均大于0.998,說明修正的Gompertz 模型能夠較好的模擬混合物料的產(chǎn)沼氣過程,這與相關(guān)文獻(xiàn)報道的結(jié)果相一致[21,25-26]。擬合得到的理論最大產(chǎn)沼氣量與實際測得的累積沼氣產(chǎn)量大小趨勢基本一致,混合物料的最大產(chǎn)沼氣量和產(chǎn)氣速率比單一甘蔗葉,尤其是單一動物糞便產(chǎn)氣速率要大,說明混合厭氧消化有助于提高物料的產(chǎn)氣速率。遲滯時間的大小反映了厭氧微生物適應(yīng)發(fā)酵原料所需時間的長短,本文中各組物料的遲滯時間均較小,混合物料的值介于單一甘蔗葉和單一動物糞便之間,說明在甘蔗葉等秸稈類物料中添加動物糞便后,可以較好地平衡甘蔗葉和動物糞便的營養(yǎng)成分,加快厭氧微生物對改性甘蔗葉和動物糞便混合物料的適應(yīng),縮短啟動時間;與其他試驗組相比,單一豬糞和單一牛糞厭氧消化的遲滯時間更短,僅為1 d左右,說明相較于纖維素含量更高的秸稈類物料來說,厭氧微生物對動物糞便類物料的適應(yīng)性更強。
2.2.1厭氧消化產(chǎn)沼氣工藝優(yōu)化回歸模型分析
采用Central Composite試驗設(shè)計方法考察溫度、C/N不同水平組合對甘蔗葉與牛糞、豬糞3種物料混合厭氧消化性能的影響,其中C/N使用尿素進(jìn)行調(diào)節(jié)。試驗結(jié)果如表4所示。
表4 混合原料厭氧消化的Box-Behnken設(shè)計
采用Design-Expert 7.0軟件對表4中沼氣產(chǎn)量的試驗數(shù)據(jù)進(jìn)行線性、平方、特殊立方、立方回歸分析,結(jié)果如表5所示。建立以沼氣產(chǎn)量為響應(yīng)值,以溫度、C/N為自變量2個因素編碼值的回歸方程如式(3)所示。
=314.56+41.39+50.46+16.8-79.682-63.582(3)
式中為沼氣產(chǎn)量。
回歸方程的擬合度和顯著性檢驗結(jié)果顯示,回歸方程式顯著(<0.0001),失擬項不顯著(>0.05),2、2adj、2pred均大于90%,值為52.82,表明該模型能夠用來對沼氣產(chǎn)量進(jìn)行分析和預(yù)測,且擬合效果較好。方程式(3)的2個一次項以及2個二次項均顯著(<0.05),說明2個因素對沼氣產(chǎn)量均有顯著影響。
表5 回歸模型方差分析
Note:2=0.974 2,2adj=0.955 7,2pred=0.916 9.
2.2.2 響應(yīng)曲面分析優(yōu)化與模型驗證
采用響應(yīng)曲面法(RSM)對三元物料混合厭氧消化過程進(jìn)行優(yōu)化,繪制響應(yīng)曲面及等高線圖,如圖4所示。從圖中可以看出,當(dāng)C/N一定時,沼氣產(chǎn)量隨著溫度的升高呈現(xiàn)出明顯的先增加后減少趨勢,說明適宜的溫度有利于厭氧微生物的代謝和繁殖。當(dāng)溫度一定時,沼氣產(chǎn)量隨著C/N的增加表現(xiàn)為先增加后減小。研究發(fā)現(xiàn)當(dāng)C/N過低時,易產(chǎn)生氨積累導(dǎo)致pH值升高,甚至可達(dá)8.5以上,不利于產(chǎn)甲烷菌的生長繁殖;當(dāng)C/N過高時也會導(dǎo)致沼氣產(chǎn)量減少[27];厭氧消化較適宜的C/N為20~30[28-29],其中較優(yōu)值為30左右[30],這與本文研究結(jié)果一致。
通過模型優(yōu)化得到最佳工藝條件,即溫度為36.53 ℃,C/N為27.3。為便于操作,將其調(diào)整為:溫度36.5 ℃、C/N比27。在與2.2.1相同試驗條件下,以調(diào)整后的最佳工藝參數(shù)進(jìn)行3次重復(fù)厭氧消化試驗,以驗證模型的可靠性和準(zhǔn)確性。試驗得到的沼氣產(chǎn)量平均值為337.5 mL/g,與模型預(yù)測值(331.92 mL/g)非常接近。
圖4 溫度和C/N對沼氣產(chǎn)量的影響
本研究對NaOH預(yù)處理甘蔗葉與豬糞、牛糞混合厭氧消化性能及工藝參數(shù)優(yōu)化進(jìn)行了研究,得到如下結(jié)論:
1)甘蔗葉與豬糞或牛糞混合厭氧消化產(chǎn)生了協(xié)同作用,促進(jìn)了有機物的降解,改善了底物厭氧消化性能,累積產(chǎn)沼氣量提高了8.13%~15.01%;混合物料的甲烷含量增加,甘蔗葉與動物糞便干物質(zhì)比為1:1的累積甲烷產(chǎn)量比單一物料提高了10.88%~39.16%。
2)修正的Gompertz 模型可以較好地模擬甘蔗葉與動物糞便的混合厭氧消化動力學(xué)過程,2adj值大于0.998。相較于纖維素含量更高的甘蔗葉來說,厭氧微生物對動物糞便的適應(yīng)性更強,產(chǎn)沼氣速率更大。
3)響應(yīng)曲面法可以用來優(yōu)化多物料混合厭氧消化的工藝參數(shù),得到了甘蔗葉與豬糞、牛糞混合厭氧消化的最優(yōu)條件,即溫度為36.5 ℃,C/N比為27:1,該條件下產(chǎn)沼氣量實測值為337.5 mL/g,與預(yù)測值(331.92 mL/g)非常接近。
[1] 董學(xué)虎,李榮,李官保,等. 國內(nèi)外甘蔗中耕施肥機現(xiàn)狀與發(fā)展趨勢[J]. 農(nóng)業(yè)機械,2016 (10): 143-145. Dong Xuehu, Li Rong, Li Guanbao, et al. Current situation and development trend of sugarcane cultivator at home and abroad[J]. Farm Machinery, 2016(10): 143-145. (in Chinese with English abstract)
[2] 劉海清. 我國甘蔗產(chǎn)業(yè)現(xiàn)狀與發(fā)展趨勢[J]. 中國熱帶農(nóng)業(yè),2009 (1) : 8-9. Liu Haiqing. The present situation and development trend of the sugarcane industry in China[J]. China Tropical Agriculture, 2009(1): 8-9. (in Chinese with English abstract)
[3] 杜嵇華,張勁,公譜,等. 主要熱帶作物田間廢棄物的飼料化技術(shù)應(yīng)用現(xiàn)狀及展望[J]. 中國熱帶農(nóng)業(yè),2013(6): 33-36. Du Jihua, Zhang Jing, Gong Pu, et al. Application status and prospect of feed technology for main tropical crops [J]. China Tropical Agriculture, 2013(6): 33-36. (in Chinese with English abstract)
[4] Dong Li, Shengchu Liu, Li Mi, et al. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure[J]. Bioresource Technology, 2015, 189: 319-326.
[5] Zhou Qi, Yuan Hairong, Liu Yanping, et al. Using feature objects aided strategy to evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion[J]. Bioresource Technology, 2015, 179: 611-614.
[6] 李晶宇,羅立娜,李文哲,等. 溫度對牛糞兩相厭氧發(fā)酵特性的影響[J]. 環(huán)境工程學(xué)報,2015,9(8):4027-4031. Li Jingyu, Luo Lina, Li Wenzhe, et al. Effect of different temperatures on two-phase anaerobic fermentation of cattle manure[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 4027-4031. (in Chinese with English abstract)
[7] Li Jiang, Wei Luoyu, Duan Qiwu, et al. Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production[J]. Bioresource Technology, 2014, 156: 307-313.
[8] 吳愛兵,曹杰,朱德文,等. 麥秸與牛糞混合堆漚預(yù)處理厭氧干發(fā)酵產(chǎn)沼氣中試試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(22): 256-260. Wu Aibing, Cao Jie, Zhu Dewen, et al. Pilot experiment on biogas production of dry fermentation of wheat straw and cow dung with composting pre-treatment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 256-260. (in Chinese with English abstract)
[9] 焦靜,王金麗,張勁,等. 甘蔗葉干法厭氧發(fā)酵正交試驗[J]. 農(nóng)業(yè)機械學(xué)報,2012,43(10):110-113,142. Jiao Jing, Wang Jinli, Zhang Jing, et al. Orthogonal experiment of sugarcane leaves dry anaerobic fermentation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 110-113, 142. (in Chinese with English abstract)
[10] 蟻細(xì)苗,譚文興,陶譽文,等. 甘蔗副產(chǎn)物粗飼料化試驗研究[J]. 廣西糖業(yè),2015(5):25-28,35. Yi Ximiao, Tan Wenxing, Tao Yuwen, et al. Study on the crude feed of the by-product of sugarcane[J]. Guangxi Sugar Industry, 2015(5): 25-28, 35. (in Chinese with English abstract)
[11] 羅娟,趙立欣,姚宗路,等. 甘蔗葉添加對餐廚垃圾厭氧消化性能的影響[J]. 中國沼氣,2017,35(4):21-26. Luo Juan, Zhao Lixin, Yao Zonglu, et al. The influences of adding sugarcane leaves on anaerobic fermentation of food waste[J]. China Biogas, 2017, 35(4): 21-26. (in Chinese with English abstract)
[12] 焦靜,王金麗,鄭勇,等. 化學(xué)預(yù)處理對甘蔗葉厭氧發(fā)酵產(chǎn)沼氣的影響[J]. 熱帶作物學(xué)報,2014,35(4):779-783. Jiao Jing, Wang Jinli, Zheng Yong, et al. Effects of Chemical Pretreatment on Biogas Production by Anaerobic Fermentation of sugarcane Leaves[J]. Chinese Journal of Tropical Crops, 2014, 35(4): 779-783. (in Chinese with English abstract)
[13] 羅娟,李秀金,袁海榮. 不同預(yù)處理對甘蔗葉厭氧消化性能的影響[J]. 中國沼氣,2016,34(1):32-36. Luo Juan, Li Xiujin, Yuan Hairong. Effect of different pretreatment on anaerobic digestion performance of sugarcane leaves[J]. China Biogas, 2016, 34(1):32-36. (in Chinese with English abstract)
[14] 陳柳萌,桂倫,馬吉平,等. 基于厭氧生物制氣的糙皮側(cè)耳預(yù)處理甘蔗葉工藝[J]. 江西農(nóng)業(yè)學(xué)報,2016,28(3): 82-86. Chen Liumeng, Gui Lun, Ma Jiping, et al. Pretreatment technology of sugarcane leaf withbased on anaerobic biogasification[J]. Acta Agriculturae Jiangxi, 2016, 28(3): 82-86. (in Chinese with English abstract)
[15] 劉研萍,方剛,黨鋒,等. NaOH和H2O2預(yù)處理對玉米秸稈厭氧消化的影響[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(12):260-263. Liu Yanping, Fang Gang, Dang Feng, et al. Effect of NaOH + H2O2pretreatment on corn straw anaerobic digestion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 260-263. (in Chinese with English abstract)
[16] 陳羚,羅娟,董保成,等. 復(fù)合菌劑和NaOH 預(yù)處理提高秸稈厭氧消化性能[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(7):185-190. Chen Ling, Luo Juan, Dong Baocheng, et al. Pretreatment with composite microbe and NaOH to improve anaerobic performance of corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(7): 185-190. (in Chinese with English abstract)
[17] 吳厚凱,李志合,王紹慶,等. 熱化學(xué)預(yù)處理溫度對玉米秸稈干發(fā)酵的影響[J]. 農(nóng)業(yè)機械學(xué)報, 2016,47(Supp2): 311-316. Wu Houkai, Li Zhihe, Wang Shaoqing, et al. Effects of thermo-chemical pretreatment temperature on dry anaerobic digestion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 47(Supp2): 311-316. (in Chinese with English abstract)
[18] Silvia Bolado-Rodríguez, Cristina Toquero, Judit Martín- Juárez, et al. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse[J]. Bioresource Technology, 2016, 201: 182–190.
[19] Comino E, Rosso M, Riggio V. Investigation of increasing organic loading rate in the co-digestion of energy crops and cow manure mix[J]. Bioresource Technology, 2010, 101 (9): 3013-3019.
[20] Alta? L. Inhibitory effect of heavy metals on methane- producing anaerobic granular sludge[J]. Journal of Hazardous Materials, 2009, 162(2): 1551-1556.
[21] Lo H M, Kurniawan T A, Sillanp?? M E T, et al. Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors[J]. Bioresource Technology, 2010, 101(16): 6329-6335.
[22] 李芳,楊麗霞,宋籽霖,等. 響應(yīng)面優(yōu)化豬糞、牛糞與玉米秸稈混合發(fā)酵工藝[J]. 西北農(nóng)林科技大學(xué)學(xué)報:自然科學(xué)版,2013,41(11):125-130. Li Fang, Yang Lixia, Song Zilin, et al. Optimization of fermentation process of manure and corn straw by response surface methodology[J]. Journal of Northwest A&F University: Nat Sci Ed, 2013, 41(11): 125-130. (in Chinese with English abstract)
[23] 趙玲,王聰,田萌萌,等. 秸稈與畜禽糞便混合厭氧發(fā)酵產(chǎn)沼氣特性研究[J]. 中國沼氣,2015,33(5): 32-37. Zhao Ling, Wang Cong, Tian Mengmeng, et al. Characteristics of anaerobic fermentation of mixed livestock manure and straw[J]. China Biogas, 2015, 33(5): 32-37. (in Chinese with English abstract)
[24] 周雪飛,任南琪. 高濃度甲醇廢水厭氧處理中顆粒污泥和產(chǎn)甲烷細(xì)菌的耐酸性[J]. 環(huán)境科學(xué)學(xué)報,2004,24(4):633-636. Zhou Xuefei, Ren Nanqi. Acid resistance of methanogenic bacteria in two -stage anaerobic process treating high concentration methanol wastewater[J]. Acta Scientiae Circumstantiate, 2004, 24(4): 633-636. (in Chinese with English abstract)
[25] 馮晶,張玉華,羅娟,等. 批式與連續(xù)兩相發(fā)酵的果蔬廢棄物厭氧產(chǎn)氣性能[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(22):233-238. Feng Jing, Zhang Yuhua, Luo Juan, et al. Biogas production of fruit and vegetable wastes two-phase fermentation by batch and continuous feeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 233-238. (in Chinese with English abstract)
[26] Donosobravo A, Pérezelvira S I, Fdzpolanco F. Application simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes[J]. Chemical Engineering Journal, 2010, 160(2): 607-614.
[27] Verma S. Anaerobic Digestion of Biodegradable Organics in Municipal Solid Wastes[D]. New York: Columbia University, USA, 2002.
[28] Li Yebo, Park, Stephen Y, et al. Solid-state anaerobic digestion for methane production from organic waste[J]. Renewable and Sustainable Energy Reviews, 2011(15): 821-826.
[29] Habiba L, Hassib B, Moktar H. Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition[J]. Bioresource Technology, 2009, 100: 1555–1560.
[30] Yen H W, Brune D E. Anaerobic co-digestion of algal sludge and waste paper to produce methane[J]. Bioresource Technology, 2007, 98: 130-134.
Parameter optimization in anaerobic co-digestion of NaOH pretreated sugarcane leaves and pig manure-dairy manure
Luo Juan1,2, Zhao Lixin1, Yao Zonglu1, Meng Haibo1※, Li Xiujin2, Feng Jing1, Yuan Hairong2, Yu Jiadong1, Huang Kaiming1
(1.1001252.100029)
Tropical agriculture in south of China produces a large amount of tropical agricultural wastes every year including sugarcane leaves (SL). According to statistics, the annual output of SL in China is as high as 36 million tons, while the utilization rate is less than 20%. Lots of SL is discarded or even incinerated, causing environmental pollution. At the same time, South China is traditional dominant area for pig and herbivore due to rich and cheap feed. A great amount of animal manure (AM) is produced every year, which causes ecological and environmental pressure. Anaerobic digestion (AD) technology is considered to be an effective way to deal with wastes from planting and breeding. However, the low efficiency and biogas production resulting from large amount of lignocellulose limits large-scale application of SL. The biodegradability of SL can be effectively improved by pretreatment, and the anaerobic co-digestion can improve the biogas production performance of SL and AM. In this paper,the anaerobic co-digestion performance of AM and SL pretreated by NaOH was studied. The AD performance of pretreated SL with pig manure (dairy manure) at different mixing ratios (2∶1, 1∶1, 1∶2, 1∶0, 0∶1) was investigated. After that, the effects of temperature (30, 35, 40 ℃) and C/N (20∶1, 25∶1, 30∶1) of modified SL, pig manures and dairy manures were determined with Central Composite design method. The results of the tests indicated that the cumulative gas production of the mixed materials was significantly higher than that with single material and the best mixing ratio was 1:1, with which the values reached 6 075.57 and 5 903.61 mL respectively and were 8.13%-15.01% higher than that without pretreated SL or AM. The modified Gompertz model could simulate the kinetics of anaerobic co-digestion of SL and AM, and the correlation coefficient was more than 0.998. The synergistic effect was found in anaerobic co-digestion and resulted in nutrients balance and promotion of organic matter. Regression model analysis showed that the temperature and C/N had significant effects on AD. The optimal process conditions were determined by response surface methodology, that the temperature was 36.5 and C/N was 27. The measured values of biogas production of the mixture of SL and AM was 337.5 mL/g under the optimized conditions above, which was very close to the predicted value (331.92 mL/g). The model verification results showed that RSM could be used to optimize the AD process parameters of mixture.
biogas; manures; sugarcane leaves; pig manures; dairy manures; anaerobic co-digestion
2018-06-13
2018-11-20
公益性行業(yè)(農(nóng)業(yè))科研專項(201503135)
羅 娟,博士,主要研究方向為生物質(zhì)能源技術(shù)裝備與環(huán)境保護(hù)。Email:emimi2008@126.com
孟海波,研究員,主要研究方向為農(nóng)村能源與農(nóng)業(yè)廢棄物資源化利用。Email:newmhb7209@163.com
10.11975/j.issn.1002-6819.2019.05.026
S216.4
A
1002-6819(2019)-05-0212-07
羅 娟,趙立欣,姚宗路,孟海波,李秀金,馮 晶,袁海榮,于佳動,黃開明.NaOH預(yù)處理甘蔗葉與豬糞-牛糞混合厭氧消化工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(5):212-218.doi:10.11975/j.issn.1002-6819.2019.05.026 http://www.tcsae.org
Luo Juan, Zhao Lixin, Yao Zonglu, Meng Haibo, Li Xiujin, Feng Jing, Yuan Hairong, Yu Jiadong, Huang Kaiming. Parameter optimization in anaerobic co-digestion of NaOH pretreated sugarcane leaves and pig manure-dairy manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 212-218. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.05.026 http://www.tcsae.org