孫慧穎,馮杰,梁月,王澤昊,王婷月
?
組學(xué)技術(shù)在核盤(pán)菌研究中的應(yīng)用
孫慧穎1,馮杰2,梁月1,王澤昊1,王婷月1
1 沈陽(yáng)農(nóng)業(yè)大學(xué) 植物保護(hù)學(xué)院,遼寧 沈陽(yáng) 110866 2 阿爾伯塔省農(nóng)業(yè)部 植物健康實(shí)驗(yàn)室,加拿大阿爾伯塔 埃德蒙頓 T5Y 6H3
孫慧穎, 馮杰, 梁月, 等. 組學(xué)技術(shù)在核盤(pán)菌研究中的應(yīng)用. 生物工程學(xué)報(bào), 2019, 35(4): 589–597.Sun HY, Feng J, Liang Y, et al. Application of omics approaches in Sclerotinia sclerotiorum. Chin J Biotech, 2019, 35(4): 589–597.
核盤(pán)菌是一種典型的死體營(yíng)養(yǎng)型植物病原真菌,全球分布且寄主范圍廣泛,嚴(yán)重危害多種植物,對(duì)農(nóng)業(yè)生產(chǎn)造成嚴(yán)重?fù)p失。核盤(pán)菌研究主要集中在真菌生物學(xué)及病理學(xué)等方面。近年來(lái),隨著高通量分析技術(shù)的不斷改進(jìn),多種組學(xué)技術(shù)為系統(tǒng)生物學(xué)研究提供了平臺(tái)。文中主要綜述利用多種組學(xué)研究方法在植物病原真菌核盤(pán)菌研究中的應(yīng)用及研究進(jìn)展,探討開(kāi)展植物病原物及病害發(fā)展的系統(tǒng)性研究思路,以期為核盤(pán)菌的分子生物學(xué)及致病機(jī)理等研究提供參考,同時(shí)也為其他植物病原物及病害系統(tǒng)研究提供理論依據(jù)。
核盤(pán)菌,草酸,組學(xué),致病機(jī)理,分子互作
核盤(pán)菌是一種典型的死體營(yíng)養(yǎng)型真菌,在世界各地引起多種病害,屬于廣泛分布且具毀滅性的植物病原菌之一[1]。核盤(pán)菌研究多集中于寄主范圍、生物學(xué)特性、侵染機(jī)制及防控方法等方面。近年來(lái)隨著分子生物學(xué)和生物化學(xué)研究方法的發(fā)展,多層面信息資源的整合以及多組學(xué) (Multi-omics) 方法的運(yùn)用,為探索微生物生物學(xué)等方面奠定基礎(chǔ)[2]。因此,本文主要綜述利用多種組學(xué)研究方法在植物病原真菌核盤(pán)菌研究中的應(yīng)用及研究進(jìn)展,探討針對(duì)植物病原物及病害發(fā)展的系統(tǒng)性研究思路,以期為核盤(pán)菌的分子生物學(xué)及致病機(jī)理等研究提供參考,同時(shí)也為其他植物病原物及病害系統(tǒng)研究提供理論依據(jù)。
核盤(pán)菌 ((Lib.) de Bary) 屬于真菌界 (Fungi)、子囊菌門(mén) (Ascomycota)、盤(pán)菌綱 (Discomycetes)、核盤(pán)菌屬 ()[1]。核盤(pán)菌寄主范圍廣泛,已知寄主植物超過(guò)400種,主要包括雙子葉植物 (如向日葵、大豆、油菜和多種蔬菜),但部分單子葉植物 (如洋蔥等) 也可被侵染[3]。據(jù)統(tǒng)計(jì),該真菌引起病害60余種,包括最為常見(jiàn)的菌核病、棉腐病、軟腐病、莖腐病等[1]。核盤(pán)菌侵染植物的莖蔓、葉片和果實(shí),造成腐爛壞死;在高濕條件下,罹病部位表面密生棉絮狀菌絲體并不斷擴(kuò)大,后期在莖稈及種莢內(nèi)部形成大量菌核[3]。核盤(pán)菌病害循環(huán)中越冬菌核在適宜環(huán)境下萌發(fā)形成子囊盤(pán)及子囊,釋放大量子囊孢子并隨風(fēng)傳播至寄主組織上萌發(fā)引起初侵染;隨著受侵染的組織 (如花瓣) 散落在葉片和葉鞘上,造成腐爛壞死,其表面密生白色棉絮狀菌絲體,在莖稈及種莢內(nèi)部產(chǎn)生大量菌核以抵抗外界不利環(huán)境并越冬,次年再引起新病害發(fā)生[1]。目前,核盤(pán)菌引起的病害防控方法有限,尚缺乏高抗品種,生物防治見(jiàn)效緩慢且受到環(huán)境限制,而化學(xué)防治易造成環(huán)境污染并產(chǎn)生抗藥性等問(wèn)題[1]。
各種組學(xué)技術(shù)能夠高通量定量分析各種生物分子,監(jiān)測(cè)不同生物狀態(tài)下的變異,已廣泛用于微生物系統(tǒng)生物學(xué)研究中,包括測(cè)定mRNA轉(zhuǎn)錄水平的轉(zhuǎn)錄組學(xué) (Transcriptomics)、定量蛋白豐度的蛋白質(zhì)組學(xué) (Proteomics)、鑒定小分子細(xì)胞代謝物的代謝組學(xué) (Metabolomics) 等[2]。多組學(xué)整合生物信息學(xué)等方法,為深入了解真菌的生活史和進(jìn)化、真菌與環(huán)境關(guān)系 (如與寄主植物的互作) 等研究提供大量數(shù)據(jù)與信息[4]。隨著核盤(pán)菌基因組測(cè)序的完成以及基于高通量測(cè)序、色譜質(zhì)譜和核磁共振技術(shù)等組學(xué)技術(shù)的飛速發(fā)展,核 盤(pán)菌分子生物學(xué)的研究已經(jīng)逐步跨入后基因組時(shí)代。
基因組學(xué) (Genomics) 作為一門(mén)交叉學(xué)科,包括基因組的結(jié)構(gòu)、功能和進(jìn)化等諸多方面[5],其研究對(duì)微生物學(xué)及生命科學(xué)產(chǎn)生了重大影響[6]。其中,真菌基因組計(jì)劃 (1KFG) 的開(kāi)啟為真菌遺傳與進(jìn)化的研究提供基礎(chǔ)[5]。核盤(pán)菌基因組研究始于2005年,并完成初步注釋。核盤(pán)菌 (菌株1980) 的基因組約為38.3 Mb (圖譜大小39.6 Mb,ASM14694v2);GC含量約40%,低于同類(lèi)真菌,而外顯子比內(nèi)含子GC含量高6%?;蚪M含有約1.4萬(wàn)個(gè)預(yù)測(cè)基因,同屬于盤(pán)菌亞門(mén)的其他真菌則含有約1.1萬(wàn)個(gè),這種差異源于其含有大量小于100個(gè)氨基酸的預(yù)測(cè)蛋白[7]。此外,核盤(pán)菌的線粒體基因組 (NC_035155.1) 約為128.8 kb,為深入研究基因組結(jié)構(gòu)組成及進(jìn)化等提供參考[8]。另外,基因組含有7.7%的重復(fù)序列,這可能影響基因組結(jié)構(gòu)及功能[7]。核盤(pán)菌編碼基因參與真菌發(fā)育 (如有性生殖、子實(shí)體發(fā)育及孢子產(chǎn)生) 和致病機(jī)制 (如草酸合成、肽酶的分泌及效應(yīng)蛋白等),也與進(jìn)化、代謝、信號(hào)途徑相關(guān)[7]。比較基因組分析預(yù)測(cè)發(fā)現(xiàn)大量分泌蛋白參與植物細(xì)胞氧化還原反應(yīng)等[9],核盤(pán)菌通過(guò)草酸調(diào)控植物氧化還原動(dòng)態(tài)平衡 (Redox homeostasis) 引起侵染[10]。核盤(pán)菌具有非典型的雙速基因組 (Two-speed genome) 特點(diǎn),能夠利用轉(zhuǎn)座和重復(fù)序列誘導(dǎo)的點(diǎn)突變 (Repeat-induced point mutation,RIP) 促進(jìn)分泌蛋白的突變[11]。
轉(zhuǎn)錄組學(xué) (Transcriptomics) 聚焦從RNA水平研究基因表達(dá)及調(diào)控規(guī)律,對(duì)揭示真菌與植物的互作及致病性等機(jī)制具有重要意義[12]。轉(zhuǎn)錄組學(xué)研究技術(shù)主要包括cDNA文庫(kù)、表達(dá)序列標(biāo)簽文庫(kù) (Expressed sequence tags,EST)[13]、DNA微陣列技術(shù) (DNA microarray)[14]和RNA測(cè)序技術(shù) (RNA-seq)[15]等。隨著轉(zhuǎn)錄組技術(shù)的興起,近年來(lái)在核盤(pán)菌發(fā)育和致病等研究中得到了普遍應(yīng)用。核盤(pán)菌的基因組中含有330個(gè)轉(zhuǎn)錄因子 (TFs) 基因,69%在cDNA文庫(kù)或寡核苷酸芯片雜交出現(xiàn),其中12個(gè)轉(zhuǎn)錄因子僅在核盤(pán)菌中特異性表達(dá)[7]。通過(guò)比較菌絲及罹病組織的cDNA文庫(kù)發(fā)現(xiàn),細(xì)胞壁降解酶和絲裂原活化蛋白激酶 (MAPK) 信號(hào)途徑等參與核盤(pán)菌的發(fā)育與侵染[16]。罹病植物組織及侵染結(jié)構(gòu)的EST分析表明,不同基因 (如草酰乙酸水解酶OAH) 在致病過(guò)程中的轉(zhuǎn)錄表達(dá)模式各異[17]。利用EST及microarray分析發(fā)現(xiàn),部分核盤(pán)菌預(yù)測(cè)分泌蛋白參與真菌發(fā)育及侵染后寄主的轉(zhuǎn)錄調(diào)控[9]。另外,通過(guò)cDNA抑制消減雜交 (SSH) 或microarray對(duì)核盤(pán)菌與寄主植物互作機(jī)理研究表明,代謝、信號(hào)轉(zhuǎn)導(dǎo)及細(xì)胞防御等功能因子參與寄主防衛(wèi)反應(yīng)[18-19]。同時(shí),在草酸氧化酶 (OxO) 轉(zhuǎn)基因大豆microarray分析中也發(fā)現(xiàn)抗病反應(yīng)基因 (如細(xì)胞色素P450) 被誘導(dǎo)表達(dá)[20]。此外,非編碼RNAs (ncRNAs) 包括長(zhǎng)鏈非編碼RNA (lncRNAs) 和小非編碼RNA (sncRNAs),在真核生物中廣泛存在并參與轉(zhuǎn)錄調(diào)控、分化與發(fā)育、應(yīng)激反應(yīng)等[21]。通過(guò)高通量RNA-Seq方法發(fā)現(xiàn)lncRNAs參與核盤(pán)菌侵染所引起的植物應(yīng)激反應(yīng)與調(diào)控[22],部分sncRNA參與真菌發(fā)育調(diào)控[23]。比較不同抗性植物轉(zhuǎn)錄組變化揭示大量基因參與病原識(shí)別、茉莉酸及乙烯信號(hào)及病程相關(guān)蛋白等寄主反應(yīng)[24],特別是草酸能夠誘導(dǎo)鐵蛋白同源物表達(dá)[20]。研究也發(fā)現(xiàn)寄主油菜利用乙烯調(diào)控氧化還原動(dòng)態(tài)平衡獲得誘導(dǎo)抗性[25],并通過(guò)水化酶等因子協(xié)助病原菌定殖及調(diào)控防衛(wèi)反應(yīng)[26]。
蛋白質(zhì)組學(xué) (Proteomics) 是指在大規(guī)模水平上研究蛋白質(zhì)的特征,包括蛋白質(zhì)的表達(dá)、結(jié)構(gòu)和功能等[27]。隨著基因組計(jì)劃及反向遺傳學(xué)技術(shù)的發(fā)展,蛋白質(zhì)組逐漸成為真菌生活史、致病機(jī)理與分子互作等領(lǐng)域的主要研究手段[28]。目前,雙向凝膠電泳 (Two-dimensional gel electrophoresis,2-DE)、質(zhì)譜 (Mass spectrometry, MS)、同位素標(biāo)記相對(duì)和絕對(duì)定量技術(shù) (Isobaric tags for relative and absolute quantitation,iTRAQ) 等逐步用于核盤(pán)菌蛋白組學(xué)研究[27–29]。應(yīng)用2-DE和ESI-q-TOF MS/MS首次分析核盤(pán)菌蛋白質(zhì)組發(fā)現(xiàn),菌絲體蛋白主要與代謝和能量產(chǎn)生相關(guān),分泌蛋白具有細(xì)胞壁降解酶功能且參與致病[30]。菌絲細(xì)胞壁含有大量細(xì)胞壁合成酶 (如纖維素酶和果膠裂解酶等),但菌核細(xì)胞壁蛋白在形成中并未發(fā)生明顯變化[31]。菌核作為逆境存活結(jié)構(gòu)及病害初侵染源在真菌生活史及病害循環(huán)中具有重要作用[1]。通過(guò)對(duì)不同發(fā)育階段菌核蛋白質(zhì)組變化分析,脂類(lèi)及次生代謝功能蛋白參與早期發(fā)育,而碳水化合物代謝則在發(fā)育后期顯著增加[32];菌核滲出液作為菌核發(fā)育期主要特征,蛋白組分析表明碳水化合物代謝及信號(hào)轉(zhuǎn)導(dǎo)等參與分泌液形成[33]。利用生物信息學(xué)方法在基因組水平上預(yù)測(cè)的分泌蛋白在菌核滲出液及分泌物中均有發(fā)現(xiàn)[9,30,33]。此外,在蛋白質(zhì)組水平分析核盤(pán)菌侵染的寄主反應(yīng)發(fā)現(xiàn),光合作用、激素信號(hào)及抗氧化等蛋白與植物應(yīng)激反應(yīng)相關(guān)[34],而氧化還原動(dòng)態(tài)平衡、轉(zhuǎn)錄調(diào)控等參與植物抗性反應(yīng)[35],并調(diào)控寄主植物細(xì)胞程序性死亡[36]。草酸作為核盤(pán)菌致病因子介導(dǎo)寄主反應(yīng)[10],在蛋白質(zhì)組水平發(fā)現(xiàn)能夠抑制水楊酸信號(hào)途徑但不影響NADPH氧化酶參與的氧化還原動(dòng)態(tài)平衡[37],同時(shí)通過(guò)草酸積累調(diào)控不同菌齡的菌絲毒性[38]。
代謝組學(xué) (Metabolomics) 研究生命活動(dòng)過(guò)程中代謝物、小分子化合物及代謝產(chǎn)物的變化,并尋找代謝物與表型的關(guān)聯(lián)性[39]。真菌次生代謝物的產(chǎn)生過(guò)程復(fù)雜并與形態(tài)發(fā)育等相關(guān),例如代謝聚酮化合物 (PK)、非核糖體肽 (NRPS)、萜烯(Terpenes) 和吲哚生物堿 (Indole alkaloids) 等[40]。核盤(pán)菌基因組含有參與氨基酸合成及線粒體功能的初級(jí)代謝基因 (如NADH脫氫酶),同時(shí)具有 (非特異性) 毒素和其他次級(jí)代謝產(chǎn)物關(guān)鍵酶基因[7]。草酸作為非特異性毒素參與核盤(pán)菌侵染及寄主反應(yīng)調(diào)控[10],通過(guò)高效液相色譜 (HPLC) 分析發(fā)現(xiàn)草酸合成與碳水化合物(如葡萄糖、阿拉伯糖及木聚糖等) 和有機(jī)酸 (琥珀酸、蘋(píng)果酸、草酰乙酸) 等次生代謝物相關(guān)[41]。另外,核盤(pán)菌含有的生物堿及異香豆素 (Isocoumarins) 等次生代謝物具有細(xì)胞毒素活性[42],聚胺 (Polyamine) 影響分生孢子及菌核的發(fā)育[43–44],選擇性毒素核盤(pán)菌素 (Sclerin) 能夠引起寄主植物壞死與褪綠[45]。代謝組學(xué)研究也有助于闡明植物對(duì)核盤(pán)菌的抗性機(jī)制[46],例如,運(yùn)用氣相色譜-質(zhì)譜 (GC-MS) 聯(lián)用技術(shù)發(fā)現(xiàn)向日葵抗性與糖類(lèi)、有機(jī)酸、脂肪酸等代謝相關(guān)[47];菜豆抗性品種也含有氨基酸和植保素等代謝物[48];苯丙氨酸解氨酶 (PAL) 活性及植保素異黃酮的變化反映大豆抗病機(jī)制差 異[49];酚類(lèi)化合物和木質(zhì)素參與向日葵防衛(wèi)反 應(yīng)[50];擬南芥通過(guò)脂類(lèi)代謝參與寄主反應(yīng)[51];硫代葡萄糖苷和亞麻薺素 (Camalexin) 也與防衛(wèi)反應(yīng)相關(guān)[52]。
功能基因組 (Functional genomics) 主要基于高通量基因組分析策略在系統(tǒng)水平上研究基因功能[53],病理基因組學(xué) (Pathogenomics) 則關(guān)注病原菌的致病機(jī)理及其相關(guān)因子的功能與分子互作等[54]。核盤(pán)菌通過(guò)菌核萌發(fā)和有性生殖形成的子囊孢子造成病害發(fā)生與流行[55],表明菌核在真菌生活史及病害循環(huán)中發(fā)揮重要作用[1]。作為典型的同宗配合子囊真菌,交配型基因編碼的產(chǎn)物是有性生殖的重要調(diào)控因子[55]。核盤(pán)菌交配型基因座融合并相連,包括、、和,并存在與交配型轉(zhuǎn)換相關(guān)的染色體倒位現(xiàn)象[7,56]。其中,交配型、和基因缺陷型突變體能夠形成產(chǎn)囊體但無(wú)法形成子囊盤(pán),而基因突變則延緩菌核萌發(fā)并影響子囊盤(pán)形態(tài)及子囊孢子發(fā)育[55]。參與有性生殖調(diào)控的叉頭框蛋白 (SsFKH1) 影響核盤(pán)菌發(fā)育及致病性[57];而另一蛋白 (Ss-FoxE2) 只與子囊盤(pán)的形成有關(guān)卻不影響致病性[58]。此外,菌核的發(fā)育受到多種蛋白影響,其中特異性蛋白 (Ssp1和Ssp2) 參與菌核形成[59–60],黑色素合成蛋白 (Scd1和Thr1) 與抗逆性相關(guān)[61]。
核盤(pán)菌通過(guò)草酸調(diào)控寄主的氧化還原狀態(tài)并引起侵染[10]。草酸合成相關(guān)的草酰乙酸乙酰水解酶 (OAH) 影響核盤(pán)菌形態(tài)建成和毒性[62],草酸脫羧酶 (OxDC) 影響附著孢發(fā)育及初侵染[63]。另外,活性氧 (ROS) 參與的氧化還原動(dòng)態(tài)平衡是核盤(pán)菌引起病害的重要調(diào)控因子[10],如NADPH氧化酶 (SsNox) 影響草酸產(chǎn)生及菌核發(fā)育[64];過(guò)氧化氫酶 (SCAT1) 缺失引起菌絲分支及菌核發(fā)育異常且毒性降低[65];超氧化物歧化酶 (SsSOD1) 影響真菌毒性但與草酸及菌核的產(chǎn)生無(wú)關(guān)[66],而谷氨酰轉(zhuǎn)肽酶 (Ss-Ggt1) 與菌核和附著孢發(fā)育及寄主互作相關(guān)[67]。
植物病原真菌通過(guò)分泌蛋白調(diào)控寄主反應(yīng)建立侵染[11],利用單分子實(shí)時(shí)測(cè)序技術(shù) (Single molecule real-time sequencing technology) 在基因組分析中鑒定了70個(gè)候選效應(yīng)因子[11],轉(zhuǎn)錄組和蛋白質(zhì)組水平也發(fā)現(xiàn)大量分泌蛋白 (如效應(yīng)因子) 參與致病性或毒性[30,68]。例如,分泌蛋白阿拉伯呋喃糖酶 (Ssaxp) 影響真菌毒性[69];富含半胱氨酸蛋白 (SsCVNH)影響菌核發(fā)育及毒性[68],而富含半胱氨酸蛋白 (SsSSVP1) 卻參與植物壞死反應(yīng)[70];未知功能分泌蛋白 (ssv263) 與毒性有 關(guān)[71],并用于植物病害診斷及流行監(jiān)測(cè)[72];與附著孢形成相關(guān)的分泌蛋白 (Ss-Caf1) 也影響致病性及菌核發(fā)育[73];重排熱點(diǎn)蛋白 (Ss-Rhs1) 基因沉默導(dǎo)致菌落形態(tài)異常及毒性降低[74];木聚糖蛋白酶 (SsXyl1) 基因缺失引起菌核異常并降低毒性[75]。
核盤(pán)菌作為一種毀滅性的植物病原真菌,在世界范圍引起多種植物病害并造成嚴(yán)重經(jīng)濟(jì)損失。核盤(pán)菌引起的病害防控目前主要依賴(lài)化學(xué)殺菌劑,但隨著抗藥性、環(huán)境污染等問(wèn)題出現(xiàn)及消費(fèi)安全意識(shí)的提高,對(duì)經(jīng)濟(jì)、高效、環(huán)境友好的防控方案需求日益突出。了解植物病原真菌生物學(xué)基礎(chǔ),探索病害發(fā)生與發(fā)展規(guī)律,挖掘致病相關(guān)因子等研究為植物病害防控策略制定奠定基礎(chǔ)。隨著對(duì)復(fù)雜的生物系統(tǒng)的認(rèn)知逐漸深入,生物學(xué)研究已經(jīng)從分子水平發(fā)展到系統(tǒng)水平[76]。系統(tǒng)生物學(xué)(Systems biology) 作為多學(xué)科交叉研究領(lǐng)域,建立基于組學(xué)數(shù)據(jù)的整合分析策略,揭示生物系統(tǒng)的組成結(jié)構(gòu)與動(dòng)態(tài),代替僅關(guān)注單一分子或技術(shù)的傳統(tǒng)研究方法[77]。因此,整合多組學(xué)數(shù)據(jù)信息并運(yùn)用系統(tǒng)生物學(xué)研究方法論,更有助于全面認(rèn)識(shí)植物病原真菌及其引起的植物病害系統(tǒng)。以基因組學(xué)、轉(zhuǎn)錄組學(xué)、蛋白組學(xué)、代謝組學(xué)為基礎(chǔ)的組學(xué)技術(shù)在核盤(pán)菌研究中取得進(jìn)展(圖1),為深層次研究核盤(pán)菌及其致病機(jī)制等提供了科學(xué)依據(jù),但不同組學(xué)水平發(fā)掘的分子機(jī)理及調(diào)控網(wǎng)絡(luò)等仍然有待梳理。隨著核盤(pán)菌相關(guān)組學(xué)基礎(chǔ)研究不斷開(kāi)展,加之生物技術(shù)的迅猛發(fā)展,核盤(pán)菌的系統(tǒng)生物學(xué)及分子調(diào)控互作機(jī)制等方面需要特別關(guān)注以下幾個(gè)方面:擴(kuò)展組學(xué)研究?jī)?nèi)涵,如利用脂類(lèi)組學(xué) (Lipidomics)、糖組學(xué) (Glycomics) 及互作組學(xué) (Interactomics) 等;加強(qiáng)對(duì)真菌的基礎(chǔ)與分子生物學(xué)方面的大數(shù)據(jù)分析,通過(guò)構(gòu)建分子調(diào)控網(wǎng)絡(luò)以發(fā)掘相關(guān)因子 (如效應(yīng)因子) 及其功能;探索植物寄主與病原真菌間的識(shí)別與應(yīng)答機(jī)理,了解二者互作及協(xié)同進(jìn)化關(guān)系;完善植物及真菌的遺傳操作技術(shù),包括引入基因編輯CRISPR/Cas系統(tǒng)。通過(guò)上述方面的系統(tǒng)性研究,不僅有助于闡釋核盤(pán)菌及其引起的病害系統(tǒng)研究,也為探索其他真菌及植物病害提供研究策略參考。
圖1 核盤(pán)菌的多組學(xué)分析體系
[1] Bolton MD, Thomma BPHJ, Nelson BD.(Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol, 2006, 7(1): 1?16.
[2] Zhang WW, Li F, Nie L. Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology, 2010, 156(2): 287?301.
[3] Boland GJ, Hall R. Index of plant hosts of. Can J Plant Pathol, 1994, 16(2): 93?108.
[4] Silva RN. Perspectives in genomics the future of fungi in ‘omics’ era. Curr Genomics, 2016, 17(2): 82–84.
[5] Grigoriev IV, Nikitin R, Haridas S, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res, 2014, 42(D1): D699?D704.
[6] Kan FL, Chen WX. Microbial genomic research and its impact on biological science. Acta Microbiol Sin, 2000, 40(3): 331?333 (in Chinese). 闞鳳玲, 陳文新. 微生物基因組研究及其對(duì)生命科學(xué)的影響. 微生物學(xué)報(bào), 2000, 40(3): 331?333.
[7] Amselem J, Cuomo CA, van Kan JAL, et al. Genomic analysis of the necrotrophic fungal pathogensand. PLoS Genet, 2011, 7(8): e1002230.
[8] Freel KC, Friedrich A, Schacherer J. Mitochondrial genome evolution in yeasts: an all-encompassing view. FEMS Yeast Res, 2015, 15(4): fov023.
[9] Heard S, Brown NA, Hammond-Kosack K. An interspecies comparative analysis of the predicted secretomes of the necrotrophic plant pathogensand. PLoS ONE, 2015, 10(6): e0130534.
[10] Williams B, Kabbage M, Kim HJ, et al. Tipping the balance:secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog, 2011, 7(6): e1002107.
[11] Derbyshire M, Denton-Giles M, Hegedus D, et al. The complete genome sequence of the phytopathogenic fungusreveals insights into the genome architecture of broad host range pathogens. Genome Biol Evol, 2017, 9(3): 593?618.
[12] Bhadauria V, Popescu L, Zhao WS, et al. Fungal transcriptomics. Microbiol Res, 2007, 162(4): 285?298.
[13] Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252(5013): 1651–1656.
[14] Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467–470.
[15] Conesa A, Madrigal P, Tarazona S, et al. A survey of best practices for RNA-seq data analysis. Genome Biol, 2016, 17(1): 13.
[16] Li RG, Rimmer R, Buchwaldt L, et al. Interaction ofwith a resistantcultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal Genet Biol, 2004, 41(8): 735?753.
[17] Sexton AC, Cozijnsen AJ, Keniry A, et al. Comparison of transcription of multiple genes at three developmental stages of the plant pathogen. FEMS Microbiol Lett, 2006, 258(1): 150?160.
[18] Oliveira MB, Junior ML, Grossi-de-Sá MF, et al. Exogenous application of methyl jasmonate induces a defense response and resistance againstin dry bean plants. J Plant Physiol, 2015, 182: 13?22.
[19] Yang B, Srivastava S, Deyholos MK, et al. Transcriptional profiling of canola (L.) responses to the fungal pathogen. Plant Sci, 2007, 173(2): 156–171.
[20] Calla B, Blahut-Beatty L, Koziol L, et al. Transcriptome analyses suggest a disturbance of iron homeostasis in soybean leaves during white mould disease establishment. Mol Plant Pathol, 2014, 15(6): 576?588.
[21] Mattick JS. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep, 2001, 2(11): 986?991.
[22] Joshi RK, Megha S, Rahman MH, et al. A global study of transcriptome dynamics in canola (L.) responsive toinfection using RNA-Seq. Gene, 2016, 590(1): 57?67.
[23] Zhou JH, Fu YP, Xie JT, et al. Identification of microRNA-like RNAs in a plant pathogenic fungusby high-throughput sequencing. Mol Genet Genomics, 2012, 287(4): 275?282.
[24] Wu J, Zhao Q, Yang QY, et al. Comparative transcriptomic analysis uncovers the complex genetic network for resistance toin. Sci Rep, 2016, 6: 19007.
[25] Girard IJ, Tong CB, Becker MG, et al. RNA sequencing ofreveals cellular redox control ofinfection. J Exp Bot, 2017, 68(18): 5079?5091.
[26] Seifbarghi S, Borhan MH, Wei YD, et al. Changes in thetranscriptome during infection of. BMC Genomics, 2017, 18: 266.
[27] Zhang X, Fang AQ, Riley CP, et al. Multi-dimensional liquid chromatography in proteomics—a review. Anal Chim Acta, 2010, 664(2): 101?113.
[28] Gonzalez-Fernandez R, Jorrin-Novo JV. Contribution of proteomics to the study of plant pathogenic fungi. J Proteome Res, 2012, 11(1): 3?16.
[29] Zieske LR. A perspective on the use of iTRAQTMreagent technology for protein complex and profiling studies. J Exp Bot, 2006, 57(7): 1501?1508.
[30] Yajima W, Kav NNV. The proteome of the phytopathogenic fungus. Proteomics, 2006, 6(22): 5995?6007.
[31] Liu LZ, Free SJ. Characterization of thecell wall proteome. Mol Plant Pathol, 2016, 17(6): 985?995.
[32] Liang Y, Rahman MH, Strelkov SE, et al. Developmentally induced changes in the sclerotial proteome of. Fungal Biol, 2010, 114(8): 619?627.
[33] Liang Y, Strelkov SE, Kav NNV. The proteome of liquid sclerotial exudates from. J Proteome Res, 2010, 9(6): 3290?3298.
[34] Liang Y, Srivastava S, Rahman MH, et al. Proteome changes in leaves ofL. as a result ofchallenge. J Agric Food Chem, 2008, 56(6): 1963?1976.
[35] Cao JY, Xu YP, Cai XZ. TMT-based quantitative proteomics analyses reveal novel defense mechanisms ofagainst the devastating necrotrophic pathogen S. J Proteomics, 2016, 143: 265?277.
[36] Wen L, Tan TL, Shu JB, et al. Using proteomic analysis to find the proteins involved in resistance againstin adult. Eur J Plant Pathol, 2013, 137(3): 505?523.
[37] Liang Y, Strelkov SE, Kav NNV. Oxalic acid-mediated stress responses inL. Proteomics, 2009, 9(11): 3156?3173.
[38] Wang JP, Xu YP, Zang XP, et al.virulence is affected by mycelial agereduction in oxalate biosynthesis. J Integr Agric, 2016, 15(5): 1034?1045.
[39] Nielsen J, Oliver S. The next wave in metabolome analysis. Trends Biotechnol, 2005, 23(11): 544?546.
[40] Keller NP, Turner G, Bennett JW. Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol, 2005, 3(12): 937?947.
[41] Penn CD, Daniel SL. Salicylate degradation by the fungal plant pathogen. Curr Microbiol, 2013, 67(2): 218?225.
[42] Azevedo L, Chagas-Paula DA, Kim H, et al. White mold (), friend or foe: cytotoxic and mutagenic activitiesand. Food Res Int, 2016, 80: 27?35.
[43] Gárriz A, Dalmasso MC, Marina M, et al. Polyamine metabolism during the germination of Sascospores and its relation with host infection. New Phytol, 2004, 161(3): 847?854.
[44] Gárrriz A, Gonzalez ME, Marina M, et al. Polyamine metabolism during sclerotial development of. Mycol Res, 2008, 112(3): 414?422.
[45] Pedras MSC, Ahiahonu PWK. Phytotoxin production and phytoalexin elicitation by the phytopathogenic fungus. J Chem Ecol, 2004, 30(11): 2163?2179.
[46] Heuberger AL, Robison FM, Lyons SMA, et al. Evaluating plant immunity using mass spectrometry-based metabolomics workflows. Front Plant Sci, 2014, 5: 291.
[47] Peluffo L, Lia V, Troglia C, et al. Metabolic profiles of sunflower genotypes with contrasting response toinfection. Phytochemistry, 2010, 71(1): 70?80.
[48] Robison FM, Turner M, Jahn CE, et al. Common bean varieties demonstrate differential physiological and metabolic responses to the pathogenic fungus. Plant Cell Environ, 2018, 41(9): 2141?2154.
[49] Malen?i? D, Cveji? J, Tepav?evi? V, et al. Changes in-phenylalanine ammonia-lyase activity and isoflavone phytoalexins accumulation in soybean seedlings infected with. Cent Eur J Biol, 2013, 8(9): 921?929.
[50] Monazzah M, Soleimani MJ, Enferadi ST, et al. Effects of oxalic acid and culture filtrate ofon metabolic changes in sunflower evaluated using FT-IR spectroscopy. J Gen Plant Pathol, 2018, 84(1): 2?11.
[51] Wang XJ, Li JM, Zhu P. Effect ofon lipid metabolism in. J Plant Dis Prot, 2017, 124(5): 421?426.
[52] Stotz HU, Sawada Y, Shimada Y, et al. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense ofagainst. Plant J, 2011, 67(1): 81?93.
[53] Weld RJ, Plummer KM, Carpenter MA, et al. Approaches to functional genomics in filamentous fungi. Cell Res, 2006, 16(1): 31?44.
[54] Schmidt SM, Panstruga R. Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis? Curr Opin Plant Biol, 2011, 14(4): 392?399.
[55] Doughan B, Rollins JA. Characterization ofgene functions in the life cycle ofreveals a lineage-specificgene functioning in apothecium morphogenesis. Fungal Biol, 2016, 120(9): 1105?1117.
[56] Chitrampalam P, Inderbitzin P, Maruthachalam K, et al. Themating type locus () contains a 3.6-kb region that is inverted in every meiotic generation. PLoS ONE, 2013, 8(2): e56895.
[57] Fan HD, Yu G, Liu YZ, et al. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in. Mol Plant Pathol, 2017, 18(7): 963?975.
[58] Wang L, Liu YZ, Liu JL, et al. Thegene is required for apothecial development. Phytopathology, 2016, 106(5): 484?490.
[59] Li MY, Rollins JA. The development-specific protein (Ssp1) fromis encoded by a novel gene expressed exclusively in sclerotium tissues. Mycologia, 2009, 101(1): 34?43.
[60] Li MY, Rollins JA. The development-specificandgenes ofencode lectins with distinct yet compensatory regulation. Fungal Genet Biol, 2010, 47(6): 531?538.
[61] Liang Y, Xiong W, Steinkellner S, et al. Deficiency of the melanin biosynthesis genesandaffects sclerotial development and vegetative growth, but not pathogenicity, in. Mol Plant Pathol, 2018, 19(6): 1444?1453.
[62] Liang XF, Liberti D, Li MY, et al. Oxaloacetate acetylhydrolase gene mutants ofdo not accumulate oxalic acid, but do produce limited lesions on host plants. Mol Plant Pathol, 2015, 16(6): 559?571.
[63] Liang XF, Moomaw EW, Rollins JA. Fungal oxalate decarboxylase activity contributes toearly infection by affecting both compound appressoria development and function. Mol Plant Pathol, 2015, 16(8): 825?836.
[64] Kim HJ, Chen CB, Kabbage M, et al. Identification and characterization ofNADPH oxidases. Appl Environ Microbiol, 2011, 77(21): 7721?7729.
[65] Yarden O, Veluchamy S, Dickman MB, et al.catalase SCAT1 affects oxidative stress tolerance, regulates ergosterol levels and controls pathogenic development. Physiol Mol Plant Pathol, 2014, 85: 34?41.
[66] Xu LS, Chen WD. Random T-DNA mutagenesis identifies a Cu/Zn superoxide dismutase gene as a virulence factor of. Mol Plant Microbe Interact, 2013, 26(4): 431?441.
[67] Li MY, Liang XF, Rollins JA.γ-glutamyl transpeptidase (Ss-Ggt1) is required for regulating glutathione accumulation and development of sclerotia and compound appressoria. Mol Plant Microbe Interact, 2012, 25(3): 412?420.
[68] Lyu X, Shen CC, Fu YP, et al. Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Sci Rep, 2015, 5: 15565.
[69] Yajima W, Liang Y, Kav NNV. Gene disruption of an arabinofuranosidase/β-xylosidase precursor decreasesvirulence on canola tissue. Mol Plant Microbe Interact, 2009, 22(7): 783?789.
[70] Lyu X, Shen CC, Fu YP, et al. A small secreted virulence-related protein is essential for the necrotrophic interactions ofwith its host plants. PLoS Pathog, 2016, 12(2): e1005435.
[71] Liang Y, Yajima W, Davis MR, et al. Disruption of a gene encoding a hypothetical secreted protein fromreduces its virulence on canola (). Can J Plant Pathol, 2013, 35(1): 46?55.
[72] Ziesman BR, Turkington TK, Basu U, et al. A quantitative PCR system for measuringin canola (). Plant Dis, 2016, 100(5): 984?990.
[73] Xiao XQ, Xie JT, Cheng JS, et al. Novel secretory protein Ss-Caf1 of the plant-pathogenic fungusis required for host penetration and normal sclerotial development. Mol Plant Microbe Interact, 2014, 27(1): 40?55.
[74] Yu Y, Xiao JF, Zhu WJ, et al. Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of S. Mol Plant Pathol, 2017, 18(8): 1052?1061.
[75] Yu Y, Xiao JF, Du J, et al. Disruption of the gene encoding endo-β-1, 4-xylanase affects the growth and virulence of. Front Microbiol, 2016, 7: 1787.
[76] Kitano H. Systems biology: a brief overview. Science, 2002, 295(5560): 1662?1664.
[77] Durmu? S, ?ak?r T, ?zgür A, et al. A review on computational systems biology of pathogen-host interactions. Front Microbiol, 2015, 6: 235.
Application of omics approaches in
Huiying Sun1, Jie Feng2, Yue Liang1, Zehao Wang1, and Tingyue Wang1
1 College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China 2 The Alberta Plant Health Lab, Alberta Agriculture and Forestry, Edmonton, Alberta T5Y 6H3, Canada
is a typical necrotrophic plant pathogenic fungus that distributes worldwide and causes severe diseases on a broad-range of plant species. Studies onhave been mainly focused on biology and pathology. The development of high-throughput technologies enabled multi-omics approaches for systems biology. This review summarizes current researches onandproposes systemic strategies for understanding its biology and pathology, to provide novel insights and references for further investigation on molecular biology and pathogenesis of the pathogenic fungi and the pathosystems.
, oxalic acid, omics, pathogenesis, molecular interactions
10.13345/j.cjb.180361
September 8, 2018;
December 4, 2018
Scientific Research Foundation for the Introduced Talents of Shenyang Agricultural University (No. 20153040), Program for Liaoning Excellent Talents in University (No. LR2015058).
Yue Liang. Tel/Fax: +86-24-88487148; E-mail: yliang@syau.edu.cn
沈陽(yáng)農(nóng)業(yè)大學(xué)引進(jìn)人才科研啟動(dòng)費(fèi)項(xiàng)目 (No. 20153040),遼寧省高等學(xué)校優(yōu)秀人才支持計(jì)劃 (No. LR2015058) 資助。
2019-01-08
http://kns.cnki.net/kcms/detail/11.1998.Q.20190107.1310.004.html
(本文責(zé)編 陳宏宇)