羅紅英,李 丹,崔遠(yuǎn)來,田正野,羅玉峰
?
西藏農(nóng)業(yè)區(qū)?ngstr?m-Prescott公式參數(shù)選取研究
羅紅英1,2,李 丹2,崔遠(yuǎn)來2,田正野1,羅玉峰1,2
(1. 西藏農(nóng)牧學(xué)院水利土木工程學(xué)院,林芝 860000;2. 武漢大學(xué)水資源與水電工程科學(xué)國家重點(diǎn)實驗室,武漢 430072)
針對西藏地區(qū)地域廣闊、輻射站點(diǎn)少且分布不均勻等特征,為獲得適用于西藏主要農(nóng)業(yè)區(qū)的太陽總輻射計算模型參數(shù),基于拉薩、獅泉河、那曲、昌都站1961—2004年的逐日太陽總輻射及日照時數(shù)數(shù)據(jù),采用最小二乘法對?ngstr?m-Prescott(AP)中的參數(shù)進(jìn)行率定,利用2005—2016年的逐日觀測數(shù)據(jù)對率定結(jié)果進(jìn)行驗證,并根據(jù)不同農(nóng)業(yè)區(qū)劃,由已知站點(diǎn)的參數(shù)值推求無輻射數(shù)據(jù)典型站點(diǎn)的經(jīng)驗參數(shù),進(jìn)而選取不同農(nóng)業(yè)區(qū)劃的經(jīng)驗參數(shù)。結(jié)果表明, FAO推薦的參數(shù)值并不完全適用于西藏地區(qū),4個站點(diǎn)2個參數(shù)率定值的變化范圍分別為0.18~0.26以及0.55~0.64。經(jīng)驗參數(shù)受緯度影響最大,其次是經(jīng)度、海拔。拉薩站和昌都站計算值與實測值的吻合較好。5個不同農(nóng)業(yè)區(qū)2個參數(shù)值變化范圍分別為0.18~0.25及0.55~0.64。FAO推薦值在高原溫帶半濕潤區(qū)以及高原溫帶半干旱區(qū)適用性較好。該研究成果可為無輻射實測地區(qū)的太陽輻射值和作物騰發(fā)量的計算提供依據(jù)。
輻射;高程;維度;?ngstr?m-Prescott公式;西藏;參數(shù)估計
太陽輻射是決定一個地區(qū)光能生產(chǎn)能力的重要變量,也是影響陸地與大氣水分與能量交換最重要的驅(qū)動要素;太陽總輻射(R)是地表蒸散發(fā)的主要能量來源[1-3]。合理確定R是分析地表能量平衡關(guān)系,評價參考作物騰發(fā)量(reference evapotranspiration,ET0)等相關(guān)水文氣候變量的重要前提之一[4-6]。目前國際上計算ET0時所廣泛采用的Penman—Monteith (PM)[7]方法,也需要相應(yīng)的輻射數(shù)據(jù)。然而,與其他常規(guī)氣象資料如溫度、降雨的觀測相比,由于太陽輻射實測儀器的維護(hù)、校正復(fù)雜,成本高,即使在國內(nèi)覆蓋面很大的氣象觀測網(wǎng)絡(luò)中,具有實測太陽輻射的站點(diǎn)仍相對較少[8-9]。目前全國輻射站點(diǎn)只有124個,而建站時間在30 a以上的只有70個,西藏地區(qū)只有拉薩、獅泉河、那曲和昌都4個輻射觀測點(diǎn)。針對西藏地域廣闊、輻射站點(diǎn)少且分布不均勻等特性,為獲得總輻射在西藏地區(qū)的分布特征資料,往往借助于間接的計算方法,以便用無輻射的站點(diǎn)上的氣象要素 值來求算總輻射。國內(nèi)外針對計算R的方法已有大量研究[10-15],鐘強(qiáng)等[16-18]在西藏高原區(qū)的輻射計算方面做出了很多貢獻(xiàn)。然而此類研究多數(shù)是從大范圍的研究對象考慮的,方法主要以太陽總輻射的氣候?qū)W計算為主,模型參數(shù)詳細(xì)選取的工作較少涉及。西藏地區(qū)太陽輻射觀測臺站少,不能滿足分布規(guī)律研究和實際開發(fā)應(yīng)用的需要。因此,探討適用于西藏主要農(nóng)業(yè)區(qū)R的估算方法,分析經(jīng)典?ngstr?m-Prescott(AP)模型系數(shù)的適用性,提出適用于主要農(nóng)業(yè)區(qū)的模型參數(shù)以期得到太陽輻射的變化規(guī)律及精準(zhǔn)的ET0,對農(nóng)業(yè)長期用水規(guī)劃具有重要的指導(dǎo)意義,有利于合理開發(fā)和利用西藏的水資源。
西藏自治區(qū)位于中國西南部,地理位置介于78°27¢~ 93°06¢E、26°50¢~36°53¢N之間,區(qū)域面積約占全國總面積的1/8。西藏占據(jù)青藏高原的主體部分,平均海拔4 000 m以上,地勢由西北向東南傾斜,地形復(fù)雜多變。氣候緯度地帶性和垂直地帶性明顯,參照《西藏農(nóng)業(yè)氣候資源區(qū)劃》[19],根據(jù)西藏的氣候、土壤、植被和地形條件特點(diǎn)將西藏分為5個區(qū)域:高原溫帶半濕潤區(qū)、高原溫帶半干旱區(qū)、高原溫涼半濕潤區(qū)、高原溫帶干旱區(qū)以及高原寒帶干旱區(qū)。西藏共包含38個氣象站點(diǎn),但只有其中的4個站點(diǎn)(拉薩、獅泉河、那曲以及昌都)有實測輻射資料,其他皆為無輻射實測資料的氣象站點(diǎn),站點(diǎn)分布及所屬農(nóng)業(yè)分區(qū)見圖1及表1。就行政區(qū)域而言,林芝是西藏主要的糧食產(chǎn)區(qū)之一,位于高原溫帶半濕潤區(qū),耕地面積占西藏總耕地面積的8.0%。日喀則素有“西藏糧倉”之稱,地處高原溫帶半干旱區(qū),耕地面積占比為34.8%。索縣是西藏典型的半農(nóng)半牧區(qū),屬高原溫涼半濕潤區(qū)。故除將具有輻射實測資料的站點(diǎn)作為典型站外,分別選取這3個站點(diǎn)作為其所屬農(nóng)業(yè)分區(qū)的典型站。
圖1 西藏38個氣象站點(diǎn)的分布
表1 西藏農(nóng)業(yè)區(qū)劃及典型站點(diǎn)
收集了現(xiàn)有所有4個輻射站的逐日太陽總輻射R和日照時數(shù)的實測資料,站點(diǎn)的名稱、地理位置及所在的分區(qū)如表2所示。對于不能如實反映實際狀況的數(shù)據(jù)通過對比法進(jìn)行了篩選和剔除,如R大于大氣頂層輻射(R)時則剔除掉此數(shù)據(jù);若在數(shù)據(jù)中發(fā)現(xiàn)有缺測現(xiàn)象,對于輻射數(shù)據(jù)中出現(xiàn)連續(xù)3 d內(nèi)缺測的情況通過直線插值求得,對于>3 d的連續(xù)缺測記錄,則進(jìn)行剔除,即在計算平均值時不考慮這些天的輻射數(shù)據(jù)。
1998年聯(lián)合國糧農(nóng)組織(Food and Agriculture Organization of the United Nations,F(xiàn)AO)特別推薦的標(biāo)準(zhǔn)PM方程中的輻射計算采用AP模型[7,20-21],即:
式中R為太陽總輻射,MJ/(m2·d);R為大氣頂層輻射,MJ/(m2·d);、為?ngstr?m-Prescott系數(shù),反映外空輻射受大氣斜射率、空氣中水汽含量、微塵粒多少等因素影響而造成的衰減特征,二者之和為晴空條件下輻射透射率;為實際日照時數(shù),h;為理論日照時數(shù)或最大可能日照時數(shù),h。月、年大氣頂層輻射量R是由大氣頂層輻射量公式計算每日R,然后采用逐日求和的精確累計法得到。
表2 輻射站基本信息
注:臺站信息資料來自國家氣象信息中心。
Note:Station information is from National Meteorological Information Center.
R的計算公式[4,7]為
采用標(biāo)準(zhǔn)差(standard deviation,SD)、平均絕對誤差(mean absolute error,MAE)以及平均絕對百分誤差(mean absolute percentage error,MAPE)這3個指標(biāo)來評價率定后AP模型的準(zhǔn)確性,計算公式如下:
采用式(2)~(6)計算R和,基于西藏4個輻射站1961—2004年的實測R和實測,以R/R為因變量,以/為自變量,在Origin軟件中運(yùn)用最小二乘法擬合式(1),得到各站點(diǎn)的系數(shù)、;再采用2005—2016年的逐日觀測數(shù)據(jù)對計算結(jié)果進(jìn)行驗證。
將率定后AP模型計算的R結(jié)果與實際觀測數(shù)據(jù)對比分析。由4個站點(diǎn)太陽總輻射計算值與實測值的誤差分析結(jié)果可以看出(圖2和圖3),率定期回歸直線斜率皆在0.7以上,統(tǒng)計指標(biāo)值皆在可接受的范圍內(nèi)。驗證期拉薩、獅泉河、那曲以及昌都站的SD值在1.75~2.80 MJ/(m2·d)之間,拉薩、昌都站計算值的準(zhǔn)確性高于獅泉河、那曲站計算值的準(zhǔn)確性。其中拉薩站的SD值最小,為1.75 MJ/(m2·d),而那曲站的SD值最大,計算值精度較差。該4個站點(diǎn)MAE值的變化范圍為1.27~2.03 MJ/(m2·d),拉薩站的MAE值最小,表明拉薩站的計算結(jié)果更為接近實測值。分析4個站點(diǎn)MAPE值的正負(fù)值可以發(fā)現(xiàn),拉薩、昌都以及獅泉河站的MAPE值小于0,表明這3個站R計算值小于實測值,但拉薩和昌都的MAPE值較接近于0。那曲站的MAPE值大于0,表明該站R計算值總體偏大??傮w來看,拉薩站和昌都站計算值與實測值的吻合較好。對2005—2016年模擬得到的逐日太陽輻射與實際觀測值進(jìn)行相關(guān)分析。可以看出,二者的相關(guān)性均達(dá)到了顯著相關(guān)水平,4個站點(diǎn)太陽輻射的計算值與實測值的擬合度為0.843~0.888,回歸直線的斜率為0.844~0.940之間,表明該模擬方法基本反映實際逐日太陽輻射值的變化,計算方程選取的參數(shù)較為準(zhǔn)確。
圖2 率定期太陽日輻射計算值與實測值比較
圖3 驗證期太陽日輻射計算值與實測值比較
將率定后的、值與FAO推薦值進(jìn)行比較,以判斷FAO推薦值在西藏地區(qū)的適用性,結(jié)果如表3所示??梢?,參數(shù)、的變化范圍分別為0.18~0.26和0.55~0.64,與FAO建議值[22]有一定差別??傮w來看,系數(shù)的率定值與FAO推薦值的相對偏差在-28%至2%之間,系數(shù)的相對偏差范圍為10%~28%。其中,拉薩站、的率定值與FAO的推薦值較為接近,系數(shù)、的相對偏差分別為2%及10%,其他3個站點(diǎn)的率定值與FAO推薦值相對偏差約在25%左右。除拉薩站系數(shù)的率定值略高于FAO的推薦值以外,其他3個站點(diǎn)系數(shù)的率定值皆明顯低于推薦值。4個站點(diǎn)系數(shù)的率定值都明顯高于FAO的推薦值。綜上,F(xiàn)AO推薦的經(jīng)驗參數(shù)并不完全適用于地形地勢復(fù)雜,地域廣闊的西藏地區(qū)。AP模型系數(shù)、包含了各種物理因子(如水汽、氣溶膠、云的光學(xué)性質(zhì)等)對地面總輻射的綜合影響。西藏高原地理環(huán)境復(fù)雜,水汽、氣溶膠的含量空間差異較大[23-24]。由于在不同地區(qū)和不同月份的實測總輻射資料往往是不同的,所以擬合得到的經(jīng)驗系數(shù)、值結(jié)果往往有較大的空間差異。
表3 不同站點(diǎn)a和b率定值與推薦值的對比分析
注:FAO建議使用的為0.25,為0.55。
Note: Recommendedandvalues by FAO are 0.25 and 0.55, respectively.
繪制、值與緯度之間的關(guān)系,見圖4。、值皆與緯度之間具有一定的相關(guān)性,系數(shù)隨站點(diǎn)緯度的增加而降低,且擬合度達(dá)0.8以上;系數(shù)隨緯度的增加而有增加的趨勢,擬合度為0.6。可以看出,系數(shù)受緯度的影響較系數(shù)受緯度的影響更為明顯。圖4所揭示的這種相關(guān)性,一定程度上反映了經(jīng)驗系數(shù)、在區(qū)域上的變化規(guī)律,對于參數(shù)在區(qū)域上的拓展具有一定的價值。此外,圖4點(diǎn)繪了、值與經(jīng)度、海拔的關(guān)系。由圖可以看出,系數(shù)隨經(jīng)度的增加而有增加的趨勢,系數(shù)隨經(jīng)度的增加而有下降的趨勢,但系數(shù)、受經(jīng)度的影響并不明顯,擬合度只有0.06和0.17。類似地,由圖4可知,AP系數(shù)、與海拔的關(guān)系并不明顯,系數(shù)、隨海拔的升高僅呈現(xiàn)微弱的下降趨勢。由此可見,AP系數(shù)、受緯度影響最為顯著,其次是經(jīng)度,與海拔高度無明顯相關(guān)性。
在站點(diǎn)少(只有獅泉河、那曲、拉薩和昌都4個輻射觀測點(diǎn)),時間序列短的狀況下研究計算太陽輻射,不同的學(xué)者得到的同區(qū)域、值存在差異,如表4所示,前人研究表明,青藏高原的AP模型系數(shù)、值范圍分別在0.166~0.290和0.523~0.792之間,變異系數(shù)分別為20%和15%,差異較大。翁篤鳴[31]在20世紀(jì)60年代將全國劃分為華南、華中、華北和西北4個不同區(qū)域,根據(jù)50個站點(diǎn)2~3 a的實測數(shù)據(jù),提出了各區(qū)域、的建議取值。祝昌漢等[27-28]基于全國75個輻日射站1957—1977年的輻射觀測數(shù)據(jù),討論了、的空間變化及影響因素,指出分區(qū)域配置、,可提高太陽總輻射的計算精度。中國地區(qū)參數(shù)的變化范圍為0.10~0.35,的大致變化范圍為0.35~0.7。根據(jù)左大康等[25]的研究,青藏高原區(qū)的變化范圍為0.17~0.29,的變化范圍為0.52~0.79。本文以西藏4個輻射站點(diǎn)資料通過最小二乘法回歸,獲得、率定值,參數(shù)、的變化范圍分別為0.18~0.26和0.55~0.64,與前人研究結(jié)果的變化規(guī)律較為一致,采用的輻射資料為近50 a長系列的實測資料,率定結(jié)果更具有代表性。
圖4 AP系數(shù)率定值與經(jīng)緯度及海拔的關(guān)系
表4 ?ngstr?m-Prescott系數(shù)在青藏高原區(qū)的部分取值結(jié)果
根據(jù)西藏4個輻射站的實測資料,率定出拉薩、獅泉河、那曲、昌都典型站點(diǎn)的、值。由于地理條件和氣候條件不同,不同地區(qū)應(yīng)分別采用不同的系數(shù)、,考慮西藏特殊的地理、氣候條件以及輻射觀測站點(diǎn)少,為此需通過區(qū)劃來推求、系數(shù)。林芝、日喀則以及索縣地區(qū)無輻射觀測資料,無法直接由公式獲得、值。根據(jù)前文所述的參數(shù)與緯度的相關(guān)性,選擇4個實測站點(diǎn)作為參照站,進(jìn)行基于緯度的反距離加權(quán)插值求取林芝、日喀則以及索縣的、值(表5)。
西藏各農(nóng)業(yè)區(qū)劃、值結(jié)果如表6所示。在高原溫帶半濕潤區(qū),采用林芝站點(diǎn)作為該區(qū)域代表站,即采用=0.25,=0.55;在高原溫帶半干旱區(qū),采用拉薩、昌都以及日喀則3個站點(diǎn)、值的平均值作為代表值,即采用=0.24,=0.57;高原溫涼半濕潤區(qū),以索縣的、值作為代表值,即=0.19,=0.61;高原溫帶干旱區(qū),采用獅泉河實測輻射數(shù)據(jù)站點(diǎn)率定值作為代表值,即=0.18,=0.64;高原寒帶干旱區(qū),采用那曲實測輻射數(shù)據(jù)站點(diǎn)率定值作為代表值,即=0.20,=0.56。可以看出,除高原溫帶半濕潤區(qū),F(xiàn)AO推薦系數(shù)值總體偏高,而推薦系數(shù)則總體偏低。FAO推薦值在高原溫帶半濕潤區(qū)的適用性最好,在高原溫帶半干旱區(qū)的適用性較好,誤差在5%以下,而在其他3個農(nóng)業(yè)區(qū)的適用性則較差。
表5 西藏其他典型站點(diǎn)a和b值
表6 西藏5個農(nóng)業(yè)分區(qū)a和b值
本文基于拉薩、獅泉河、那曲、昌都站4個站點(diǎn)日總輻射及日照時數(shù)數(shù)據(jù),探究了 ?ngstr?m-Prescott公式參數(shù)、值在西藏地區(qū)的選取,結(jié)論如下:
1)拉薩、昌都、那曲、獅泉河4個站點(diǎn)參數(shù)的率定值分別為0.26、0.19、0.20以及0.18,參數(shù)的率定值分別為0.55、0.62、0.56以及0.64。FAO的推薦值并不完全適用于西藏地區(qū)。
2)?ngstr?m-Prescott系數(shù)、受緯度影響最為顯著,其次是經(jīng)度,與海拔高度無明顯相關(guān)性。系數(shù)隨緯度增加而減小,系數(shù)隨緯度的增加而增大,但系數(shù)受緯度的影響較系數(shù)受緯度的影響更為明顯。
3)4個站點(diǎn)計算值的精度在可接受的范圍內(nèi),驗證期4個站點(diǎn)SD值在1.75~2.80 MJ/(m2·d)之間,MAE值的變化范圍為1.27~2.03 MJ/(m2·d),MAPE值較接近0或稍有偏離。
4)在4個實測站點(diǎn)的基礎(chǔ)上對林芝、日喀則以及索縣地區(qū)的、值進(jìn)行推算,進(jìn)而根據(jù)西藏農(nóng)業(yè)區(qū)劃,確定高原溫帶半濕潤區(qū)、高原溫帶半干旱區(qū)、高原溫涼半濕潤區(qū)、高原溫帶干旱區(qū)和高原寒帶干旱區(qū)的、取值的變化范圍分別為0.18~0.25和0.55~0.64。FAO的推薦值在高原溫帶半濕潤區(qū)以及高原溫帶半干旱區(qū)適用性較好。該結(jié)果有利于太陽總輻射R的準(zhǔn)確計算,并為西藏各地區(qū)ET0的精確估算和水資源的規(guī)劃利用提供了科學(xué)依據(jù)。
[1] Akarslan E, Hocaoglu F O, Edizkan R. Novel short term solar irradiance forecasting models[J]. Renewable Energy, 2018, 123: 58-66.
[2] Aladenola O O, Madramootoo C A. Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in Canada[J]. Theoretical & Applied Climatology, 2014, 118(3): 377-385.
[3] Liu Xiaoying, Mei Xurong, Li Yuzhong, et al. Calibration of the ?ngstr?m-Prescott coefficients (,) under different time scales and their impacts in estimating global solar radiation in the Yellow River basin[J]. Agricultural & Forest Meteorology, 2015, 149(3): 697-710.
[4] Wu Yiping, Liu Shuguang, Yan Wende, et al. Climate change and consequences on the water cycle in the humid Xiangjiang River Basin, China[J]. Stochastic Environmental Research & Risk Assessment, 2016, 30(1): 1-11.
[5] Rezaei E E, Gaiser T, Siebert S, et al. Combined impacts of climate and nutrient fertilization on yields of pearl millet in Niger[J]. European Journal of Agronomy, 2014, 55(2): 77-88.
[6] Sabziparvar A A, Movahedi S, Asakereh H, et al. Geographical factors affecting variability of precipitation regime in Iran[J]. Theoretical & Applied Climatology, 2015, 120(12): 367-376.
[7] Allen R G, Pereira, L S, Raes D, et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements[M]. Rome: FAO Irrigation and Drainage Paper 56, 1998.
[8] Mohammadi K, Khorasanizadeh H, Shamshirband S, et al. Influence of introducing various meteorological parameters to the ?ngstr?m-Prescott model for estimation of global solar radiation[J]. Environmental Earth Sciences, 2016, 75(3): 219.
[9] Benmouiza K, Cheknane A. Forecasting hourly global solar radiation using hybrid k -means and nonlinear autoregressive neural network models[J]. Energy Conversion & Management, 2013, 75(5): 561-569.
[10] 毛洋洋,趙艷霞,張祎,等. 五個常見日太陽總輻射模型在華北地區(qū)的有效性驗證及分析[J]. 中國農(nóng)業(yè)氣象,2016,37(5):520-530. Mao Yangyang, Zhao Yanxia, Zhang Yi, et al. Validation and analysis of five general daily solar radiation estimation models used in Northern China[J]. Chinese Journal of Agrometeorology, 2016, 37(5): 520-530. (in Chinese with English abstract)
[11] Samanta S, Patra P K, Banerjee S, et al. Generation of common coefficients to estimate global solar radiation over different locations of India[J]. Theoretical & Applied Climatology, 2018(2): 1-11.
[12] Akino?lu B G, Ecevit A. Construction of a quadratic model using modified ?ngstrom coefficients to estimate global solar radiation[J]. Solar Energy, 1990, 45(2): 85-92.
[13] Liu Xiaoying, Mei Xurong, Li Yuzhong, et al. Evaluation of temperature-based global solar radiation models in China[J]. Agricultural & Forest Meteorology, 2009, 149(9): 1433-1446.
[14] Bristow K L, Campbell G S. On the relationship between incoming solar radiation and daily maximum and minimum temperature[J]. Agricultural & Forest Meteorology, 1984, 31(2): 159-166.
[15] Thornton P E, Running S W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation[J]. Agricultural & Forest Meteorology, 1999, 93(4): 211-28.
[16] 鐘強(qiáng). 青藏高原太陽總輻射的計算方法的討論[J]. 高原氣象,1986,5(3):197-210. Zhong Qiang. Disscussions in the climatological methods of calculating the global solar radiation over the Qinghai-Xizang plateau area[J]. Plateau Meteorology, 1986, 5(3): 197-210. (in Chinese with English abstract)
[17] 李成方. 西藏高原太陽總輻射的計算及其分布[J]. 西藏農(nóng)業(yè)科技,1980(4):81-88. Li Chengfang. Calculation and distribution of total solar radiation in Tibet Plateau[J]. Tibet Journal of Agricultural Sciences, 1980(4): 81-88. (in Chinese with English abstract)
[18] 潘守文. 青藏高原太陽總輻射的計算方法[C]// 青藏高原氣象科學(xué)實驗文集(一).北京:科學(xué)出版社,1984:1-14.
[19] 杜軍. 西藏農(nóng)業(yè)氣候資源區(qū)劃[M]. 北京:氣象出版社,2007.
[20] ?ngstr?m A. Solar and terrestrial radiation 19[J]. Mon Wea Rev, 1924, 52(8): 83.
[21] Prescott J A. Evaporation from a water surface in relation to solar radiation[J]. Trans R Soc Sci Austr, 1940(64): 114-125.
[22] 胡慶芳,楊大文,王銀堂,等. ?ngstr?m公式參數(shù)對ET0的影響及FAO建議值適用性評價[J]. 水科學(xué)進(jìn)展,2010,21(5):644-652. Hu Qingfang, Yang Dawen, Wang Yintang, et al. Effects of ?ngstr?m coefficients on ET0estimation and the applicability of FAO recommended coefficient values in China[J]. Advances in Water Science, 2010, 21(5): 644-652. (in Chinese with English abstract)
[23] Paulescu M, Stefu N, Calinoiu D, et al. ?ngstr?m–Prescott equation: Physical basis, empirical models and sensitivity analysis[J]. Renewable & Sustainable Energy Reviews, 2016(62): 495-506.
[24] Wang C, Yue T, Fan Z. Solar radiation climatology calculation in China[J]. Journal of Resources and Ecology, 2014, 5(2): 132-138.
[25] 左大康,王懿賢,陳建綏. 中國地區(qū)太陽總輻射的空間分布特征[J]. 氣象學(xué)報,1963(1):80-98. Zuo Dakang, Wang Yixian, Chen Jiansui. Characteristics of the distribution of total radiation in China [J]. Acta Meteorologica Sinica, 1963(1): 80-98. (in Chinese with English abstract)
[26] 王炳忠,張富國,李立賢. 我國的太陽能資源及其計算 [J]. 太陽能學(xué)報,1980(1):5-13. Wang Bingzhong, Zhang Fuguo, Li Lixian. Solar energy resources in China[J]. Acta Energiae Solaris Sinica, 1980(1): 5-13. (in Chinese with English abstract)
[27] 祝昌漢. 再論總輻射的氣候?qū)W計算方法(一)[J]. 南京氣象學(xué)院學(xué)報,1982(1):15-24. Zhu Changhan. A further discussion on the climatological calculating method of total radiation[J]. Transactions of Atmospheric Sciences, 1982(1): 15-24. (in Chinese with English abstract)
[28] 祝昌漢. 再論總輻射的氣候?qū)W計算方法(二)[J]. 南京氣象學(xué)院學(xué)報,1982(2):196-206. Zhu Changhan. A further discussion on the climatological calculating method of total radiation (Ⅱ)[J]. Transactions of Atmospheric Sciences, 1982(1): 196-206. (in Chinese with English abstract)
[29] 童宏良. 我國蒸發(fā)力計算的氣候?qū)W方法[J]. 南京氣象學(xué)院學(xué)報,1989(1):19-33. Tong Hongliang. A climatic calculation method for the evaporation power in China[J]. Transactions of Atmospheric Sciences, 1989(1): 19-33. (in Chinese with English abstract)
[30] 陳玉民,郭國雙. 中國主要農(nóng)作物需水量等值線圖研究[M]. 北京:中國農(nóng)業(yè)科技出版社,1993.
[31] 翁篤鳴. 試論總輻射的氣候?qū)W計算方法[J]. 氣象學(xué)報,1964(3):54-65. Wang Duming. Discussion on the climatological calculation method of total radiation[J]. Acta Meteorologica Sinica, 1964(3): 54-65. (in Chinese with English abstract)
Study on parameter selection of ?ngstr?m-Prescott in Tibet agricultural region
Luo Hongying1,2, Li Dan2, Cui Yuanlai2, Tian Zhengye1, Luo Yufeng1,2
(1.860000; 2.430072,)
In Tibet, radiation stations are scare. The radiation is important for accuracy estimation of reference evapotranspiration. In this study, the parameters of typical ?ngstr?m-Prescott (AP) equation were estimated and FAO recommended values were evaluated for its applicability in Tibet agricultural region. The data of daily solar radiation and sunshine hours from 1961 to 2016 were from all the 4 radiation stations (Lhasa, Shiquanhe, Nagchu and Chamdo stations) in Tibet. The AP parameters were fitted by nonlinear least square method. The data from the years of 1961 to 2004 were for calibration and those from the year of 2005 to 2016 were for validation. Standard deviation (SD), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used for model accuracy evaluation in order to find the main factor affecting parameter change. In addition, the relationships between parameters and longitude, latitude and altitude were analyzed. The stations were in 2 climatic regions of plateau temperate semi-arid zone and plateau cold arid zone. According to the, 5 zones were classified in Tibet, which included plateau temperate semi-humid zone, plateau cold arid zone, plateau temperate semi-arid zone, plateau warm-cool semi-humid zone and plateau temperate arid zone. Representative stations were chosen for these zones. Nyingchi, Shigatse, Suo county, Shiquanhe and Nagchu were for plateau temperate semi-humid zone, plateau temperate semi-arid zone, plateau warm-cool semi-humid zone, plateau temperate arid zone and plateau cold arid zone, respectively. Based on the relationship between main factor and parameters, the parameters for the other 3 zones were estimated by using inverse distance weighted method. The deviations from FAO recommended values were used for evaluation of FAO recommendations. The results showed that the SD, MAE and MAPE were in the acceptable range and the validation results for SD and MAE were 1.75-2.80 MJ/(m2·d), 1.27-2.03 MJ/(m2·d), respectively. The MAPE was closer or slightly different from 0. It indicated that the AP model was reliable for estimation of radiation. The calibrated coefficientsfor these 4 stations ranged from 0.18 to 0.26 and from 0.55 to 0.64, respectively. The recommended values by FAO were not always suitable in Tibet with the deviation of -28%-28%. The coefficient of variation of coefficient recommended by past studies was 15%-20%. Compared to previous studies with shorter time period, our results were more reliable since the time duration (about 50 years) was longer. The parameters were closely correlated with latitude with the determination coefficient higher than 0.6 but they were less related with longitude and altitude with the determination coefficient less than 0.2. Based on latitude, the interpolation was conducted for Nyingchi, Shigatse and Suo county. Finally the AP coefficients for 5 different agricultural zones were obtained and they ranged from 0.18 to 0.25 and from 0.55 to 0.64, respectively. The deviation analysis showed that the FAO recommended values had a good applicability in the plateau temperate semi-humid zone, plateau cold arid zone and plateau temperate semi-arid zone. The results can provide valuable information for the calculation of solar radiation and reference evapotranpiration in the areas without measured radiation data in Tibet.
radiation; altitude; latitude; ?ngstr?m-Prescott equation; Tibet; parameter estimation
羅紅英,李 丹,崔遠(yuǎn)來,田正野,羅玉峰. 西藏農(nóng)業(yè)區(qū)?ngstr?m-Prescott公式參數(shù)選取研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(3):149-155. doi:10.11975/j.issn.1002-6819.2019.03.019 http://www.tcsae.org
Luo Hongying, Li Dan, Cui Yuanlai, Tian Zhengye, Luo Yufeng. Study on parameter selection of ?ngstr?m-Prescott in Tibet agricultural region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 149-155. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.019 http://www.tcsae.org
2017-12-19
2019-01-01
國家自然科學(xué)基金項目(51769035);西藏自治區(qū)科技廳地區(qū)自然科學(xué)基金項目(ZH20170006);西藏農(nóng)牧學(xué)院2015年柔性引進(jìn)人才項目;西藏自治區(qū)第三批重點(diǎn)科技計劃項目經(jīng)費(fèi)資助
羅紅英,門巴族,副教授,主要從事節(jié)水灌溉方向及動力的研究和教學(xué)。Email:lhy_xz@sina.com
10.11975/j.issn.1002-6819.2019.03.019
P351.3
A
1002-6819(2019)-03-0149-07