国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

動態(tài)地下水位變化引起的基坑底抗?jié)B流穩(wěn)定性計算新方法

2019-04-15 11:05:40章麗莎應宏偉王迪謝康和
中南大學學報(自然科學版) 2019年3期
關鍵詞:穩(wěn)定滲流細粒滲流

章麗莎,應宏偉,王迪,謝康和

?

動態(tài)地下水位變化引起的基坑底抗?jié)B流穩(wěn)定性計算新方法

章麗莎1, 2,應宏偉2,王迪2,謝康和2

(1. 浙江大學城市學院 工程學院,浙江 杭州,310015;2. 浙江大學 建筑工程學院濱海和城市巖土工程研究中心,浙江 杭州,310058)

針對地下水位動態(tài)變化條件下基坑工程的滲流穩(wěn)定性問題,基于越流理論,給出基坑底靠近支護結構處的出逸比降解析解答,提出考慮非穩(wěn)定滲流的基坑底抗?jié)B流穩(wěn)定性簡化計算方法。通過算例計算,進行出逸比降的解析解正確性驗證和影響因素分析,并將該方法應用于工程案例。研究結果表明:當基坑土體滲透系數(shù)較大時,考慮非穩(wěn)定滲流的出逸比降解析解答與傳統(tǒng)穩(wěn)定滲流假定的結果一致,驗證了解析解的正確性;出逸比降的影響因素可通過與土體滲透系數(shù)、壓縮模量正相關,與地下水位變化的角頻率和計算模型細粒土層總厚度的平方負相關的量綱一因子統(tǒng)一表示;在實際工程中,出逸比降與地下水位的變化不同步,應注意工程降水時出逸比降未能及時有效減小的情況,避免基坑工程的抗?jié)B流破壞風險。

非穩(wěn)定滲流;出逸比降;抗?jié)B流穩(wěn)定性;動態(tài)地下水位變化;基坑

近年來,隨著城市建設快速發(fā)展,深基坑工程日趨增多,基坑工程面臨深度深、平面規(guī)模大、施工環(huán)境復雜以及施工難度大等挑戰(zhàn),特別是在濱海、沿江地區(qū)的深基坑工程更是面臨復雜地下水作用可能引起的基坑變形過大和基坑失穩(wěn)等風險,該類地區(qū)的深基坑設計須進行基坑抗?jié)B流穩(wěn)定性計算。目前,對基坑底的抗?jié)B流穩(wěn)定性計算多基于穩(wěn)定滲流條件展開,規(guī)范和手冊等[1?3]通過坑內外水頭差除以滲流路徑獲得基坑底的出逸比降,與臨界水力坡降進行對比,使兩者的比值滿足一定的安全系數(shù)。在實際工程中,坑外地下水位將隨著降雨、地下水的抽取和回灌、工程臨近江河湖泊的水位變化等情況發(fā)生變化[4?6],當基坑土體為細粒土(粉土、黏土等)時,基坑土體中會發(fā)生非穩(wěn)定滲流[7],對基坑的抗?jié)B流穩(wěn)定性產(chǎn)生一定的影響。大多數(shù)關于非穩(wěn)定滲流作用下的基坑研究是通過有限元數(shù)值軟件進行基坑變形[8]和基坑整體穩(wěn)定性[9]等相關的計算和分析,較少涉及非穩(wěn)定滲流條件下基坑底的抗?jié)B流穩(wěn)定性理論研究。在此,本文作者采用解析的方法研究坑外地下水位動態(tài)變化引起的基坑土體非穩(wěn)定滲流對基坑底抗?jié)B流穩(wěn)定性的影響,提出考慮非穩(wěn)定滲流的基坑底抗?jié)B流穩(wěn)定性簡化計算方法。

1 傳統(tǒng)的基坑底抗?jié)B流穩(wěn)定性計算方法

圖1所示為濱海、沿江地區(qū)的基坑斷面示意圖,該類地區(qū)地基表層通常為具有強透水性的粗粒土或雜填土,下臥深厚透水性較弱的細粒土。沿基坑支護結構并繞過支護結構底部的地下水滲流路徑最短,是最容易發(fā)生滲透破壞的位置之一,因此,以地下水位變化引起的沿支護結構的滲流作為主要研究對象,計算基坑底靠近支護結構處的抗?jié)B流穩(wěn)定性。

圖1 動態(tài)變化地下水位作用下基坑斷面示意圖

規(guī)范和手冊等[1?3]給出的基坑抗?jié)B流穩(wěn)定性驗算指出,滲流的水力坡降不應超過臨界水力坡降,如下式所示:

因此,采用傳統(tǒng)方法進行動態(tài)地下水作用下基坑底抗?jié)B流穩(wěn)定性驗算時,應滿足

事實上,地下水位動態(tài)變化將在細粒土層中引起非穩(wěn)定滲流從而產(chǎn)生超靜孔壓,進而影響基坑底靠近支護結構處的出逸比降,與穩(wěn)定滲流的情況存在較大差異。本文提出了考慮地下水位動態(tài)變化的基坑底抗?jié)B流穩(wěn)定性計算新方法:根據(jù)越流理論,求解非穩(wěn)定滲流在細粒土中產(chǎn)生的超靜孔隙水壓力,獲得地下水位動態(tài)變化引起的出逸比降變化值,結合原有恒定地下水位下穩(wěn)定滲流的初始出逸比降,得到地下水位動態(tài)變化條件下基坑底靠近支護結構處的出逸比降,進行抗?jié)B流穩(wěn)定性驗算。

2 基坑底抗?jié)B流穩(wěn)定性計算新方法

2.1 計算模型及基本假定

由于地下水繞支護結構底部的滲流是連續(xù)的,可以把沿支護結構底部的土體和基坑被動區(qū)假想為坑外主動區(qū)的底部,與主動區(qū)組成一個單層地基系統(tǒng)[4, 11],如圖2所示。于是,地下水位變化引起的基坑細粒土層中沿支護結構的滲流可簡化為一維非穩(wěn)定滲流。

若基坑平面長度和寬度均較大且逐層開挖歷時較長,則基坑開挖至某一工況時可認為原有地下水位在土體中已形成穩(wěn)定滲流。為簡化分析,主要研究基坑開挖至某一工況時在原有恒定地下水位條件下發(fā)生地下水位動態(tài)變化引起的基坑底抗?jié)B流穩(wěn)定性問題。暫不考慮被動區(qū)土體卸荷效應、加固作用等影響,將表征基坑主動區(qū)和被動區(qū)土體基本物理性質、力學特性相關的土性參數(shù)取值相同。由于上覆粗粒土的滲透系數(shù)遠大于下臥細粒土的滲透系數(shù),可暫不考慮粗粒土層中滲流引起的水頭損失[7],粗粒土層底部作用于模型細粒土層上部邊界的水壓力近似地取為水頭壓力。當上覆粗粒土層的飽和重度與天然重度差別很小時,可忽略不計,即不考慮上覆粗粒土層中的地下水位變化引起的下臥深厚細粒土層中總應力的變化,于是,可將粗粒土層中地下水位變化以邊界孔壓變化的形式作用于下臥細粒土層的上部邊界。

圖2 動態(tài)變化地下水位作用下基坑底抗?jié)B流穩(wěn)定性計算的簡化模型

基于以上計算模型的基本假定,得到地下水位動態(tài)變化引起的超靜孔壓在細粒土層中沿支護結構的傳播控制方程為

本文計算模型中細粒土層的頂部邊界取為地下水壓力的變化值隨時間動態(tài)變化的表達式,其邊界條件可表示為

計算模型底部邊界(即基坑底開挖面)為透水邊界,其邊界條件的表達式為

初始條件為

2.2 超靜孔壓解析計算

2.3 出逸比降解析計算

對本文解析解答的適用條件和具體應用進行如下說明:

2) 由于模型頂部邊界條件(5)并不滿足控制方程式(4),使得式(13)求解得到的超靜孔壓僅適用于當0<≤的情況,但當無限趨近于=0時該解仍適用。為求解方便,可由邊界條件(5)直接確定=0處超靜孔隙水壓力。

3 計算與分析

3.1 出逸比降解析解的驗證

圖3 出逸比降解析解驗證

圖4 不同θ對應的出逸比降隨時間變化曲線

3.2 出逸比降的影響因素

不同對應的出逸比降隨時間變化曲線如圖4所示。從圖4可以發(fā)現(xiàn):基坑底靠近支護結構處出逸比降隨時間的變化曲線受的影響明顯,越大,出逸比降的變化幅值衰減越少,相位差越?。划敶笥谀骋粩?shù)值時(如=10, 100),本文方法求解的出逸比降計算結果與傳統(tǒng)方法求得的結果基本吻合,不存在變化幅值衰減、相位差或滯后性等現(xiàn)象;當較小時(如=0.1),出逸比降變化幅值較小,其波形也存在明顯的相位差;當很小時(如=0.01),出逸比降受地下水位變化的影響不明顯或幾乎不受地下水位變化的影響。

3.3 工程應用

采用傅里葉級數(shù)展開的方法求解式(17),由式(9)~(11)求解得到A=0 (其中,=0, 1, 2, 3, 4, …),1=45,B=0 (其中,2, 3, …),均代入式(13)得到:

圖5 某工程地下水位變化示意圖

根據(jù)以上參數(shù)可計算基坑底靠近支護結構處的出逸比降隨時間變化情況等計算結果。

圖6所示為該工程降雨及降水引起的地下水位變化情況下的出逸比降的本文方法和傳統(tǒng)方法的求解結果,并與地下水位保持不變情況下的出逸比降解答對比。從圖6可以發(fā)現(xiàn):采用本文方法的出逸比降計算結果與傳統(tǒng)方法的結果存在較大差異;在地下水位上升初期,本文方法計算的基坑底靠近支護結構處的出逸比降幾乎無變化,與地下水位不變情況下的出逸比降解答基本一致;在地下水位上升后期及降水過程中,本文方法計算的出逸比降逐漸增大;由于工程降水完成后,地下水位變化引起的細粒土中的超靜孔壓將不斷消散,出逸比降也將不斷減小,可認為工程降水完成時本文方法求解的出逸比降達到最大值。該現(xiàn)象可以通過圖4進行闡釋。對于該工程情況而言,由于細粒土為粉土,其滲透系數(shù)較小,計算得到≈ 0.062,使得出逸比降的最大值為0.3,較傳統(tǒng)方法計算得到的最大出逸比降值0.4有所減小且存在明顯的滯后現(xiàn)象?!痘庸こ淌謨浴穂3]認為:安全系數(shù)的取值不應小于2,取=2,粉土的cr約為0.8,滿足式(3),此次工程降水可有效預防基坑發(fā)生抗?jié)B流穩(wěn)定性破壞。

1—本文方法;2—傳統(tǒng)方法;3—地下水位保持不變。

通過以上工程算例分析可以發(fā)現(xiàn):由于透水性較弱的細粒土的越流作用,導致地下水位升高引起細粒土中的超靜孔壓緩慢增加,使得基坑底靠近支護結構處的出逸比降并未隨地下水位的變化發(fā)生同步變化。對于某些大型基坑工程,其平面長度和寬度均較大、開挖深度深,一般采用分級降水后進行分層開挖,建議在降坑外地下水方案設計時考慮細粒土層的越流特性,特別注意工程降水引起坑外地下水位下降但基坑底出逸比降的減小幅度不大并存在明顯滯后性的情況,避免基坑工程的抗?jié)B流破壞風險。

4 結論

1) 坑外地下水位動態(tài)變化將引起非穩(wěn)定滲流從而影響基坑底靠近支護結構處的出逸比降,與基于穩(wěn)定滲流假定的出逸比降計算結果存在較大差異,應進行考慮非穩(wěn)定滲流的基坑底抗?jié)B流穩(wěn)定性驗算;當細粒土的滲透系數(shù)較大時,坑外地下水位變化引起的計算模型邊界孔壓變化將在細粒土中迅速傳播形成穩(wěn)定滲流,可采用傳統(tǒng)方法計算基坑底的抗?jié)B流穩(wěn)定性。

2) 考慮非穩(wěn)定滲流的基坑底靠近支護結構處出逸比降的影響因素,可通過與土體滲透系數(shù)、壓縮模量正相關,與地下水位變化的角頻率和計算模型細粒土層總厚度的平方負相關的量綱一因子統(tǒng)一表示。當較大時,本文方法計算得到的出逸比降與傳統(tǒng)方法的計算結果一致,不存在變化幅值衰減、相位差或滯后性等現(xiàn)象;隨著減小,出逸比降的變化幅值將不斷衰減,出現(xiàn)明顯的滯后性。

3) 當細粒土的透水性較弱時,由于越流作用,導致地下水位變化引起細粒土中的超靜孔壓緩慢地傳播,基坑底靠近支護結構處的出逸比降與地下水位的變化不同步。在實際工程降坑外降地下水設計時,應考慮基坑土體的越流特性,還需注意工程降水引起坑外地下水位下降但基坑底的出逸比降未及時減小的情況,避免基坑工程的抗?jié)B流破壞風險。

[1] GB 50007—2011, 建筑地基基礎設計規(guī)范[S]. GB 50007—2011, Code for design of building foundation[S].

[2] DG/TJ 08-61—2010, 基坑工程技術規(guī)范[S].DG/TJ 08-61—2010, Technical code for excavation engineering[S].

[3] 劉國彬, 王衛(wèi)東. 基坑工程手冊[M]. 北京: 中國建筑工業(yè)出版社, 2010: 144, 240?243.LIU Guobin, WANG Weidong. Excavation engineering handbook[M]. Beijing: China Architecture and Building Press, 2010: 144, 240?243.

[4] 應宏偉, 章麗莎, 謝康和, 等. 坑外地下水位波動引起的基坑水土壓力響應[J]. 浙江大學學報(工學版), 2014, 48(3): 492?497. YING Hongwei, ZHANG Lisha, XIE Kanghe, et al. Pore and earth pressure response to groundwater fluctuation out of foundation pit[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(3): 492?497.

[5] ZHANG Lisha, YING Hongwei, XIE Kanghe, et al. Effect of groundwater fluctuations on pore pressures and earth pressures on coastal excavation retaining walls[J]. Marine Georesources & Geotechnology, 2016, 34(8): 770?781.

[6] 章麗莎. 濱海地區(qū)地下水位變化對地基及基坑滲流特性的影響研究[D]. 杭州: 浙江大學建筑工程學院, 2017: 13?37. ZHANG Lisha. Study on the influence of groundwater table variation on the seepage behavior of foundation and excavation in coastal area[D]. Hangzhou: Zhejiang University. College of Civil Engineering and Architecture, 2017: 13?37.

[7] 龔曉南, 高有潮. 深基坑工程設計施工手冊[M]. 北京:中國建筑工業(yè)出版社, 1998: 39. GONG Xiaonan, GAO Youchao. Deep excavation engineering design and construction handbook[M]. Beijing: China Architecture and Building Press, 1998: 39.

[8] 劉婧. 深基坑邊降水邊開挖的變形特性研究[D]. 上海: 上海交通大學船舶海洋與建筑工程學院, 2010: 9?40. LIU Jing. The deformation characteristics analysis of deep foundation pit while dewatering and excavation considered simultaneously[D]. Shanghai: Shanghai Jiao Tong University. School of Naval Architecture, Ocean and Civil Engineering, 2010: 9?40.

[9] 張慶偉. 非穩(wěn)定滲流作用下基坑支護結構穩(wěn)定性分析[D]. 鄭州: 鄭州大學土木工程學院, 2007: 58?65. ZHANG Qingwei. Stable analysis of foundation pit retaining structure under unsteady seepage[D]. Zhengzhou: Zhengzhou University. School of Civil Engineering, 2007: 58?65.

[10] 李廣信. 高等土力學[M]. 北京: 清華大學出版社, 2012: 5?20. LI Guangxin. Advanced soil mechanic [M]. Beijing: Tsinghua University Press, 2012: 5?20.

[11] LI Yuqi, YING Hongwei, XIE Kanghe. On the dissipation of negative excess porewater pressure induced by excavation in soft soil[J]. Journal of Zhejiang University(Engineering Science), 2005, 6A(3): 188?193.

[12] CONTE E, TRONCONE A. Soil layer response to pore pressure variations at the boundary[J]. Géotechnique, 2008, 58(1): 37?44.

[13] TERZAGHI K, PECK R B, MESRI G. Soil mechanics in engineering practice[M]. New York: John Wiley & Sons, 1996: 71?72.

[14] 毛昶熙, 段祥寶, 吳良驥. 砂礫土各級顆粒的管涌臨界坡降研究[J]. 巖土力學, 2009, 30(12): 3705?3709. MAO Changxi, DUAN Xiangbao, WU Liangji. Study of critical gradient of piping for various grain sizes in sandy gravels[J]. Rock and Soil Mechanics, 2009, 30(12): 3705?3709.

[15] 王俊杰, 盧孝志, 邱珍鋒, 等. 粗粒土滲透系數(shù)影響因素試驗研究[J]. 水利水運工程學報, 2013(6): 16?20. WANG Junjie, LU Xiaozhi, QIU Zhenfeng, et al. Experimental studies on influence factors of permeability coefficients of coarse-grained soil[J]. Hydro-Science and Engineering, 2013(6): 16?20.

[16] 蘇立君, 張宜健, 王鐵行. 不同粒徑級砂土滲透特性試驗研究[J].巖土力學, 2014, 35(5): 1289?1294. SU Lijun, ZHANG Yijian, WANG Tiexing. Investigation on permeability of sands with different particle sizes[J]. Rock and Soil Mechanics, 2014, 35(5): 1289?1294.

New method of excavation base seepage stability calculation due to dynamic varying groundwater level

ZHANG Lisha1, 2, YING Hongwei2, WANG Di2, XIE Kanghe2

(1. School of Engineering, Zhejiang University City College, Hangzhou 310015, China;2. Research Center of Coastal and Urban Geotechnical Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

To deal with the seepage stability of excavation under dynamic varied groundwater level condition, analytical solution of exit gradient in the excavation base near the retaining structure was derived based on leaky theory, and simplified method was proposed to calculate the excavation base seepage stability considering unsteady seepage. The validity of analytical solution was verified and the influential factors of exit gradient were analyzed based on idealized case studies. And then the proposed method was applied to the practical engineering case. The results show that if the coefficient of permeability of the excavation soil is large enough, the analytical solution results of exit gradient considering transient unsteady seepage are in agreement with the traditional results under the steady seepage assumption, which verifies the validity of the analytical solution; the influence factor of exit gradient is described by the dimensionless factor, which is positively correlated with the coefficient of permeability and the constrained modulus of the soil, but is negatively correlated with the angular frequency of groundwater level variation and the squared total thickness of the fine-grained soil in analytical model; the exit gradient variation is asynchronous with the groundwater level variation in practical projects, such situation should be avoided that the exit gradient can not reduce timely and efficiently through dewatering process to prevent seepage damage of the excavation project.

unsteady seepage; exit gradient; seepage stability; dynamic groundwater level variation; excavation

TU463

A

1672?7207(2019)03?0634?07

10.11817/j.issn.1672-7207.2019.03.017

2018?03?25;

2018?05?15

國家自然科學基金資助項目(51678523,51338009) (Projects(51678523, 51338009) supported by the National Natural Science Foundation of China)

應宏偉,博士,副教授,從事地基處理和基坑工程方面的研究;E-mail:ice898@zju.edu.cn

(編輯 趙俊)

猜你喜歡
穩(wěn)定滲流細粒滲流
MG-9#捕收劑在極細粒煤泥浮選中的應用
選煤技術(2021年3期)2021-10-13 07:33:36
細粒級尾砂高濃度膠結充填試驗研究與工業(yè)應用
赤金峽水庫土石壩穩(wěn)定-非穩(wěn)定滲流分析與評價
陜西水利(2019年10期)2019-11-22 08:48:36
河道洪水期數(shù)值模擬分析研究
濟陽陸相斷陷湖盆泥頁巖細粒沉積層序初探
基于二維穩(wěn)定滲流有限元的病險大壩滲流分析
微細粒磁鐵礦提鐵降硫試驗研究
地基土有效應力原理淺析
簡述滲流作用引起的土體破壞及防治措施
河南科技(2014年12期)2014-02-27 14:10:26
關于渠道滲流計算方法的選用
河南科技(2014年11期)2014-02-27 14:09:48
常宁市| 安图县| 洪洞县| 屯留县| 夏津县| 黄浦区| 阿拉尔市| 资溪县| 龙游县| 页游| 烟台市| 田东县| 宁夏| 庐江县| 威信县| 榆社县| 柳林县| 无锡市| 广昌县| 福清市| 泗水县| 天台县| 集贤县| 承德县| 南岸区| 焦作市| 招远市| 达尔| 夏津县| 高清| 金坛市| 渝中区| 东至县| 金川县| 宝清县| 新宁县| 通州区| 洞头县| 南京市| 彩票| 奉节县|