李壯 郎興海 章奇志 何亮3,
1. 中國地質科學院礦產(chǎn)資源研究所,自然資源部成礦作用與資源評價重點實驗室,北京 1000372. 中國地質大學(北京)地球科學與資源學院,北京 1000833. 成都理工大學地球科學學院,成都 6100594. 西藏自治區(qū)地質礦產(chǎn)勘查開發(fā)局第六地質大隊,拉薩 8514001.
青藏高原是研究陸陸碰撞等深部動力學過程的最佳天然實驗室(Chungetal., 2009; Sunetal., 2015),其多種巖漿巖的形成、侵位與復雜的地質演化歷史密切相關(Chungetal., 2005)。西藏岡底斯成礦帶是我國最具經(jīng)濟價值的成礦帶之一(唐菊興等, 2013),根據(jù)其不同的成礦系列和礦床組合,可進一步劃分為岡底斯斑巖銅礦帶和矽卡巖型鉛鋅成礦帶(Wangetal., 2017)。其中,岡底斯斑巖銅礦帶中發(fā)育大量斑巖型Cu-Mo礦床和矽卡巖型Cu-Pb-Zn礦床(Zhengetal., 2015),其礦床的形成與中新世高Sr/Y比值的埃達克質巖漿巖有關(Houetal., 2011; Wuetal., 2016)。與岡底斯后碰撞巖漿活動有關的埃達克質巖廣泛發(fā)育,東西延伸近1300km,主要分布于雅魯藏布江和南拉薩地塊一帶,其侵位時代主要集中于26~9Ma(Guoetal., 2007a; Kingetal., 2007; Xuetal., 2010)。
西藏浦桑果礦床位于岡底斯成礦帶中段,為近年來新發(fā)現(xiàn)的矽卡巖型富銅鉛鋅(鈷鎳)礦床。截止目前,礦區(qū)探獲銅金屬量大于10萬噸(平均品位為1.42%)、鉛+鋅金屬量大于20萬噸(Pb+Zn平均品位為2.83%)、鈷金屬量大于250噸(平均品位140g/t)(劉祖軍等,2012)。目前,該礦床的成礦作用(崔曉亮, 2013)、成礦物質來源(李壯等, 2018a)、金屬硫化物組合(楊海銳, 2013)、矽卡巖礦物學特征(李壯等, 2018b)都作了詳細的研究。然而,礦區(qū)相關的中酸性侵入巖體的巖石成因及深部動力學背景研究程度較低,因此,本文主要以浦桑果礦區(qū)的花崗閃長巖和閃長玢巖中酸性巖體為研究對象,利用LA-ICP-MS鋯石U-Pb年代學、主微量元素地球化學、全巖Sr-Nd-Pb同位素及鋯石Lu-Hf同位素分析手段,厘定礦區(qū)巖漿巖的侵位時代,分析巖石地球化學屬性,初步探討其巖石成因及深部動力學過程。
圖1 青藏高原構造單元劃分簡圖(a,據(jù)Pan et al., 2012修改)及岡底斯中生代-新生代巖漿巖和中新世埃達克質巖(26~10Ma)分布圖(b,據(jù)Liu et al., 2017修改)數(shù)據(jù)來源:1-朱諾(Gao et al., 2010; Zeng et al., 2017);2-吉如(Zheng et al., 2014; Yang et al., 2016);3-浦桑果(本文);4-沖江(Hu et al., 2017);5-達布(Wu et al., 2014b);6-拉抗俄(Hou et al., 2004; Leng et al., 2016);7-知不拉(Xu et al., 2016);8-驅龍(Hu et al., 2015);9-甲瑪(Hou et al., 2004; Zheng et al., 2016);圖6-圖12數(shù)據(jù)來源同此Fig.1 Geographic map showing the tectonic boundaries and units of the Tibetan Plateau (a, modified after Pan et al., 2012) and the distribution of the Mesozoic-Cenozoic magmatism and the major Miocene adakitic rocks (26~10Ma) and their ages in southern Tibet (b, modified after Liu et al., 2017)Data sources: 1-Zhu’nuo (Gao et al., 2010; Zeng et al., 2017); 2-Jiru (Zheng et al., 2014; Yang et al., 2016); 3-Pusangguo (this study); 4-Chongjiang (Hu et al., 2017); 5-Dabu (Wu et al., 2014b); 6-Lakang’e (Hou et al., 2004; Leng et al., 2016); 7-Zhibula (Xu et al., 2016); 8-Qulong (Hu et al., 2015); 9-Jiama (Hou et al., 2004; Zheng et al., 2016); the data sources in Fig.6-Fig.12 are the same as this figure
青藏高原主要由東西向拉長的不同塊體匯聚而成,從南到北依次被劃分為特提斯喜馬拉雅、拉薩地塊、羌塘地塊和松潘-甘孜地塊(Yin and Harrison, 2000),且分別以雅魯藏布江縫合帶(IYSZ)、班公湖-怒江縫合帶(BNSZ)、龍木錯-雙湖縫合帶(LSSZ)和金沙江縫合帶(JSSZ)為構造邊界(圖1a; Zhuetal., 2011)。中生代-早新生代巖漿巖廣泛發(fā)育于拉薩地塊(圖1b),并形成著名的岡底斯巖漿巖基(Zhuetal., 2013; Jiangetal., 2014; Liuetal., 2017)。Chenetal. (2012)根據(jù)不同類型巖石的鋯石Hf同位素特征,進一步將拉薩地塊劃分為南拉薩地體、中拉薩地體和北拉薩地體,且分別被洛巴堆-米拉山斷裂(LMF)和獅泉河-納木錯蛇綠巖帶(SNMZ)分割(圖1b)(Wangetal., 2014a; Zhuetal., 2017)。其中,南拉薩地體主要由部分岡底斯巖漿巖基、林子宗群火山巖及少量沉積蓋層組成(Zhangetal., 2010; Wuetal., 2014a),且發(fā)育少量漸新世-中新世(30~8Ma)的鉀質(超鉀質)火山巖和后碰撞型埃達克質巖(Guo and Wilson, 2012; Hébertetal., 2014),后碰撞型埃達克質巖主要以巖枝或巖脈侵位于沉積地層中(Chungetal., 2009),部分埃達克質巖石構成與銅礦密切相關的含礦斑巖體(Houetal., 2013)。
西藏浦桑果矽卡巖型銅多金屬礦床大地構造位置位于南岡底斯成礦帶火山巖漿弧內(nèi)(圖1b)。區(qū)域出露地層從侏羅系到第四系皆有分布,由老到新依次為昂杰組(C2a)、下拉組(P2x)、雄村組(J1-2x)、麻木下組(J2-K1m)、比馬組(K1b)、楚木龍組(K1c)、塔克那組(K1t)、昂仁組(K1-2a)、設興組(K2s)、秋烏組(E2q)、典中組(E1d)、年波組(E2n)、日貢拉組(E3r)、大竹卡組(E3-N1d)、芒鄉(xiāng)組(N1m)、嘎扎村組(N2g)、宗當村組(N2z)及第四系(Q)。受南側雅魯藏布江縫合帶、北側班公湖-怒江縫合帶構造影響,區(qū)內(nèi)發(fā)育一系列近東西向斷裂構造、南北向次級斷裂構造及火山環(huán)形構造體系。區(qū)域內(nèi)巖漿巖發(fā)育并廣泛出露,主要包括晚三疊-中侏羅世花崗巖(215~175Ma)(張宏飛等, 2007)、晚侏羅-晚白堊世花崗巖和中酸性火山巖(160~80Ma)(朱弟成等, 2008)、古新世-始新世火山巖(70~40Ma)和漸新世-中新世中酸性閃長巖、二長花崗巖等(33~10Ma)(莫宣學等, 2003)。
浦桑果礦床位于南木林縣北西方向近30km處。礦區(qū)出露地層整體較簡單,主要為早白堊世塔克那組、晚白堊世設興組和始新世典中組。塔克那組巖性主要為灰?guī)r、大理巖和火山碎屑巖;設興組巖性主要為砂巖、泥巖、粉砂巖等;典中組主要為火山碎屑巖。其中,塔克那組為主要賦礦圍巖。地層走向近東西,傾向北東,傾角約45°~60°。礦區(qū)構造主要為南北向斷裂及褶皺構造(圖2a)。礦區(qū)巖漿巖發(fā)育并廣泛出露,巖石類型包括礦區(qū)西側的黑云母花崗閃長巖、礦區(qū)中部的閃長玢巖和北側的輝長巖脈,其中,黑云母花崗閃長巖和閃長玢巖分別以巖基和巖株形式侵位于塔克那組中。
礦區(qū)共圈定5條礦體,自北向南依次編號為Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ(圖2a)。礦體主要賦存于黑云母花崗閃長巖、閃長玢巖與塔克那組接觸部位的矽卡巖化帶中,礦體走向近東西,礦體形態(tài)呈層狀、脈狀及不規(guī)則狀(圖2b)。Ⅰ號礦體為礦區(qū)的主礦體,礦體沿走向延伸近350m,沿傾向方向延伸近200m,銅鉛鋅金屬資源量約22萬噸,占整個礦床金屬資源量的60%。礦石構造主要包括塊狀構造(圖3a)、浸染狀構造(圖3b, c),次為條帶狀構造(圖3d)和角礫狀構造。礦石結構主要包括結晶結構(圖3e, f)和交代結構(圖3g)。礦石礦物主要為黃銅礦、閃鋅礦、方鉛礦、黃鐵礦,次為輝砷鎳鈷礦、赤鐵礦、斑銅礦、輝銅礦和極少量鉍礦物(針硫鉍鉛礦和硫鉍鉛銅礦)(圖3h-l)。脈石礦物主要為石榴子石、透輝石、綠簾石、石英,次為硅灰石、綠泥石、角閃石和陽起石(圖3m-p)。
圖2 浦桑果銅多金屬礦床地質簡圖(a)及實測地層剖面圖(b、c,據(jù)劉祖軍等, 2012[注]劉祖軍. 2012. 西藏自治區(qū)南木林縣浦桑果礦區(qū)銅多金屬礦詳查報告. 拉薩: 西藏自治區(qū)礦產(chǎn)勘查開發(fā)局第六地質大隊修改)
Fig.2 The simplified geological map (a) and the measured stratigraphic sections of the Pusangguo copper polymetallic deposit (b, c)
圖3 浦桑果銅多金屬礦床主要礦物組合及礦石組構特征Py-黃鐵礦;Ccp-黃銅礦;Sp-閃鋅礦;Cob-輝砷鎳鈷礦;Hem-赤鐵礦;Bn-斑銅礦;Cc-輝銅礦;Aik-針硫鉍鉛礦;Gn-方鉛礦;Grt-石榴子石;Di-透輝石;Act-陽起石;Amp-角閃石;Ep-綠簾石;Chl-綠泥石;Qtz-石英Fig.3 Photographs and photomicrographs showing the main ore structure and textures in the mineral assemblages of the Pusangguo copper polymetallic depositPy-pyrite; Ccp-chalcopyrite; Sp-sphalerite; Cob-cobaltite; Hem-hematite; Bn-bornite; Cc-chalcocite; Aik-aikinite; Gn-galena; Grt-garnet; Di-diopside; Act-actinolite; Amp-amphibole; Ep-epidote; Chl-chlorite; Qtz-quartz
圍巖蝕變類型主要為矽卡巖化、大理巖化和碳酸鹽化,次為硅化、角巖化。其中,矽卡巖化與銅鉛鋅等礦化密切相關,且主要發(fā)育于礦區(qū)中酸性巖體與塔克那組灰?guī)r及大理巖的接觸部位。根據(jù)礦物組合、礦物相互穿插關系可知,浦桑果礦床的礦化過程與典型的巖漿熱液接觸交代型矽卡巖礦床的成礦過程類似。崔曉亮(2013)對礦區(qū)部分矽卡巖礦物(石榴子石、透輝石)及石英、方解石等脈石礦物進行了詳細的包裹體研究,認為從進變質矽卡巖階段至退變質矽卡巖階段,成礦流體逐漸從高溫(523~387℃)、高鹽度(48.84% NaCleqv)轉變?yōu)榈蜏?198~186℃)、低鹽度(5.18%~3.25% NaCleqv)狀態(tài)。因此,可將浦桑果礦床的成礦過程劃分為早期進變質矽卡巖階段、退變質矽卡巖階段、石英-硫化物階段和晚期碳酸鹽階段四個成礦階段。
用于本研究的巖石樣品包括礦區(qū)廣泛發(fā)育的黑云母花崗閃長巖(PLX5-6,29°35′17″N、89°26′20″E)和(PLX2-2,29°35′45″N、89°26′08″E),及閃長玢巖露頭(PLX5-9,29°35′32″N、89°26′40″E)和(PLX1-8,29°35′34″N、89°26′31″E),巖石樣品較新鮮,僅局部遭受風化,具體采樣位置如圖2。黑云母花崗.白-淺棕色,巖石具中粗粒狀結構,塊狀構造,主要組成礦物為斜長石(35%~40%)、石英(20%~25%)、鉀長石(15%~20%),次為少量黑云母(10%~15%)、角閃石(8%~10%)(圖4a)。斜長石呈板狀晶體,粒徑約1.5~2mm,普遍發(fā)育聚片雙晶結構;鉀長石發(fā)育卡式雙晶結構,粒徑約1~2.5mm;黑云母具明顯的多色性,粒徑約0.2~1mm。角閃石呈半自形-自形晶,粒徑約0.5~1mm。副礦物為鋯石、磁鐵礦及磷灰石等(圖4b, c)。閃長玢巖樣品顏色呈淺灰綠色,巖石具明顯斑狀結構,基質具細?;螂[晶質結構,塊狀構造,主要組成礦物為斜長石(55%~60%)、角閃石(30%~35%),次為鉀長石(5%~8%)、石英(8%~10%),以及少量磷灰石、鋯石、磁鐵礦等副礦物(1%~2%)(圖4d)。斑晶主要由斜長石和角閃石組成,斑晶直徑約0.5~2mm?;|主要為角閃石和斜長石,次為少量的石英、鉀長石和黑云母(圖4e, f)。
圖4 浦桑果銅多金屬礦床黑云母花崗閃長巖和閃長玢巖樣品的巖相學特征(a-c)黑云母花崗閃長巖樣品手標本特征及主要礦物組成;(d-f)閃長玢巖樣品手標本特征及主要礦物組成.Hb-角閃石;Pl-斜長石;Kfs-鉀長石;Qtz-石英;Bt-黑云母;Mt-磁鐵礦Fig.4 Photographs and photomicrographs showing the petrographic characteristics of the Pusangguo biotite granodiorite and diorite porphyrite(a-c) hand-specimen and main mineral compositions of the biotite granodiorite; (d-f) hand-specimen and mineral compositions of the diorite porphyrite. Hb-hornblende; Pl-plagioclase; Kfs-K-feldspar; Qtz-quartz; Bt-biotite; Mt-magnetite
樣品的鋯石分選在廣州巖拓技術服務有限公司利用單礦物常規(guī)分離技術完成,制靶后在中國地質科學院礦產(chǎn)資源研究所電子探針實驗室進行鋯石透射光、反射光及陰極發(fā)光照相,優(yōu)選環(huán)帶發(fā)育良好、無裂痕的鋯石進行U-Pb同位素定年。鋯石U-Pb同位素定年在中國地質大學(北京)地質過程與礦產(chǎn)資源國家重點實驗室激光剝蝕等離子質譜儀(LA-ICP-MS)微區(qū)分析實驗室完成,激光剝蝕系統(tǒng)為美國Coherent公司的GeoLasPro 193準分子固體進樣系統(tǒng),ICP-MS為美國Thermo Fisher公司的X Series 2型四級桿等離子體質譜。測試中,激光斑束直徑為32μm,頻率為6Hz,采用He作為載氣,Ar作為補償氣。采用美國國家標準參考物質NISTSRM610對儀器進行最佳化,并將其作為微量元素含量測定的外標。采用標準鋯石91500為定年外標,采用標準鋯石Mud Tank作為監(jiān)控樣品。在樣品測試過程中每測定5個樣品點測定兩次標準鋯石91500,每個樣品的前20s為背景信號采集時間,樣品信號采集時間為50s。測試完成后,采用軟件ICPMSDataCal(Liuetal., 2008)對樣品的測試數(shù)據(jù)進行后期處理,年齡計算及諧和圖的繪制均采用Isoplot 3.0軟件完成(Ludwig, 2003)。
鋯石Lu-Hf同位素分析的鋯石點均挑選自LA-ICP-MS鋯石U-Pb定年的有效點。鋯石Hf同位素分析在中國地質科學院地質研究所大陸構造與動力學實驗室完成。分析過程中采用配有193nm激光的Neptune多接收電感耦合等離子質譜儀進行測定,詳細的操作過程及分析步驟見參考文獻(Wuetal., 2006)。分析過程中,標準鋯石GJ-1的176Hf/177Hf測試加權平均值分別為0.282285±13(n=35)。鋯石εHf值的計算采用176Lu衰變常數(shù)為1.867×10-11a-1(S?derlundetal., 2004),球粒隕石的176Hf/177Hf=0.282772,176Lu/177Hf=0.0332(Blichert-Toft and Albarède, 1997),Hf虧損地幔二階段模式年齡(tDM2)的計算采用平均陸殼的176Lu/177Hf比值0.015(Griffinetal., 2000)。
對新鮮巖石樣品進行無污染粉碎至200目,用于分析全巖主、微量元素及Sr-Nd-Pb同位素值。本文全巖主、微量元素及Sr-Nd-Pb同位素測定均在核工業(yè)北京地質研究院分析測試中心完成,主量元素分析采用XRF方法完成,標樣為AB104L和AL104,分析精度為不小于1%;微量元素采用儀器Thermo Scientific X Series Ⅱ ICPMS分析測定,將樣品粉末與2%含量的HNO3溶解后,使用NexION300D質譜儀進行測定;微量元素測定精度為不小于2‰。
首先準確稱量實驗要求的全巖粉末(200目)50~100mg左右,使用純化HF-HNO3-HCl溶樣,之后加入純化HCl使用Rb-Sr(AG50W-X12,200~400目)、Sr-Nd(LN樹脂)交換柱進行分離提純和元素提取。樣品測試儀器型號為熱電離質譜儀TIMS-ICPMS,數(shù)據(jù)以86Sr/88Sr=0.1194和146Nd/144Nd=0.7219校正作為分餾修正。在樣品測試的整個過程中,所測定的Alfa Nd標樣和NBS-987 Sr標樣的Nd-Sr同位素比值,分別為143Nd/144Nd=0.512433±0.000008(±2σ)和87Sr/86Sr=0.710252±0.000015(±2σ)。
圖5 浦桑果銅多金屬礦床黑云母花崗閃長巖(a、b)和閃長玢巖(c、d)的鋯石U-Pb諧和年齡圖Fig.5 The U-Pb concordia diagrams for zircons from the Pusangguo (a, b) biotite granodiorite and (c, d) diorite porphyrite
全巖鉛同位素分析,首先將全巖粉末樣(200目)與超純的HNO3+HCl溶液混合,待干燥后,再與HBr+HNO3溶液混合。然后,將混合物裝入一個含有50 Am的AG 1-X 8陰離子樹脂的柱子上,并通過異丙基熱電離質譜儀進行分析。204Pb/206Pb和208Pb/206Pb值分析精度為不少于0.005%。分析中采用標樣NBS981進行校正(NBS981的208Pb/206Pb=2.164940±15,207Pb/206Pb=0.914338±7,204Pb/206Pb=0.0591107±2)。實驗詳細的分析步驟見參考文獻(Wangetal., 2018)。
本文對2件黑云母花崗閃長巖和2件閃長玢巖樣品分別開展了LA-ICP-MS鋯石U-Pb定年。鋯石U-Pb定年數(shù)據(jù)及計算結果詳見表1;鋯石協(xié)和年齡圖解見圖5。鋯石CL形態(tài)特征顯示,黑云母花崗閃長巖和閃長玢巖的鋯石具相似性,鋯石普遍呈灰白色,半自形-自形晶,主要呈長柱狀晶體,少量呈短柱狀,其長軸長度為110~320μm,長短軸之比多為1:1~3:1(圖5)。本文共計完成75粒鋯石的U-Pb定年,U和Th含量變化均較大,U含量變化范圍為41×10-6~2430×10-6,Th含量變化范圍為53×10-6~11191×10-6,Th/U比值為0.4~8.9(>0.1),且大部分鋯石具明顯振蕩環(huán)帶結構,屬典型的巖漿鋯石特征(Wu and Zheng, 2004)。
黑云母花崗閃長巖樣品(PLX2-2和PLX5-6)共完成37個鋯石點分析,Th含量為53×10-6~630×10-6,U含量為41×10-6~445.8×10-6,Th/U比值為0.6~2.5,具典型的巖漿鋯石特征。樣品(PLX2-2)29個測點獲得的206Pb/238U年齡加權平均結果為14.4±0.4Ma (MSWD=0.7)(圖5a);樣品(PLX5-6)的8個測點獲得的206Pb/238U年齡加權平均結果為13.6±0.2Ma (MSWD=0.4)(圖5b)。閃長玢巖(PLX5-9和PLX1-8)共完成38個鋯石點分析,Th含量為127×10-6~11191×10-6,U含量為150×10-6~2430×10-6,Th/U比值為0.8~8.9,具典型巖漿鋯石特征。樣品(PLX5-9)的12個測點獲得的206Pb/238U年齡加權平均結果為13.6±0.1Ma (MSWD=0.9)(圖5c);樣品(PLX1-8)26個測點獲得的206Pb/238U年齡加權平均結果為14.6±0.3Ma(圖5d)。4個巖石樣品的平均加權年齡在誤差范圍內(nèi)重疊, 表明此年齡值可代表巖石的結晶年齡,巖體的侵位年齡與南拉薩地體后碰撞埃達克質巖石同時代(圖1b),巖體侵位時代均為中新世。
表1浦桑果礦床黑云母花崗閃長巖和閃長玢巖的LA-ICP-MS鋯石U-Pb年齡分析結果
Table 1 Zircon age data acquired by LA-ICP-MS methods for the biotite granodiorite and diorite porphyrite in the Pusangguo deposit
測點號含量(×10-6)ThUTh/U同位素比值及誤差年齡及誤差(Ma)206Pb238U±1σ207Pb235U±1σ207Pb206Pb±1σ206Pb238U±1σ207Pb235U±1σ207Pb206Pb±1σPLX5-6 (黑云母花崗閃長巖)-1161.0162.01.00.0021200.0000500.0204200.0017900.0723800.00694013.70.320.51.8998.2200.2-2201.0134.01.50.0021400.0000900.0158300.0031900.0553000.01072013.80.616.03.2433.4373.7-381.0079.001.00.0021300.0000600.0259200.0034700.0932100.01280013.70.426.03.41492.3262.4-473.0055.001.30.0021400.0001100.0368900.0074500.1224900.02600013.80.736.87.31994.5381.0-553.0041.001.30.0021100.0000900.0435300.0057400.1801500.03159013.60.643.35.62654.0295.5-6160.0103.01.60.0021100.0000600.0192400.0024400.0635400.00760013.60.419.42.4727.8255.5-7630.0249.02.50.0021600.0000600.0164100.0036900.0546500.01114013.90.416.53.7398.2401.5-8228.0165.01.40.0020700.0000300.0139200.0011600.0493000.00420013.40.214.01.2161.2188.9PLX2-2 (黑云母花崗閃長巖)-296.73154.40.60.0022500.0001510.0143650.0049460.0619480.02122314.51.014.55.0672.2600.9-560.05101.70.60.0024550.0001840.0157100.0064490.0544870.02859115.81.215.86.4390.8881.4-674.5098.110.80.0025650.0002350.0180270.0081400.0551780.02774816.51.518.18.1420.4857.4-775.2894.50.80.0023740.0002030.0155070.0020430.0741110.02895015.31.315.62.01055.6624.4-8107.8120.40.90.0021260.0001770.0145990.0076470.0494620.02185813.71.114.77.7168.6797.8-999.30168.90.60.0023500.0001240.0157630.0057180.0760750.02831415.10.815.95.71098.2808.1-10115.5159.50.70.0022980.0001290.0161520.0032370.0497190.01568814.80.816.33.2189.0598.1-1193.99152.20.60.0024620.0001750.0148900.0033710.0553840.01730615.91.115.03.4427.8577.7-12122.6123.01.00.0019630.0001680.0133710.0058970.0524860.02589012.61.113.55.9305.6861.1-1393.63149.50.60.0022020.0001490.0141780.0027480.0784620.02693914.21.014.32.81158.3728.2-1469.82108.80.60.0023810.0002330.0159910.0075250.0497160.02427515.31.516.17.5189.0853.6-1684.49113.50.70.0022240.0001660.0154490.0052210.0478350.01972514.31.115.65.2100.1755.2-17104.5141.00.70.0023090.0001720.0158390.0041270.0653810.02508214.91.116.04.1787.0648.2-1889.60131.20.70.0022490.0002530.0153000.0015670.0874550.04797714.51.615.41.61372.2797.2-20180.6178.81.00.0022620.0001960.0147400.0035540.0562280.02465214.61.314.93.6461.2759.2-21107.7158.10.70.0022780.0001480.0141100.0026240.0560890.01873714.70.914.22.6457.5607.4-23134.0177.90.80.0021540.0001210.0127330.0030380.0463210.01502913.90.812.83.013.1637.0-24221.9349.40.60.0021860.0000880.0140110.0020080.0466260.00973014.10.614.12.031.6433.3-2564.59102.80.60.0022700.0001700.0143410.0033970.0836210.03438414.61.114.53.41283.3880.5-26233.8256.90.90.0020620.0001230.0142080.0032320.0549370.01564313.30.814.33.2409.3537.0-27151.7263.30.60.0022150.0001350.0134530.0026980.0506600.01374714.30.913.62.7233.4520.3-28117.1158.00.70.0023860.0001800.0167990.0057610.0487920.01784015.41.216.95.8200.1627.7-29134.5174.10.80.0021990.0001180.0141110.0047430.0710940.02746614.20.814.24.7961.1637.0-30100.9144.90.70.0020080.0002040.0116890.0008680.0488760.01861612.91.311.80.9142.7711.0-31168.6168.31.00.0023570.0001580.0156270.0067110.0665570.02517315.21.015.76.7833.3628.7-32170.5169.21.00.0022540.0001560.0152610.0030650.0727500.02487014.51.015.43.11007.1744.4-3365.7393.480.70.0020500.0001680.0128680.0049870.0491970.02114813.21.113.05.0166.8772.1-34145.3169.20.90.0023160.0001790.0150970.0041230.0523670.02240514.91.215.24.1301.9760.8-35252.0445.80.60.0021170.0001040.0127440.0016730.0497710.00998513.60.712.91.7183.4411.1PLX5-9 (閃長玢巖)-1899.0444.02.00.0021300.0000200.0140900.0006500.0477800.00209013.70.214.20.787.1100.0-21904793.02.40.0021500.0000300.0142900.0007000.0483300.00240013.80.214.40.7122.3105.5-31875596.03.10.0021200.0000200.0142300.0005800.0486600.00202013.70.114.30.6131.6100.9-4454312793.60.0021200.0000200.0138900.0004100.0475400.00142013.70.114.00.476.0-126.8-55163919.05.60.0021100.0000200.0136400.0004700.0469800.00162013.60.213.80.555.772.2-63098993.03.10.0020600.0000900.0137800.0008600.0485900.00258013.30.613.90.9127.9127.8-7951.0395.02.40.0020600.0000300.0132200.0008300.0468600.00295013.30.213.30.842.7144.4-82301912.02.50.0021000.0000300.0138200.0005700.0474400.00151013.50.213.90.677.968.5-95331601.08.90.0021300.0000700.0138600.0018000.0473300.00570013.70.414.01.864.9266.6-101083237.04.60.0020600.0000300.0133200.0009600.0468600.00300013.30.213.41.042.7144.4
續(xù)表1
Continued Table 1
測點號含量(×10-6)ThUTh/U同位素比值及誤差年齡及誤差(Ma)206Pb238U±1σ207Pb235U±1σ207Pb206Pb±1σ206Pb238U±1σ207Pb235U±1σ207Pb206Pb±1σ-11716.0163.04.40.0021200.0000200.0142200.0008300.0488900.00289013.60.214.30.8142.7133.3-12893.0150.06.00.0020800.0000300.0138000.0011900.0480400.00377013.40.213.91.2101.9174.1PLX1-8 (閃長玢巖)-1555424312.30.0022740.0000460.0139330.0010440.0439790.00374414.60.314.01.0627.4122.1-3475013623.50.0024450.0000640.0145150.0013890.0449580.00539415.70.414.61.4591.3210.0-5446.0417.01.10.0022500.0001630.0148490.0034270.0593250.02031214.51.115.03.4588.9599.1-6305.4224.71.40.0024220.0001550.0142870.0025260.0496440.01484115.61.014.42.5189.0577.7-71119123164.80.0021230.0000420.0149350.0011830.0512090.00424413.70.315.11.2250.1187.9-8318310423.10.0021520.0000610.0133230.0013920.0485000.00570513.90.413.41.4124.2264.8-111052487.82.20.0023660.0000950.0162070.0032500.0566920.01187215.20.616.33.2479.7407.4-12319213372.40.0022850.0000550.0133890.0009790.0433350.00413414.70.413.51.0622.1156.8-14359.2494.00.70.0022260.0001030.0152890.0032580.0562570.01331914.30.715.43.3461.2455.5-15144.3176.30.80.0025540.0001590.0161940.0044500.0558230.01453716.41.016.34.4455.6483.3-172404848.22.80.0024660.0000700.0157950.0019640.0463770.00640215.90.515.92.016.8303.7-18210110182.10.0021270.0000910.0140730.0022620.0471740.00834113.70.614.22.357.5374.0-202885984.72.90.0020850.0000910.0145730.0020250.0506620.00841213.40.614.72.0233.4335.2-23101617670.60.0022700.0000480.0135220.0011690.0445170.00431914.60.313.61.2654.2117.2-24329.1367.40.90.0022750.0000980.0148100.0025690.0545570.01444214.70.614.92.6394.5503.7-26368.5387.90.90.0020700.0001060.0139460.0027510.0799760.02711213.30.714.12.81198.2713.1-27196.6237.60.80.0027410.0001760.0174010.0035820.0666430.02323817.61.117.53.6827.8605.6-291411696.72.00.0022980.0000790.0151640.0027550.0531270.01126214.80.515.32.8344.5409.2-30210.0214.41.00.0024350.0002000.0167700.0092190.0660310.02939915.71.316.99.2807.1729.6-32308.5259.11.20.0022340.0001380.0144870.0046660.0452030.01305314.40.914.64.7765.3205.3-341885291.76.50.0025680.0002280.0172380.0068020.0517570.01721716.51.517.46.8276.0622.2-36319211612.70.0023640.0000610.0140270.0012560.0460860.00511215.20.414.11.3400.1150.0-38490.4590.90.80.0022840.0000740.0152060.0013230.0490890.00665814.70.515.31.3153.8288.9-402605865.73.00.0022700.0000590.0146990.0021380.0475810.00739714.60.414.82.179.7333.3-41819421023.90.0022530.0000490.0150460.0013700.0495390.00510814.50.315.21.4172.3225.9-42127.3340.30.40.0024190.0000900.0154060.0023780.0508950.01016415.60.615.52.4235.3407.4
浦桑果黑云母花崗閃長巖和閃長玢巖的全巖主、微量元素含量列于表2中。黑云母花崗閃長巖的燒失量為0.32%~0.48%,閃長玢巖的燒失量為0.32%~1.3%,說明巖石較新鮮基本未受到后期蝕變影響。黑云母花崗閃長巖SiO2含量為65.55%~67.3%,Al2O3含量為15.28%~15.85%,F(xiàn)e2O3T含量為3.64%~4.14%,MgO含量為1.41%~1.74%,CaO含量為2.85%~3.76%,Na2O含量為3.39%~3.97%,K2O含量為3.86%~4.07%,Mg#為29~38。閃長玢巖SiO2含量為58.27%~60.66%,Al2O3含量為16.71%~17.23%,F(xiàn)e2O3T含量為4.95%~6.01%,MgO含量為2.06%~2.93%,CaO含量為5.36%~6.25%,Na2O含量為4.08%~4.9%,K2O含量為2.07%~2.61%,Mg#值為32~36(表2)。相較于閃長玢巖,黑云母花崗閃長巖具高SiO2、K2O和K2O/NaO(1.02~1.20)值,具低Al2O3、Fe2O3T、MgO、CaO含量和Mg#值特征。黑云母花崗閃長巖和閃長玢巖的A/CNK比值分別為0.93~1.01和0.76~0.90,具I型花崗巖特征(Maniar and Piccoli, 1989)。
巖石全堿TAS圖解中(Le Maitreetal., 2002)(圖6a),樣品數(shù)據(jù)點均落在花崗閃長巖和閃長巖區(qū)域內(nèi),巖石類型與室內(nèi)鏡下鑒定結果一致。如圖6b所示,黑云母花崗閃長巖和閃長玢巖均位于高鉀鈣堿性區(qū)域內(nèi),表明巖石均屬于高鉀鈣堿性系列,且黑云母花崗閃長巖鉀含量明顯高于閃長玢巖。其中,閃長玢巖明顯虧損Y(10.4×10-6~12.4×10-6)和Yb(0.8×10-6~1.1×10-6)元素,富集Sr元素(687×10-6~1616×10-6),具高Sr/Y比值(62.7~132)、La/Yb比值(27.4~34.8)弱負Eu異常特征(δEu=0.83~1.02)(表2)。黑云母花崗閃長巖的地球化學特征與閃長玢巖具一定相似性。在Sr/Y-Y(圖6c)和(La/Yb)N-YbN(圖6d)圖解中(Defant and Drummond, 1990; Petford and Atherton, 1996),本文所有巖石樣品數(shù)據(jù)點均落入埃達克巖區(qū)域內(nèi),指示浦桑果黑云母花崗閃長巖和閃長玢巖具典型埃達克質巖的地球化學屬性。
表2浦桑果礦床黑云母花崗閃長巖和閃長玢巖的全巖主量(wt%)及微量元素(×10-6)分析結果
Table 2 Whole-rock major (wt%) and trace elements (×10-6) compositions of the biotite granodiorite and diorite porphyrite in the Pusangguo deposit
樣品號PLX2-2-1PLX2-2-2PLX2-2-3PLX2-2-4PLX2-2-5PLX2-2-6PLX1-8-1PLX1-8-2PLX1-8-3PLX1-8-4PLX1-8-5PLX1-8-6黑云母花崗閃長巖閃長玢巖SiO266.7667.366.9567.1465.9565.5558.2760.5660.5458.860.6659.08Al2O315.8515.3515.4315.2815.6115.5716.917.2317.2117.0816.7116.86Fe2O3T4.143.874.074.013.643.785.835.635.896.014.955.02MgO1.431.411.431.441.741.622.732.932.872.772.512.06CaO2.852.942.942.873.763.726.255.515.366.145.896.07Na2O3.783.843.953.973.393.564.94.284.224.94.084.81K2O4.034.064.024.064.073.862.562.362.342.612.512.07MnO0.13 0.12 0.13 0.12 0.12 0.11 0.13 0.11 0.13 0.14 0.100.11TiO20.45 0.43 0.44 0.44 0.42 0.40 0.74 0.73 0.74 0.76 0.700.75P2O50.16 0.15 0.16 0.16 0.18 0.19 0.30 0.25 0.25 0.30 0.210.20LOI0.320.410.370.400.440.481.300.320.370.380.510.64Total99.9199.8899.8999.8999.3198.8499.9199.9099.9199.8998.8397.67A/CNK1.010.960.950.950.930.930.760.880.900.780.830.80A/NK1.501.431.421.401.561.551.561.801.821.571.771.66Mg#40.6 41.9 41.0 41.6 48.6 45.9 48.1 50.8 49.1 47.7 50.1 44.8 La39.740.83635.339.739.529.328.326.12627.628.9Ce74.777.269.466.975.474.659.5575251.250.755.4Pr8.699.118.168.128.968.777.817.536.636.596.737.11Nd33.134.730.531.334.333.332.431.427.52727.828.7Sm5.425.645.115.165.675.455.555.54.774.614.664.63Eu0.9941.050.9961.011.111.061.451.41.171.171.391.36Gd3.844.063.823.783.7963.7614.063.883.573.373.443.51Tb0.5430.5690.5230.5240.5070.5130.5960.5550.5340.5060.520.57Dy2.292.622.382.492.532.342.872.582.372.282.22.4Ho0.4010.4320.4070.4170.470.4050.4460.4450.3930.3890.30.34Er1.121.181.11.181.141.151.251.160.9921.011.151.13Tm0.1640.1770.1660.1730.1760.1710.1740.170.1460.1420.1570.172Yb1.121.161.141.111.171.131.070.9650.8510.790.950.83Lu0.1480.1630.1480.1510.1430.1590.1380.1310.1130.1030.1210.117Y11.712.711.612.112.511.612.411.810.610.410.3810.95∑REE172.2 178.9 159.9 157.6 175.1 172.3 146.6 141.0 127.1 125.2 127.7 135.2 LREE162.6 168.5 150.2 147.8 165.1 162.7 136.0 131.1 118.2 116.6 118.9 126.1 HREE9.6310.369.689.839.939.6310.609.898.978.598.849.07LREE/HREE16.9 16.3 15.5 15.0 16.6 16.9 12.8 13.3 13.2 13.6 13.5 13.9 YbN6.596.826.716.536.886.656.295.685.014.655.594.88(La/Yb)N25.4 25.2 22.7 22.8 24.3 25.1 19.6 21.0 22.0 23.6 20.8 25.0 δEu0.630.640.660.670.690.680.890.880.830.871.020.99δCe0.940.940.950.930.940.940.940.940.940.930.880.92Rb19321319919819718359.960.363.461.881.665.9Ba726743694734944870650645624622624560Th30.632.532.331.529.330.68.728.086.86.667.47.22U5.465.496.335.524.675.81.691.480.9580.9371.181.14Ta1.31.31.251.31.071.160.4950.4920.4340.4241.190.78Nb1111.51111.411.210.46.396.196.226.175.556.26Sr59961260361472370716161561954909724687Zr28.528.727.12828.126.51110.629.428.127.911.1Hf1.371.361.321.271.151.160.690.6371.221.171.140.96Pb40.339.839.540.139.739.526.421.421.117.625.422.1Cr9.799.639.499.629.69.5819.519.218.117.619.318.8Ni12.412.111.512.112.312.726.82724.322.425.524.8Sm/Yb4.844.864.484.654.854.825.195.705.615.844.915.58Sr/Y51.248.252.050.757.861.013013290.087.469.862.7
注:Mg#=100×Mg2+/(Mg2++TFe2+);A/CNK=Al2O3/(CaO+Na2O+K2O);A/NK=Al2O3/(Na2O+K2O);δEu=2×EuN/(SmN+GdN);“N”表示球粒隕石標準化
圖6 浦桑果銅多金屬礦床黑云母花崗閃長巖和閃長玢巖的主微量元素圖解(a) SiO2-(Na2O+K2O)圖解(Le Maitre, 2002);(b) SiO2-K2O圖解(Peccerillo and Taylor, 1976);(c) Y-Sr/Y圖解(Defant and Drummond, 1990);(d) (La/Yb)N-YbN圖解(Petford and Atherton, 1996)Fig.6 The trace elements diagrams of the biotite granodiorite and diorite porphyrite in the Pusangguo copper polymetallic deposit(a) classification of total alkalis versus SiO2 (Le Maitre, 2002); (b) SiO2 vs. K2O diagram (Peccerillo and Taylor, 1976); (c) Sr/Y ratios vs. Y discrimination diagram (Defant and Drummond, 1990); (d) (La/Yb)N vs. YbN diagram (Petford and Atherton, 1996)
浦桑果黑云母花崗閃長巖和閃長玢巖的球粒隕石標準化稀土元素配分圖(圖7a)均表現(xiàn)出明顯右傾特征,表明輕稀土元素與重稀土元素之間具明顯的分餾特征,指示兩種不同巖石類型可能具相同的巖漿來源。黑云母花崗閃長巖和閃長玢巖均具相對富集輕稀土元素(La、Ce、Pr、Nd、Sm、Eu)而虧損重稀土元素(Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)特征(圖7a)。原始地幔標準化微量元素蛛網(wǎng)圖(圖7b)顯示,相比于原始地幔,黑云母花崗閃長巖和閃長玢巖均具相對富集大離子親石元素(Rb、Ba、Sr、Th、U等)而強烈虧損高場強元素(Ta、Nb、Ti、P等);具中等負Eu異常(δEu=0.63~0.99)而無明顯Ce異常特征(δCe=0.88~0.95)。
圖7 浦桑果黑云母花崗閃長巖和閃長玢巖的球粒隕石標準化稀土元素配分圖(a)和原始地幔標準化微量元素蛛網(wǎng)圖(b)(標準化值據(jù)Sun and McDonough, 1989)Fig.7 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) for the Pusangguo biotite granodiorite and diorite porphyrite (normalization values after Sun and McDonough, 1989)
相比于其他斑巖-矽卡巖型礦床(如沖江、朱諾、吉如、知不拉、驅龍、甲瑪、拉抗俄等)成礦密切相關的埃達克質侵入巖體,浦桑果礦床黑云母花崗閃長巖和閃長玢巖的主微量稀土元素地球化學特征具有高度相似性(圖6、圖7),所有侵入巖體均表現(xiàn)為富集大離子親石元素和輕稀土元素而相對虧損高場強元素和重稀土元素特征,且具明顯的埃達克質巖石屬性,指示其巖石可能具相同的巖漿來源。
浦桑果礦床黑云母花崗閃長巖和閃長玢巖全巖Sr-Nd-Pb同位素分析結果見表3和圖8。黑云母花崗閃長巖和閃長玢巖樣品的初始Sr、Nd、Pb同位素組成分別用其對應的巖體鋯石U-Pb年齡值14.8Ma和14.6Ma進行校正計算。由表3可知,浦桑果礦床黑云母花崗閃長巖和閃長玢巖全巖Sr-Nd-Pb同位素值相對較均一,其同位素值較接近。其中,黑云母花崗閃長巖樣品的全巖初始(87Sr/86Sr)i比值為0.707050~0.707138,平均值為0.707091;初始(143Nd/144Nd)i值為0.512328~0.512376,平均值為0.512347;εNd(t)值為-5.69~-4.73,平均值為-5.3,二階段模式年齡集中于1216~1293Ma,平均值為1262Ma。閃長玢巖樣品的全巖初始(87Sr/86Sr)i比值為0.705198~0.706572,平均值為0.705864;初始(143Nd/144Nd)i值為0.512415~0.512605,平均值為0.512504;εNd(t)值為-3.98~-0.28,平均值為-2.24,二階段模式年齡值為852~1154Ma,平均為1012Ma(圖8)。
表3浦桑果礦床黑云母花崗閃長巖和閃長玢巖的全巖Sr-Nd-Pb同位素分析結果
Table 3 Whole-rock Sr-Nd-Pb isotopic compositions for the biotite granodiorite and diorite porphyrite in the Pusangguo deposit
樣品號PLX2-2-1PLX2-2-2PLX2-2-3PLX2-2-4PLX1-8-1PLX1-8-2PLX1-8-3PLX1-8-4黑云母花崗閃長巖閃長玢巖Age (Ma)14.814.6Rb (×10-6)19321319919859.960.363.461.8Sr (×10-6)5996126036141616156195490987Rb/86Sr0.9314911.0061810.9540780.9322770.1071600.1116770.1921270.196550(87Sr/86Sr)m0.7072830.7072610.7072910.7073340.705220.7053180.7064310.706613±2σ0.0000150.0000180.0000230.0000220.0000150.0000180.0000170.000022(87Sr/86Sr)i0.7070870.7070500.7070900.7071380.7051980.7052950.7063910.706572Sm (×10-6)5.425.645.115.165.555.54.774.61Nd (×10-6)33.134.730.531.332.431.427.527147Sm/144Nd0.0985750.0978470.1008600.0992430.1031200.1054460.1044200.102786(143Nd/144Nd)m0.5123570.5123370.5123470.5123860.5125710.5126150.5124460.512425±2σ0.0000090.0000090.0000070.000010.0000050.000010.0000090.000009(143Nd/144Nd)i0.5123470.5123280.5123370.5123760.5125610.5126050.5124360.512415tDM (Ma)1051.21070.91085.91018.8799.8755.0983.4997.8t2DM (Ma)1262.11293.81278.21216.0922.1852.41121.21154.5εNd(t)-5.30-5.69-5.50-4.73-1.13-0.28-3.57-3.98206Pb/204Pb18.55118.55218.56318.56518.51318.55418.54818.616±2σ0.0020.0050.0030.0030.0020.0020.0020.006207Pb/204Pb15.68715.68315.6915.69415.66915.71815.66415.684±2σ0.0020.0040.0030.0030.0020.0020.0010.002208Pb/204Pb39.01739.00939.02439.02638.90639.07338.91939.064±2σ0.0050.010.0070.0070.0060.0060.0030.013(208Pb/204Pb)i38.9838.96938.98438.98838.8939.05538.90439.046(207Pb/204Pb)i15.68615.68215.68915.69315.66915.71815.66415.684(206Pb/204Pb)i18.53118.53218.53918.54518.50418.54418.54118.608
注:“m”表示實測同位素比值;“t”表示校年齡的初始同位素比值.εNd(t)為初始值;“tDM”表示從虧損地幔中分離出的地殼物質的年齡;“t2DM”表示二階段Nd模式年齡.球粒隕石標準庫值(CHUR)(87Rb/86Sr=0.0847,87Sr/86Sr=0.7045,147Sm/144Nd=0.1967,143Nd/144Nd=0.512638)用于計算.λRb-Sr=1.42×10-11y-1, λSm-Nd=6.54×10-12y-1. λU238=1.55125×10-10y-1, λU235=9.8485×10-10y-1, λTh232=4.9475×10-11y-1. (87Sr/86Sr)i=(87Sr/86Sr)m-(87Rb/86Sr)×(eλt-1),87Rb/86Sr=(Rb/Sr)×2.8956. (143Nd/144Nd)i=(143Nd/144Nd)m-(147Sm/144Nd)×(eλt-1),147Sm/144Nd=(Sm/Nd)×0.60456.εNd(t)=[(143Nd/144Nd)樣品(t)/(143Nd/144Nd)CHUR(t)-1]×104, (143Nd/144Nd)CHUR(t)=0.512638-0.1967×(ελt-1).tDM=1/λSm-Nd×ln{1+[((143Nd/144Nd)m-0.51315)/((147Sm/144Nd)樣品-0.2137)]}
圖8 浦桑果銅多金屬礦床黑云母花崗閃長巖及閃長玢巖的全巖(87Sr/86Sr)i-εNd(t)圖解岡底斯中新世埃達克質巖(Gao et al., 2010; Xu et al., 2010; Hou et al., 2013);白堊紀埃達克質巖(Zhu et al., 2009);侏羅紀斑巖(楊志明等, 2011);林子宗群火山巖(Mo et al., 2007; Gao et al., 2008);雅魯藏布江蛇綠巖(Xu and Castillo, 2004);印度洋深海黏土(Benothman et al., 1989);安多片麻巖(Harris et al., 1988);拉薩上地殼(Ma et al., 2014);拉薩下地殼(Wen et al., 2008)Fig.8 The (87Sr/86Sr)i vs. εNd(t) diagram for the biotite granodiorite and diorite porphyrite in the Pusangguo copper polymetallic depositGangdese Miocene adakites (Gao et al., 2010; Xu et al., 2010; Hou et al., 2013); Cretaceous adakites (Zhu et al., 2009); Jurassic porphyries (Yang et al., 2011); Linzizong volcanics (Mo et al., 2007; Gao et al., 2008); Yarlung-Tsangpo ophiolite (MORB) (Xu and Castillo, 2004); Indian Ocean pelagic sediment (Benothman et al., 1989); Amdo orthogneiss (Harris et al., 1988); Lhasa upper crust (Ma et al., 2014); Lhasa lower crust (Wen et al., 2008)
浦桑果黑云母花崗閃長巖和閃長玢巖的全巖Pb同位素列于表3和圖9中。結果顯示,黑云母花崗閃長巖的206Pb/204Pb,207Pb/204Pb和208Pb/204Pb值分別為18.551~18.565、15.683~15.694和39.009~39.026;初始(206Pb/204Pb)i,(207Pb/204Pb)i和(208Pb/204Pb)i值分別為18.531~18.545、15.682~15.693和38.969~38.988。閃長玢巖的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb值分別為18.513~18.616、15.664~15.718和38.906~39.073;初始(206Pb/204Pb)i、(207Pb/204Pb)i和(208Pb/204Pb)i值分別為18.504~18.608、15.664~15.718和38.89~39.055。
浦桑果黑云母花崗閃長巖和閃長玢巖的鋯石Lu-Hf同位素分析結果見表4和圖10。黑云母花崗閃長巖鋯石初始176Hf/177Hf(i)值為0.282771~0.282834,平均值為0.282807;鋯石176Yb/177Hf值為0.007365~0.014287,平均值為0.011199;鋯石176Lu/177Hf值為0.000265~0.000407,平均值為0.000328,均小于0.0020,顯示鋯石在形成之后放射成因Hf的積累極為有限;鋯石εHf(t)值為0.3~2.5,平均值為1.6;鋯石一階模式年齡值(tDM1)為582~669Ma,平均年齡為620Ma;鋯石二階模式年齡值(tDM2)為938~1081Ma,平均年齡為999Ma(圖10a);fLu/Hf平均值為-0.99。閃長玢巖鋯石初始176Hf/177Hf(i)值為0.282762~0.282934,平均值為0.282850;鋯石176Yb/177Hf值為0.011415~0.196849,平均值為0.044386;鋯石176Lu/177Hf值為0.000347~0.005160,平均值為0.001242,均小于0.0020,顯示鋯石在形成之后放射成因Hf的積累極為有限;鋯石εHf(t)值為0~6.0,平均值為3.1;鋯石一階段模式年齡(tDM1)為448~690Ma,平均年齡為573Ma;鋯石二階模式年齡(tDM2)為712~1101Ma,平均年齡為901Ma(圖10b);fLu/Hf值為-0.8~-0.99,平均值為-0.96。鋯石Hf同位素投圖結果(圖10c)顯示,本文研究的浦桑果黑云母花崗閃長巖和閃長玢巖的鋯石Hf同位素均位于虧損地幔與球粒隕石之間,且落于岡底斯中新世埃達克質巖的鋯石Hf同位素范圍內(nèi),指示浦桑果礦床的中酸性侵入巖體可能與岡底斯中新世埃達克質侵入巖體具有巖漿同源性及相似的地球動力學背景。
圖9 浦桑果銅多金屬礦床黑云母花崗閃長巖和閃長玢巖的(207Pb/204Pb)i-(206Pb/204Pb)i (a)和(208Pb/204Pb)i-(206Pb/204Pb)i (b)圖解(底圖據(jù)Zhao et al., 2009修改)南北岡底斯花崗巖(>40Ma)(Dong et al., 2008);拉薩地體埃達克巖(Li et al., 2017);北半球參考線值(NHRL):208Pb/204Pb=1.209×206Pb/204Pb+15.627;207Pb/204Pb=0.1084×206Pb/204Pb+13.491Fig.9 Plots of (207Pb/204Pb)i vs. (206Pb/204Pb)i (a) and (208Pb/204Pb)i vs. (206Pb/204Pb)i (b) for the biotite granodiorite and diorite porphyrite in the Pusangguo copper polymetallic deposit (base map after Zhao et al., 2009)The northern and southern Gangdese granites (>40Ma) (Dong et al., 2008); the adakites of the Lhasa terrane (Li et al., 2017); Northern Hemisphere Reference Line (NHRL): 208Pb/204Pb=1.209×206Pb/204Pb+15.627; 207Pb/204Pb=0.1084×206Pb/204Pb+13.491
圖10 浦桑果銅多金屬礦床黑云母花崗閃長巖和閃長玢巖的鋯石εHf(t)-鋯石U-Pb年齡圖解Fig.10 The plot diagrams of zircon εHf(t) vs. U-Pb ages for the biotite granodiorite and diorite porphyrite in the Pusangguo copper polymetallic deposit
埃達克巖是Defant and Drummond (1990)研究阿留申群島新生代俯沖洋殼熔融產(chǎn)生的火山巖時提出的術語,用以概括具有特定地球化學屬性的一套中酸性侵入巖和火山巖的組合,包括安山巖、英安巖、石英閃長巖、花崗閃長巖、石英二長巖、英云閃長巖、斜長花崗巖等。其地球化學特征是SiO2≥56%,Al2O3≥15%,MgO<3%(少量>6%),虧損重稀土元素(HREE)與Y(Y≤18×10-6),高Sr(多數(shù)大于400×10-6)、La/Yb≥20、Sr/Y>40,一般具有正Eu異常特征(少數(shù)具弱的負Eu異常)(Defant and Kepezhinskas, 2001; Richard and Kerrich, 2007)。
浦桑果礦床黑云母花崗閃長巖和閃長玢巖均具高SiO2(58.3%~67.3%)、Al2O3(15.3%~17.2%)、Sr含量(599×10-6~1616×10-6),低MgO含量(1.4%~2.9%),高Sr/Y(48.2~132)和La/Yb(27.4~35.4)比值特征;虧損重稀土元素(HREE)和Y元素;具弱負Eu異常特征(表2和圖7),上述特征與典型埃達克巖的地球化學性質相似。此外,浦桑果黑云母花崗閃長巖和閃長玢巖在巖石地球化學組成方面與岡底斯斑巖銅礦帶大多與斑巖-矽卡巖礦床相關的同時代侵入巖(Wuetal., 2014b; Zhengetal., 2014; Zengetal., 2015; Huetal., 2015, 2017; Xuetal., 2016; Yangetal., 2016)具相似的埃達克質巖地球化學性質,指示巖石可能具相似的巖漿來源和演化過程。
大量研究結果表明,岡底斯成礦帶斑巖-矽卡巖銅礦床與中新世埃達克質巖密切相關,巖石形成時代主要集中于10~23Ma(Zhengetal., 2007; 王保弟等, 2010; Houetal., 2013)。目前,對岡底斯成礦帶發(fā)育的埃達克質巖的巖漿起源及巖石成因主要觀點如下:(1)殘留俯沖特提斯洋殼板片地幔楔的部分熔融(Martinetal., 2005; Lietal., 2011; Huetal., 2015);(2)長英質巖漿與玄武質巖漿的巖漿混合作用(Castillo, 2006; Guoetal., 2007b);(3)巖石圈地幔橄欖巖發(fā)生部分熔融作用(Xuetal., 2010; Jiangetal., 2014; Chenetal., 2015);(4)拉薩地體加厚新生下地殼發(fā)生部分熔融(Xuetal., 2002; Guoetal., 2007a; Chungetal., 2009; Chenetal., 2011; Zhaoetal., 2015; Houetal., 2015; Tianetal., 2017; Lietal., 2017)。
表4浦桑果礦床黑云母花崗閃長巖和閃長玢巖的鋯石Lu-Hf同位素分析結果
Table 4 Zircon Lu-Hf isotopic data for the biotite granodiorite and diorite porphyrite in the Pusangguo deposit
測點號年齡(Ma)176Yb177Hf2σ176Lu177Hf2σ176Hf177Hf2σ176Hf177Hf(i)εHf(0)εHf(t)tDM1 (Ma)tDM2 (Ma)fLu/HfPLX2-2 (黑云母花崗閃長巖)-214.50.0142870.0003680.0003870.0000690.2828120.0000150.2828121.41.7614988-0.99-515.80.0115720.0001870.0003360.0000180.2828150.0000140.2828151.51.9609981-0.99-616.50.0127150.0003120.0003740.0000060.2827960.0000150.2827960.91.26361023-0.99-715.30.0122680.0001120.0003380.0000020.2828290.0000150.2828292.02.4589948-0.99-1014.80.0107350.0000470.0003180.0000020.2828340.0000160.2828342.22.5582938-0.99-1115.90.0121170.0000180.0003010.0000010.2828140.0000130.2828141.51.8609982-0.99-1314.20.0097120.0001210.0002980.0000190.2828120.0000160.2828121.41.7612988-0.99-1415.30.0117080.0003560.0003580.0000110.2827990.0000120.2827991.01.36311016-0.99-1614.30.0117360.0002870.0003160.0000050.2828260.0000160.2828261.92.2593956-0.99-1814.50.0135610.0001270.0004070.0000010.2827890.0000150.2827890.60.96461040-0.99-2014.60.0073650.0000830.0002650.0000020.2827810.0000140.2827810.30.66551058-0.99-2114.70.0126210.0002840.0003420.0000070.2828050.0000130.2828051.21.56231004-0.99-2313.90.0076810.0001250.0002770.0000020.2827710.0000160.2827710.00.36691081-0.99-2613.30.0122630.0001480.0003830.0000110.2828320.0000140.2828322.12.4586944-0.99-2714.30.0131150.0001120.0003040.0000020.2827770.0000160.2827770.20.56611067-0.99-3012.90.0101470.0000930.0003310.0000030.2828180.0000170.2828181.61.9604975-0.99-3115.20.0088250.0001540.0002860.0000050.2827960.0000110.2827960.91.26341023-0.99-3214.50.0091680.0001680.0002910.0000010.2828220.0000150.2828221.82.1598965-0.99PLX1-8 (閃長玢巖)-114.60.0415340.0006780.0013470.0000260.2828390.0000240.2828392.42.7590926-0.96-514.50.0217700.0003080.0007440.0000150.2827620.0000220.282762-0.40.06901101-0.98-615.60.0231060.0004260.0006970.0000110.2827870.0000150.2827870.50.96531043-0.98-713.70.0418960.0007440.0015630.0000300.2828130.0000270.2828131.51.7631986-0.95-813.90.1968490.0028700.0051600.0000350.2828680.0000280.2828663.43.6613864-0.8-1115.20.0496280.0013590.0014870.0000230.2828420.0000190.2828422.52.8588919-0.96-1214.70.0611090.0013880.0018050.0000290.2828800.0000200.2828793.84.1539835-0.95-1414.30.0184990.0002250.0005520.0000020.2829320.0000210.2829325.66.0448717-0.98-1516.40.0148210.0001880.0005060.0000100.2828660.0000240.2828663.33.7540865-0.98-1715.90.0498100.0015260.0014350.0000290.2828930.0000190.2828924.34.6515804-0.96-1813.70.0316510.0008330.0009710.0000290.2829340.0000170.2829345.76.0450712-0.97-2013.40.0657120.0009050.0018560.0000160.2828870.0000200.2828864.14.3530820-0.94-2414.70.0188330.0003150.0005700.0000060.2827810.0000180.2827810.30.66601058-0.98-2613.30.0155920.0001180.0004940.0000060.2828200.0000160.2828201.72.0604970-0.99-2717.60.0114150.0002030.0003470.0000040.2828260.0000200.2828261.92.3594955-0.99-2914.80.0320980.0005460.0007900.0000100.2828720.0000250.2828723.53.9536852-0.98-3214.40.0156750.0004730.0004240.0000090.2828020.0000160.2828021.11.46281011-0.99-3416.50.0240890.0003120.0005850.0000030.2828570.0000250.2828573.03.4554885-0.98-3615.20.1477300.0027580.0035690.0000850.2829280.0000260.2829275.55.8493727-0.9-3814.70.0260250.0002680.0007780.0000030.2828500.0000160.2828492.73.1567903-0.98-4014.60.0153470.0002100.0004160.0000090.2828270.0000240.2828272.02.3593953-0.99-4114.50.0532960.0008520.0012250.0000080.2828470.0000230.2828462.62.9578910-0.96
注:εHf(0)=[(176Hf/177Hf)樣品/(176Hf/177Hf)CHUR-1]×10000,εHf(t)={[(176Hf/177Hf)樣品-(176Lu/177Hf)樣品×(eλt-1)]/[(176Hf/177Hf)CHUR-(176Lu/177Hf)CHUR×(eλt-1)]-1)}×10000,tDM1=1/λ×ln{1+[(176Hf/177Hf)樣品-(176Hf/177Hf)DM]/[(176Lu/177Hf)樣品-(176Lu/177Hf)DM]},tDM2=tDM1-(tDM1-t)×[(fcc-f樣品)/(fcc-fDM)],fLu/Hf=(176Lu/177Hf)樣品/(176Lu/177Hf)CHUR-1, (176Lu/177Hf)CHUR=0.0332, (176Hf/177Hf)CHUR=0.282772 (Blichert-Toft and Albarède, 1997); (176Lu/177Hf)DM=0.0384, (176Hf/177Hf)DM=0.28325 (Griffinetal., 2000),fcc,f樣品和fDM分別代表陸殼、樣品和虧損地幔的fLu/Hf值,“t”表示鋯石結晶年齡,“2σ”表示標準偏差,λ=1.867×10-11y-1
圖11 浦桑果銅多金屬礦床黑云母花崗閃長巖和閃長玢巖體的Th/La (a)、Th/Nd (b)、Th/Sm (c)和Th/Y (d)與Th相關性圖Fig.11 Correlation diagrams of Th/La (a), Th/Nd (b), Th/Sm (c) and Th/Y (d) vs. Th for the biotite granodiorite and diorite porphyrite in the Pusangguo copper polymetallic deposit
圖12 浦桑果礦床及岡底斯斑巖銅礦帶部分斑巖-矽卡巖型礦床埃達克質侵入巖體的SiO2-MgO圖解(a)和SiO2-Mg#圖解(b)Fig.12 MgO vs. SiO2 (a) and Mg# vs. SiO2 (b) diagrams for adakitic intrusions from the Pusangguo and other porphyry-skarn deposits in GPCB全稱因為前文沒有出現(xiàn)過
研究表明,約50~42Ma時,特提斯洋俯沖板片開始下沉,發(fā)生板片斷離作用,最終逐漸下沉到深部巖石圈地幔中(Kohn and Parkinson, 2002; Leeetal., 2009)。然而,浦桑果埃達克質中酸性侵入巖體(黑云母花崗閃長巖和閃長玢巖)形成時代均為14Ma左右,巖體侵位形成于后碰撞構造環(huán)境而非特提斯洋俯沖板片斷離構造背景,因此,可排除由俯沖特提斯洋殼板片發(fā)生板片斷離或部分熔融作用的巖石成因模型。Allègre and Minster (1978)指出巖石中La、Nd、Th、Sm、Y等不相容元素之間的比值可有效判別巖石是由巖漿部分熔融作用還是巖漿分離結晶作用形成。如圖11,浦桑果礦床黑云母花崗閃長巖和閃長玢巖侵入巖體Th、Nd、La等不相容元素比值之間均顯示出較好的正相關關系,且與甲瑪、驅龍等大多斑巖-矽卡巖礦床由部分熔融作用形成的埃達克質侵入巖表現(xiàn)趨勢相似(圖11a-d),指示巖石是由巖漿部分熔融作用而非同化混染或分離結晶作用形成。此外,Strecketal. (2007)研究認為由長英質和玄武質巖漿發(fā)生巖漿混合作用而形成的埃達克質巖石通常含較高MgO含量(>4.5%)和高Mg#指數(shù)(>66),然而,本文研究的浦桑果侵入巖體均表現(xiàn)出具低MgO含量(1.41%~2.93%)和低Mg#指數(shù)(40.6~50.8)特征(表2;圖12a, b),這與長英質和玄武質巖漿混合作用形成的埃達克質巖石特征明顯不符,亦可排除此種巖石成因模式。此外,地幔橄欖巖主要由輝石巖和輝石巖熔體組成,主要形成玄武質巖漿而非埃達克質巖漿,浦桑果埃達克質中酸性侵入巖體非巖石圈地幔橄欖巖的部分熔融作用而形成。
在Mg#與MgO和SiO2圖解中(圖12a, b),本文研究的所有樣品點均落入起源于下地殼的埃達克質巖區(qū)域內(nèi),且浦桑果礦床黑云母花崗閃長巖和閃長玢巖的鋯石Hf同位素值與岡底斯成礦帶中新世埃達克質巖石的Hf同位素組成較為相似(表4、圖10),巖體的εNd(t)和(87Sr/86Sr)i較洋中脊玄武巖(MORB)虧損而較拉薩下地殼更富集(表3、圖8),Sr-Nd同位素值主要位于岡底斯中新世埃達克質侵入巖區(qū)域內(nèi)(圖8),這與起源于新生下地殼的埃達克質巖具相似的Sr-Nd同位素組成特征(Jiangetal., 2012; Lietal., 2017)。此外,在全巖Pb同位素圖解(圖9a, b)中,所有浦桑果侵入巖的樣品點均落在拉薩地體埃達克巖區(qū)域內(nèi)。綜上所述,浦桑果礦床黑云母花崗閃長巖和閃長玢巖中酸性侵入巖體可能主要起源于新生下地殼。
中新世時期(18~10Ma),整個西藏地殼厚度增厚至約40~55km左右(Moetal., 2007; Guanetal., 2012),而研究證實地殼厚度在40~50km時,新生下地殼組成以榴輝巖和富含石榴石的角閃巖相為主,同樣在(La/Yb)N-YbN圖解中(圖6d),浦桑果侵入巖數(shù)據(jù)點均位于角閃巖相至含石榴石(10%)角閃巖相區(qū)域內(nèi),指示巖體中存在含石榴石角閃巖相的殘留熔體且主要以部分熔融作用形成埃達克質巖漿熔體(Rappetal., 1999)。實驗巖石學表明,加厚新生下地殼部分熔融作用形成的埃達克質巖通常含較低Mg#值和MgO、Cr、Ni含量(Wangetal., 2007),如榴輝巖或角閃巖部分熔體(Martinetal., 2005)。浦桑果礦床埃達克質侵入巖體具低MgO含量、低Mg#指數(shù)及低Cr、Ni、Co等含量特征,具高K2O含量、高K2O/Na2O、高(La/Yb)N和高Sr/Y比值特征(表2),相似于由加厚新生下地殼部分熔融形成的巖漿巖特征(Liuetal., 2010)。
綜上所述,浦桑果礦床中酸性侵入巖體的巖漿可能主要起源于拉薩地體加厚新生下地殼,且主要由新生下地殼中富含石榴石的角閃巖相發(fā)生部分熔融作用,形成具埃達克質巖地球化學屬性的巖漿熔體,上涌至礦區(qū)有利構造部分發(fā)生侵位,形成埃達克質黑云母花崗閃長巖和閃長玢巖侵入體。
鋯石U-Pb年代學表明,浦桑果礦床黑云母花崗閃長巖的侵位年齡為13.6±0.2Ma和14.4±0.4Ma;閃長玢巖形成年齡為13.6±0.1Ma和14.6±0.3Ma(表1、圖5),巖體均形成于中新世。巖體的侵位年齡與岡底斯大多數(shù)中新世大型-超大型斑巖或矽卡巖型礦床與成礦密切相關的侵入巖體形成時代一致,如朱諾礦床花崗斑巖(12.3±0.3Ma, Zengetal., 2017),吉如礦床斑巖(15.5±0.3Ma, Yangetal., 2016),沖江礦床黑云母二長花崗斑巖(14.9±0.3Ma, Huetal., 2017),達布礦床二長花崗斑巖(14.6±0.3Ma, Wuetal., 2014),拉抗俄礦床斑狀花崗閃長巖(13.7±0.7Ma, Lengetal., 2016),知不拉礦床花崗閃長巖(16.9±0.3Ma, Xuetal., 2016),驅龍礦床二長花崗巖(16.6±0.5Ma, Huetal., 2015),甲瑪花崗斑巖(15.9±0.5Ma, Houetal., 2004)(各礦床位置如圖1b),指示其礦床形成于相似的地球動力學背景之下。
圖13 浦桑果銅多金屬礦床中新世埃達克質侵入巖體的巖石成因及地球動力學模型簡圖Fig.13 Schematic diagram showing the petrogenetic and geodynamical model for the Miocene adakitic intrusions in the Pusangguo copper polymetallic deposit
前人對岡底斯中新世巖漿活動的地球動力學背景和過程研究,認為引起岡底斯中新世大規(guī)模埃達克質巖漿巖的主要地球動力學模型包括:(1)新特提斯洋俯沖板片發(fā)生斷離或拆沉(Williamsetal., 2001; Mahéoetal., 2002; Chungetal., 2003; Houetal., 2004);(2)印度大陸巖石圈的拆沉與軟流圈對流上涌(Jietal., 2009; Zhangetal., 2010; Zhengetal., 2014; Lietal., 2011; Xuetal., 2016)。新特提斯洋殼的拆沉或斷離作用(50~42Ma)會直接導致巖石圈地幔物質大量上涌(Tianetal., 2017),從而引起殘留的巖石圈地幔發(fā)生部分熔融作用,引起大規(guī)模的以地幔巖石圈為主的巖漿熱液活動,然而在整個岡底斯斑巖銅礦帶并未發(fā)現(xiàn)中新世時期以地幔成因為主的大規(guī)模巖漿活動存在(Zhengetal., 2014)。此外,新特提斯洋俯沖板片發(fā)生拆沉,將形成以地幔橄欖巖等基性-超基性巖為主的巖石組合類型,巖石普遍具高MgO、高Cr、高Ni含量及高Mg#值特征(Williamsetal., 2001),如寧真埃達克質侵入巖體(Xuetal., 2002)。本文研究的浦桑果黑云母花崗閃長巖和閃長玢巖具埃達克質地球化學屬性,侵入巖體普遍具低MgO、低Cr、低Ni含量和低Mg#值的特征(表2);巖體侵位形成時代均為中新世,而南拉薩地體在中新世時期(18~10Ma)為后碰撞伸展的構造背景(Chungetal., 2009; Leeetal., 2009)。綜上所述,浦桑果侵入巖產(chǎn)出的構造背景和地球化學特征明顯不符合由新特提斯俯沖洋殼發(fā)生斷離或拆沉作用形成的埃達克質巖石特征,故可排除上述巖石成因觀點,這與中新世吉如礦床埃達克質侵入巖(Yangetal., 2016)和沖江礦床埃達克質侵入巖體(Huetal., 2017)的巖石成因觀點相符合。
岡底斯成礦帶廣泛發(fā)育的南北向斷裂帶(24~10Ma)的形成與埃達克質巖漿巖的分布存在緊密的時空關系,Wangetal. (2014)認為,南拉薩地體經(jīng)歷了從碰撞擠壓的構造背景(Houetal., 2004; Jietal., 2009; Liuetal., 2011; Chenetal., 2012)到中新世(18~10Ma)后碰撞伸展環(huán)境的構造轉換(Zhaoetal., 2009; Liuetal., 2011)。其中,~65Ma:新特提斯大洋板塊俯沖作用停止(Houetal., 2013; Zhaoetal., 2015)。65~50Ma,早期低角度俯沖的新特提斯洋殼板片拖拽印度板塊巖石圈進入俯沖帶,導致印度大陸與亞洲大陸發(fā)生陸-陸碰撞,區(qū)域構造背景開始進入碰撞擠壓的構造環(huán)境,并在拉薩地塊形成大量的同碰撞型火山侵入巖體(圖13a)。50~42Ma,新特提斯洋殼板片發(fā)生板片斷離,引起熱的軟流圈通過板片斷離窗上涌(Guoetal., 2013; Zhaoetal., 2015),導致拉薩地塊新生下地殼發(fā)生部分熔融,形成大面積分布的林子宗群火山巖和岡底斯巖基(Jietal., 2012)(圖13b)。42~25Ma,印度板塊向北低角度底墊于拉薩地塊之下,導致南拉薩地體地殼增厚和喜馬拉雅強烈擠壓變形,印度板塊上地殼與下地殼發(fā)生分離形成念青唐古拉山古老結晶基地;軟流圈的持續(xù)上涌,導致加厚巖石圈的拆沉和地幔減薄,引起地殼的伸展和張性正斷層的發(fā)育以及印度板塊下地殼及巖石圈地幔部分發(fā)生拆沉(圖13c),并釋放大量流體和熔體交代拉薩地塊巖石圈地幔中含石榴子石二輝橄欖巖形成富集巖石圈地幔(Moetal., 2008; Tianetal., 2017; Liuetal., 2017),形成鉀質或超鉀質火山巖(Liuetal., 2014; Houetal., 2015)。
25~18Ma,岡底斯成礦帶區(qū)域構造背景主要為南北向擠壓和東西向伸展的構造背景(Xuetal., 2016; Lietal., 2017)。軟流圈不斷上涌,誘發(fā)由低角度底墊印度板塊釋放的流體交代含石榴子石二輝橄欖巖形成的富集巖石圈地幔發(fā)生部分熔融作用,從而形成早期富堿且含Cu、Co等金屬物質基性幔源巖漿(浦桑果輝長巖脈)。18~10Ma,基性幔源巖漿低侵至加厚新生下地殼,導致加厚新生下地殼中富含石榴子石的角閃巖相發(fā)生部分熔融,形成富含Cu-Pb-Zn、富水、堿性的高氧逸度閃長質熔體(埃達克質巖漿),最終在有利的構造部位發(fā)生侵位,形成具埃達克質屬性的黑云母花崗閃長巖和閃長玢巖侵入體,并在浦桑果礦區(qū)中酸性侵入巖體與塔克那組灰?guī)r接觸帶,形成廣泛的矽卡巖化和矽卡巖型銅多金屬礦體(圖13d)。
盡管部分埃達克質巖漿與斑巖-矽卡巖型銅礦床密切相關(Mungall, 2002; 侯增謙等, 2003),但并非所有埃達克質巖漿巖都能形成斑巖-矽卡巖型銅礦床,因此,埃達克質巖漿的含礦性一直都是學術界爭論的熱點話題(Defant and Kepezhinskas, 2001; Oyarzunetal., 2001; Houetal., 2009)。此外,埃達克質巖漿的氧逸度會影響硫元素在硅酸鹽熔體中的溶解和沉淀,從而直接影響親鐵和親銅元素的溶解度(Botcharnikovetal., 2011; Richards, 2011),含水且具較高氧逸度的埃達克質巖漿更有利于成礦,可直接形成斑巖-矽卡巖型礦床(Houetal., 2009; Wangetal., 2014b)。
含水條件下,元素Ti更易寄主于金紅石中而元素Nb更易寄主于角閃石中(Houetal., 2004),浦桑果埃達克質侵入巖體相對富集Th,U等輕稀土元素(LREE)而強烈虧損Nb,Ta,Ti等重稀土元素(HREE)(表2、圖7a, b),指示巖漿源區(qū)可能存在殘留的金紅石和角閃石,源區(qū)巖石可能為石榴角閃巖相(Mahoneyetal., 1998),這與(La/YbN)-YbN圖解(圖6d)結果一致。研究認為,大陸板片不太可能產(chǎn)生高氧逸度的超臨界流體(Bissigetal., 2003),早期南拉薩地體深部向北俯沖的板片為特提斯洋殼板片,而非印度大陸板片(Owens and Zandt, 1997)。因此,南拉薩地體之下的巖石圈應該是含水的(Houetal., 2004),因來自早期俯沖大洋板塊的高氧逸度超臨界流體將直接被引入到下地殼中(Bissigetal., 2003),指示巖漿源區(qū)可能受到洋殼俯沖作用的改造。Kay and Mpodozis (2001)研究證實由角閃巖相發(fā)生部分熔融作用形成的埃達克質巖Sm/Yb比值為5~7,浦桑果礦床埃達克質侵入巖的Sm/Yb比值為4.5~5.8,平均值為5.1(表2),表明在巖石發(fā)生部分熔融的過程中存在富含角閃石或石榴石的礦物集合體的分解作用。角閃石的分解將釋放大量的流體,從而形成含礦的埃達克質巖漿,這對于形成斑巖-矽卡巖成礦系統(tǒng)極為有利(Reichetal., 2003; Houetal., 2009)。浦桑果礦床埃達克質中酸性侵入巖漿主要由加厚新生下地殼發(fā)生部分熔融形成,富集Cu、Pb、Zn等成礦元素,大量地殼物質加入初始的埃達克質熔體中,從而導致金屬成礦富集形成(Houetal., 2009);當含水埃達克質熔體處于高氧逸度狀態(tài)時,金屬元素可與礦物結晶熔化過程產(chǎn)生的大量揮發(fā)份相結合,從而發(fā)生金屬元素的沉淀富集(Sillitoe and Thompson, 1998)。
基于浦桑果礦床中酸性侵入巖體(黑云母花崗閃長巖和閃長玢巖)的鋯石U-Pb年代學、全巖主微量稀土元素地球化學特征、全巖Sr-Nd-Pb及鋯石Hf同位素組成特征的研究,結合區(qū)域鄰區(qū)礦床已有資料,可得出如下結論:
(1)LA-ICP-MS鋯石U-Pb年代學表明,浦桑果礦床黑云母花崗閃長巖和閃長玢巖的侵位年齡均為13~14Ma,巖體形成時代為中新世。巖石地球化學特征表明,巖石普遍均具高K2O、SiO2和Sr含量,低Yb和Y含量,高(La/Yb)N和Sr/Y比值特征,具埃達克質巖的地球化學屬性。
(2)年代學、地球化學及同位素特征綜合表明,浦桑果礦床的中酸性侵入巖體的巖漿主要起源于拉薩地塊加厚新生下地殼的部分熔融,且與南拉薩地體大多數(shù)斑巖-矽卡巖型銅多金屬礦床與成礦密切相關的埃達克質侵入巖具相似的巖漿起源,不同礦床可能具同源巖漿性質。
(3)浦桑果礦床埃達克質中酸性侵入巖體主要形成于后碰撞伸展的構造背景,因碰撞擠壓至后碰撞伸展背景的構造轉換,導致拉薩地塊巖石圈地幔發(fā)生部分熔融形成富含Cu、Co等金屬的基性巖漿熔體,基性巖漿底侵加厚新生下地殼,引起加厚新生下地殼中富含石榴子石的角閃巖相發(fā)生部分熔融,從而形成閃長質熔體(埃達克質巖漿),沿區(qū)域斷裂等構造通道上涌,最終在浦桑果礦區(qū)有利構造位置侵位形成具埃達克質屬性的黑云母花崗閃長巖和閃長玢巖侵入巖體,在接觸帶形成矽卡巖型銅多金屬礦體。
致謝野外工作中得到了西藏自治區(qū)地質礦產(chǎn)勘查開發(fā)局第六地質大隊王茂麗工程師的大力支持;鋯石U-Pb定年及主微量測試及全巖Sr-Nd-Pb同位素分析過程和鋯石Lu-Hf同位素分析過程中分別得到了中國地質大學(北京)相鵬老師和北京核工業(yè)地質研究院劉牧老師和中國地質科學院地質研究所王錚老師的大力支持和耐心指導;匿名審稿人對本文提出了諸多寶貴意見和建議;貴刊主編和編輯認真評閱了本文;在此一并深表衷心的感謝!