丁法龍,茅澤育,王文娥,韓 凱
?
滴灌管主流道沿程壓力分布模型及驗(yàn)證
丁法龍1,茅澤育1,王文娥2,韓 凱1
(1. 清華大學(xué)水利水電工程系,北京 100084;2. 西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,楊凌 712100)
為揭示滴灌管的沿程流動(dòng)特性,簡(jiǎn)化滴灌水力計(jì)算,分析了能量方程應(yīng)用于滴灌管水力計(jì)算的局限性,并以質(zhì)量守恒和動(dòng)量守恒定理為依據(jù),建立了以滴灌管為典型的變質(zhì)量流動(dòng)數(shù)學(xué)模型,并結(jié)合測(cè)壓試驗(yàn)數(shù)據(jù),獲得了滴灌管主流道沿程壓力分布表達(dá)式。變質(zhì)量流動(dòng)的動(dòng)量方程表明:多孔管路主流道壓力變化取決于摩阻項(xiàng)和動(dòng)量交換項(xiàng)兩部分,沿程壓力分布的具體形式取決于二者作用的相對(duì)強(qiáng)弱,滴灌管壓力分布?xì)w結(jié)為求解滴灌管軸向流速分布、摩阻系數(shù)和動(dòng)量交換系數(shù),動(dòng)量方程建立的合理之處在于不必追究其詳細(xì)機(jī)制,將復(fù)雜的流動(dòng)機(jī)理進(jìn)行了合理概化。測(cè)壓-測(cè)流試驗(yàn)表明:滴灌管軸向流速分布指數(shù)與滴頭自身特性參數(shù)無(wú)關(guān),而與滴頭安裝個(gè)數(shù)呈線性關(guān)系?;诶碚摲治龊驮囼?yàn)數(shù)據(jù)回歸得到了動(dòng)量交換系數(shù)的表達(dá)式,并結(jié)合Blasius摩阻公式進(jìn)行方程求解,壓力計(jì)算值與實(shí)測(cè)值吻合良好,最大相對(duì)誤差為4.27%。該文可為滴灌管水力計(jì)算及多孔管水動(dòng)力學(xué)研究提供一定參考。
灌溉;模型;壓力;主流道;變質(zhì)量流動(dòng);摩阻作用;動(dòng)量交換
滴灌作為一種精準(zhǔn)灌溉技術(shù),節(jié)水效果顯著,更加省工、增產(chǎn),因而在農(nóng)業(yè)生產(chǎn)中得到了快速推廣應(yīng)用[1]。灌水均勻度是滴灌質(zhì)量評(píng)估和水力設(shè)計(jì)的核心指標(biāo)[2],其影響因素包括主流道壓力分布,灌水器制造偏差及堵塞狀況等,但最主要因素是壓力分布[3]。若不考慮滴頭內(nèi)部微流道幾何型式的差異,結(jié)合滴頭的自由出流特性,可不失一般性地認(rèn)為滴頭所在位置的滴灌管主流道壓力水頭將全部轉(zhuǎn)化為滴頭內(nèi)部微流道的沿程損失[4]。由Darcy-Weisbach沿程水頭損失公式可知,滴頭出流量與壓力水頭呈指數(shù)型關(guān)系[5]:=Cp。式中為滴頭流量,L/h;為滴頭安裝處滴灌管主流道的壓力值,MPa;和為滴頭的2個(gè)特性參數(shù),分別稱為流量系數(shù)和流態(tài)指數(shù)。該式的合理性已被廣泛地證明,可見,滴頭出流量除了與自身特性參數(shù)、有關(guān)外,主要取決于壓力水頭的大小,故整個(gè)滴灌管路上的灌水均勻度主要取決于滴灌管主流道的沿程壓力分布。因此精確計(jì)算滴灌管路內(nèi)的壓力分布是進(jìn)行滴灌系統(tǒng)水力設(shè)計(jì)的前提條件,也是滴灌水力學(xué)研究的一個(gè)最基本問題。
國(guó)內(nèi)外學(xué)者圍繞該問題進(jìn)行了大量研究,Christiansen首先提出使用完整管計(jì)算水頭損失再折減計(jì)算多孔管水頭損失的多孔系數(shù)法,為多孔管路水頭損失的計(jì)算奠定了基礎(chǔ)。Wu等[6-8]隨后提出了能量坡度線法確定滴灌管路的沿程壓力水頭,使多孔管沿程壓力變化剖面大為簡(jiǎn)化,并以此為基礎(chǔ),發(fā)展了單一管徑條件下的變坡度計(jì)算方法。Jain等[9]利用已有經(jīng)驗(yàn)公式建立模型并對(duì)模型進(jìn)行定性分析,并利用Darcy-Weisbach公式對(duì)滴灌管水頭損失進(jìn)行了進(jìn)一步計(jì)算分析得出其分布特點(diǎn),所得結(jié)果接近實(shí)測(cè)但計(jì)算過(guò)程繁瑣,因而適用性較低。Kang等[10-12]采用有限元方法計(jì)算并總結(jié)繪制了滴灌管水力特性規(guī)律分布圖,同時(shí)分析了滴灌管沿程水頭損失的變化規(guī)律。
隨著滴灌技術(shù)的普及,直接針對(duì)滴灌管水力性能和簡(jiǎn)化計(jì)算的研究越來(lái)越多,這些研究基本上不再基于適當(dāng)?shù)募僭O(shè)來(lái)進(jìn)行解析,而是依賴試驗(yàn)結(jié)果直接進(jìn)行多因素系統(tǒng)的回歸分析[13-17]。另外,隨著數(shù)學(xué)建模方法和計(jì)算機(jī)技術(shù)的發(fā)展,相繼出現(xiàn)了一些利用新興算法,如二分法[18]、遺傳算法[19]、人工神經(jīng)網(wǎng)絡(luò)[20]、CFD技術(shù)[21-23]等來(lái)研究滴灌管等多孔管路的能量損失及流動(dòng)特性。
以上研究工作主要都是通過(guò)計(jì)算多孔管路的沿程水頭損失,來(lái)確定多孔管路的沿程壓力分布,即認(rèn)為影響壓力分布的因素只有摩阻損失。但這種能量衡算法應(yīng)用于滴灌管這類多孔管路計(jì)算時(shí)會(huì)產(chǎn)生2個(gè)問題:1)能量守恒定律是建立在總能量守恒基礎(chǔ)上的,而伯努利方程和水頭損失計(jì)算公式則均以單位質(zhì)量進(jìn)行計(jì)算,這對(duì)于和其他體系無(wú)質(zhì)量交換的獨(dú)立流動(dòng)體系是適用的。但在多孔管中,主流道流體流經(jīng)側(cè)流孔口時(shí),形成能量的重新分布,如果以主流道內(nèi)單位質(zhì)量的機(jī)械能進(jìn)行總體能量衡算,則分流后的流體機(jī)械能必然大于分流前(若不考慮極短流程上的摩阻損失),這明顯違背了能量守恒定律,因此,單純地對(duì)主流道內(nèi)流體應(yīng)用能量方程不盡合理。2)恒定總流能量方程是由伯努利方程在過(guò)流斷面積分得來(lái),而伯努利方程是按元流或流線建立的,對(duì)滴灌管這種多孔分流管,流體經(jīng)過(guò)每個(gè)滴頭流出都有一條流線,即整個(gè)滴灌管路有多條非平行的流線,不同過(guò)流斷面處的流線數(shù)量不同。這意味著按照流線建立能量守恒方程和評(píng)估摩阻損失有多種可能。
滴灌管屬于多孔出流管,其中的流體在流動(dòng)過(guò)程中質(zhì)量不斷減少,屬于變質(zhì)量流動(dòng),對(duì)于這種流動(dòng)行為,可以采用動(dòng)量分析方法進(jìn)行研究。本研究采用質(zhì)量和動(dòng)量守恒原理,建立了以滴灌管為典型的變質(zhì)量流動(dòng)的數(shù)學(xué)模型,將主流道內(nèi)的壓力變化歸結(jié)為動(dòng)量交換和摩阻損失的雙重影響,并結(jié)合滴灌工程中常用的滴灌管結(jié)構(gòu)參數(shù)和操作壓力進(jìn)行了測(cè)壓-測(cè)流試驗(yàn),基于實(shí)測(cè)數(shù)據(jù)回歸得到了動(dòng)量交換系數(shù)的變化規(guī)律,通過(guò)求解動(dòng)量方程獲得了滴灌管沿程壓力分布的分析解,可為滴灌系統(tǒng)水力設(shè)計(jì)和校核提供依據(jù),為變質(zhì)量流動(dòng)研究提供參考。
滴灌管內(nèi)流體的流動(dòng)為變質(zhì)量流動(dòng)過(guò)程,可將滴灌管內(nèi)的流動(dòng)簡(jiǎn)化為如圖所示的多孔出流,即等間距布孔且末端封閉的長(zhǎng)直圓管,以管軸線為軸建立一維坐標(biāo),如圖1所示。在研究其流動(dòng)行為時(shí),假定滴灌管水平布置,且孔口排放壓力保持不變,即大氣壓力;主流流速在入口處最高,在封頭處等于0。
注:De為滴灌管內(nèi)徑,m;s為側(cè)流孔口間距或滴頭間距,m。
在上述假定基礎(chǔ)上,各孔口流量分布將依賴軸線方向的壓力分布,在孔口前后取一微元段作為控制體,如圖2所示,根據(jù)質(zhì)量和動(dòng)量守恒定理,建立該變質(zhì)量流動(dòng)過(guò)程的基本方程組。
注:v為孔口前的流速,m·s-1;p為孔口前的壓力,Pa;u為孔口處的側(cè)向流速,m·s-1;tw為單位面積上管壁對(duì)控制體的摩阻力,N·m-2。
1)質(zhì)量守恒方程
2)動(dòng)量守恒方程
聯(lián)立方程(1)、(2)及圓管摩阻力公式w=(2/8),并忽略d的高階項(xiàng)后得
式中為水的密度kg/m3;A為滴灌管主流道過(guò)流斷面積,m2;A為側(cè)流孔口面積,m2;v為側(cè)流孔口出流帶走的軸向速度分量,m/s;為管壁摩阻系數(shù)。
由式(3)可見,軸向壓力變化取決于2項(xiàng):2/2D表征管壁摩阻作用;(2-v)d/d表征動(dòng)量輸運(yùn)作用。引入修正系數(shù),并令=1-c/2,表示對(duì)孔口出流帶走的軸向速度分量v的修正,稱為動(dòng)量交換系數(shù),則式(3)可寫為
式(4)即為變質(zhì)量流動(dòng)行為的數(shù)學(xué)模型。
由于滴灌管主流道過(guò)流斷面上的速度分布是不均勻的,這種不均勻分布使得流體經(jīng)過(guò)側(cè)流孔口流出時(shí),并不嚴(yán)格垂直于軸線方向。采用動(dòng)量交換系數(shù)的處理方法,其簡(jiǎn)便之處在于不必考慮具體的流動(dòng)細(xì)節(jié),直接對(duì)側(cè)流孔口帶走的部分軸向動(dòng)量分量進(jìn)行修正,將模型簡(jiǎn)化所引起的誤差都包含在這一修正系數(shù)中。
式(4)表明滴灌管主流道內(nèi)的壓力變化受摩阻作用和動(dòng)量交換的雙重影響,因此,壓力求解歸結(jié)為確定摩阻系數(shù)和動(dòng)量交換系數(shù),下面分而述之。
尼古拉茲對(duì)內(nèi)壁用人工加糙的圓管進(jìn)行了深入的試驗(yàn)研究,得出摩阻系數(shù)與管壁粗糙高度及雷諾數(shù)相關(guān),并給出了各流態(tài)分區(qū)下摩阻系數(shù)隨二者的變化曲線。對(duì)于多孔管,其摩阻損失比同材質(zhì)、同管徑及管長(zhǎng)、同入口流量的完整管要小,工程計(jì)算中一般對(duì)完整管的摩阻系數(shù)進(jìn)行折減后得到多孔管的平均摩阻系數(shù),該折減系數(shù)稱為多孔系數(shù)[24],常用的多孔系數(shù)表達(dá)式為Christiansen公式[13]
式中為Christiansen多孔系數(shù);為流量指數(shù),一般取1.75;為孔口或滴頭數(shù)目。
多孔系數(shù)法不考慮多孔管內(nèi)的沿程變化,是一種平均化的簡(jiǎn)化處理方法。本文所采用的變質(zhì)量流動(dòng)方程在推導(dǎo)時(shí)以分流口前后的微元體作為分析對(duì)象,引入的摩阻系數(shù)是指d管段上的實(shí)際摩阻系數(shù)值,與多孔管整體布孔數(shù)目無(wú)關(guān),因此不需要以多孔系數(shù)法進(jìn)行折減,而是采用隨軸向流速變化的連續(xù)函數(shù)進(jìn)行表示(詳見3.1節(jié)),比多孔系數(shù)法更符合物理實(shí)際。根據(jù)尼古拉斯試驗(yàn)結(jié)果,與管壁粗糙度、雷諾數(shù)有關(guān),對(duì)于滴灌管來(lái)說(shuō),主流道的雷諾數(shù)不斷變化,流態(tài)逐漸發(fā)生轉(zhuǎn)捩,嚴(yán)格來(lái)說(shuō),應(yīng)根據(jù)不同流態(tài)分區(qū)逐管段計(jì)算,但多項(xiàng)研究表明[25-29],對(duì)于內(nèi)徑小于80 mm的PE材質(zhì)滴灌管,全管路統(tǒng)一按照紊流光滑區(qū)處理時(shí)具有足夠計(jì)算精度,即滴灌管摩阻系數(shù)計(jì)算時(shí)采用Blasius阻力公式
式中雷諾數(shù)=vD/μ為水的運(yùn)動(dòng)黏度。
動(dòng)量交換系數(shù)是求解變質(zhì)量流動(dòng)數(shù)學(xué)模型的關(guān)鍵。將式(4)在主流道的任意2截面至間積分,可得
即
式中p、p分別為、2測(cè)點(diǎn)的壓力;v、v分別為、2測(cè)點(diǎn)的軸向流速,m/s;h為、2測(cè)點(diǎn)之間的摩阻水頭損失,m;為重力加速度,取9.8 m/s2。
式(8)即對(duì)動(dòng)量交換系數(shù)進(jìn)行試驗(yàn)測(cè)定的原理式。通過(guò)室內(nèi)測(cè)壓試驗(yàn)數(shù)據(jù)回歸可確定的經(jīng)驗(yàn)表達(dá)式,并用于變質(zhì)量流動(dòng)數(shù)學(xué)模型求解。首先,需要定性分析的物理意義及影響因素,確定其函數(shù)形式。
1)隨管路坐標(biāo)位置的變化
方程推導(dǎo)過(guò)程表明,動(dòng)量交換系數(shù)的作用是對(duì)側(cè)流孔口帶走部分軸向動(dòng)量分量進(jìn)行修正,即孔口前后主流速的變化是由孔口出流帶走的軸向分量引起,也就是孔口出流帶走的流體動(dòng)量的軸向分量應(yīng)是主流動(dòng)量(或動(dòng)能)變化的分?jǐn)?shù),即
由以上分析可知,相對(duì)動(dòng)能差的數(shù)學(xué)表達(dá)式成為推求值函數(shù)形式的關(guān)鍵。由數(shù)學(xué)分析
即
對(duì)式(11)從0到積分,得到相對(duì)動(dòng)能差的函數(shù)式
式中0為滴灌管入口流速,m/s。
聯(lián)立式(9)和(13),得到
由式(14)可以確定,與管路軸向流速分布有關(guān),滴灌管的軸向流速分布為階梯型的分段函數(shù),為了方便數(shù)學(xué)處理,本文將滴灌管主流道的軸向流速分布簡(jiǎn)化為連續(xù)函數(shù),并假定具有以下指數(shù)分布形式
結(jié)合式(14)、(15),可知
可見是隨管路坐標(biāo)位置發(fā)生變化的。
2)隨滴灌管結(jié)構(gòu)參數(shù)的變化
在變質(zhì)量流動(dòng)的方程推導(dǎo)過(guò)程中,分析對(duì)象為主流道過(guò)流面積沿程不變的多孔管路,但對(duì)于內(nèi)鑲式滴灌管,由于圓柱形滴頭的鑲?cè)?,滴頭安裝處的主流道過(guò)流面積先縮小、后擴(kuò)大,如圖3所示。流體流經(jīng)該處時(shí),因慣性作用,主流與邊壁分離,并在分離區(qū)產(chǎn)生漩渦,在漩渦區(qū)內(nèi)部,水體擾動(dòng)加劇,同時(shí)主流與漩渦區(qū)之間不斷進(jìn)行質(zhì)量及動(dòng)量交換,引起局部能量損失及流速分布的重新調(diào)整,經(jīng)側(cè)流孔口所帶走的軸向速度分量必然受到影響。作為衡算該軸向速度分量的修正系數(shù),也必然發(fā)生變化,其變化情況取決于邊界變化的劇烈程度。
注:d為圓柱形滴頭的內(nèi)徑,m。
滴灌管內(nèi)徑D對(duì)應(yīng)的過(guò)流面積為A,圓柱形內(nèi)鑲滴頭的內(nèi)徑對(duì)應(yīng)的過(guò)流面積為A,定義=A/A為斷面收縮比,以此表征滴頭安裝處過(guò)流面積變化的劇烈程度。由以上分析可知,是斷面收縮比的函數(shù)。
綜上,在內(nèi)鑲式滴灌管中,動(dòng)量交換系數(shù)受管路坐標(biāo)位置和斷面收縮比的影響。結(jié)合式(16),并便于數(shù)據(jù)回歸時(shí)線性化處理,設(shè)具有如下函數(shù)形式
式中0為試驗(yàn)測(cè)得的的最大值;、均為待定參數(shù)。
變質(zhì)量流動(dòng)數(shù)學(xué)模型表明,多孔管壓力變化值取決于摩阻系數(shù)和動(dòng)量交換系數(shù),在以上的分析和推導(dǎo)過(guò)程中,已經(jīng)確定了和的函數(shù)表達(dá)式,因此,可以進(jìn)行變質(zhì)量流動(dòng)數(shù)學(xué)模型的求解,將表達(dá)式(6)、表達(dá)式(17)和滴灌管軸向流速分布式(15),代入變質(zhì)量流動(dòng)方程式(4),得
式中=/D為滴灌管長(zhǎng)徑比;0=0D/為滴灌管的管首雷諾數(shù)。
式(19)中尚包含4個(gè)待定參數(shù):0、、和流速分布指數(shù)。需通過(guò)滴灌管沿程測(cè)壓-測(cè)流試驗(yàn),確定這4個(gè)待定參數(shù),以獲得完善的沿程壓力分布解。
供試的6種內(nèi)鑲式滴灌管(陜西省楊凌秦川節(jié)水灌溉公司提供),分別以A、B、C、D、E、F表示,表1中給出了6種滴灌管的基本特性參數(shù)。
表1 供試滴灌管的基本參數(shù)
試驗(yàn)裝置主要由蓄水箱、離心泵、恒壓變頻柜、精密壓力表、滴灌管、閘閥、試驗(yàn)臺(tái)、壓差計(jì)、燒杯、集水槽、稱質(zhì)量設(shè)備等組成。試驗(yàn)中的主要變化參數(shù)包括滴灌管種類(6種)、滴頭間距、滴灌管總長(zhǎng)度和首部壓力水頭0,其中滴灌管種類、滴頭間距、滴灌管總長(zhǎng)度的水平設(shè)定在表1中已經(jīng)列出,首部壓力0通過(guò)恒壓變頻柜設(shè)置0.02,0.04,0.06,0.08,0.10,0.12 MPa共6個(gè)水平。滴灌管測(cè)壓-測(cè)流裝置如圖4所示。對(duì)于每組量測(cè)工況,首先將待測(cè)滴灌管水平順直鋪設(shè),末端封堵,在滴灌管入口處接入精密壓力表,打開水泵,通過(guò)調(diào)節(jié)變頻柜設(shè)定所需的首部壓力,待水流運(yùn)行平穩(wěn)后,開始測(cè)壓及測(cè)流,試驗(yàn)過(guò)程中蓄水箱水溫維持在20 ℃左右(水的運(yùn)動(dòng)黏度取=10-6m2/s)。每組工況通過(guò)更換管道設(shè)置3個(gè)有效重復(fù)。
測(cè)壓-測(cè)流試驗(yàn)的目的是回歸得到流速分布指數(shù)和經(jīng)驗(yàn)表達(dá)式中的待定參數(shù)0、、,以及對(duì)壓力分布模型進(jìn)行驗(yàn)證。
1. 變頻柜 2. 蓄水箱 3. 離心泵 4. 球閥 5. 壓力表 6. 滴灌管 7. 壓差計(jì) 8. 堵頭 9. 集水槽 10. 水桶 11. 電子秤12. 量杯 13. 試驗(yàn)臺(tái)
滴灌管主流道軸向流速分布?xì)w結(jié)為對(duì)流速分布指數(shù)的回歸,在以上的分析中,已經(jīng)包含了對(duì)滴灌管結(jié)構(gòu)參數(shù)(長(zhǎng)徑比)和流動(dòng)參數(shù)(管首雷諾數(shù)0)的考慮,其他因素中,流速分布的形式可能與滴頭的自身特性參數(shù)(流量系數(shù)、流態(tài)指數(shù))及滴頭安裝個(gè)數(shù)有關(guān)。
根據(jù)式(20),式(15)可寫為
此即基于試驗(yàn)實(shí)測(cè)得到的滴灌管軸向流速分布公式,圖6為由式(21)計(jì)算得到的不同滴頭安裝個(gè)數(shù)條件下的滴灌管軸向流速變化規(guī)律。橫坐標(biāo)為滴灌管路相對(duì)位置,即。
圖6 不同滴頭個(gè)數(shù)時(shí)的軸向流速分布
Fig.6 Relationship between number of emitters and axial velocity profile
由測(cè)壓-測(cè)流試驗(yàn)數(shù)據(jù),計(jì)算得到不同工況條件、不同管路位置處的動(dòng)量交換系數(shù)。
圖7 滴灌管A中動(dòng)量交換系數(shù)k與的關(guān)系
對(duì)按照式(17)進(jìn)行數(shù)據(jù)回歸,結(jié)果如下
根據(jù)式(22)繪出6種供試滴灌管的動(dòng)量交換系數(shù)k的沿程變化規(guī)律,如圖8所示。若將式(8)代入恒定總流能量方程,可得k=0.5,故應(yīng)用能量方程求解多孔管流動(dòng),可以看作是一種特殊的動(dòng)量方程解法,只是動(dòng)量交換系數(shù)取常數(shù)0.5,未考慮k的沿程變化。由于滴灌管沿程泄流,主流道內(nèi)的水動(dòng)力特性沿程不斷變化,孔口處的動(dòng)量交換作用也必然發(fā)生變化,因此,相較于能量方程法,考慮k沿程變化的動(dòng)量方程法更符合物理真實(shí)。
由前面的推導(dǎo)公式和3.1、3.2節(jié)的實(shí)測(cè)回歸結(jié)果,聯(lián)立式(19)、(20)和(22)得到滴灌管沿程壓力分布的完整理論計(jì)算式
式(23)即根據(jù)變質(zhì)量流動(dòng)的數(shù)學(xué)方程,由滴灌管測(cè)壓-測(cè)流試驗(yàn)數(shù)據(jù)回歸得到的無(wú)量綱形式的滴灌管沿程壓力分布模型。
圖9給出了5種典型工況下滴灌管沿程壓力分布的實(shí)測(cè)值與式(23)計(jì)算值的對(duì)比。由圖9可見,計(jì)算結(jié)果與實(shí)測(cè)結(jié)果吻合較好,通過(guò)對(duì)比試驗(yàn)所有工況的實(shí)測(cè)值與模型計(jì)算值,得到沿程壓力的最大相對(duì)誤差為4.27%,表明式(23)用于滴灌管沿程壓力分布具有一定的精確性。因此,動(dòng)量方程方法用于求解變質(zhì)量流動(dòng)行為,具有一定的合理性。
注:工況1:管E,H0=0.12 MPa,N=400;工況2:管A,H0=0.10 MPa,N=80;工況3:管D,H0=0.08 MPa,N=60;工況4:管C,H0=0.10 MPa,N=80;工況5:管B,H0=0.04 MPa,N=40。
以質(zhì)量和動(dòng)量守恒定理為依據(jù),建立了以滴灌管為典型的變質(zhì)量流動(dòng)數(shù)學(xué)模型,結(jié)合室內(nèi)測(cè)壓試驗(yàn)分析了滴灌管主流道的流動(dòng)行為,并基于實(shí)測(cè)數(shù)據(jù)獲得了滴灌管主流道內(nèi)沿程壓力分布的分析解。本研究主要獲得了以下結(jié)論:
1)分析了能量方程應(yīng)用于滴灌管水力計(jì)算的局限性,并基于動(dòng)量定理建立了變質(zhì)量流動(dòng)數(shù)學(xué)模型,動(dòng)量方程表明:滴灌管主流道壓力變化取決于摩阻項(xiàng)和動(dòng)量交換項(xiàng)2個(gè)部分,沿程壓力分布的具體形式取決于二者作用的相對(duì)強(qiáng)弱。動(dòng)量方程建立的合理之處在于更加符合流動(dòng)真實(shí),物理意義更加明晰,簡(jiǎn)便之處在于不必追究其詳細(xì)機(jī)制,將復(fù)雜的流動(dòng)機(jī)理進(jìn)行了合理概化。
2)對(duì)軸向流速分布指數(shù)進(jìn)行了方差分析,結(jié)果表明,軸向流速分布指數(shù)與滴頭自身特性參數(shù)無(wú)關(guān),而與滴頭安裝個(gè)數(shù)呈線性相關(guān)關(guān)系,回歸的到了滴灌管軸向流速分布公式。
3)定性分析了動(dòng)量交換系數(shù)的影響因素,確定了其由斷面收縮比和管路相對(duì)位置構(gòu)成的函數(shù)形式,并基于試驗(yàn)數(shù)據(jù)回歸得到滴灌管動(dòng)量交換系數(shù)的經(jīng)驗(yàn)表達(dá)式。
4)結(jié)合摩阻系數(shù)的Blasius公式和動(dòng)量交換系數(shù)的經(jīng)驗(yàn)表達(dá)式,求解動(dòng)量方程,獲得了滴灌管的沿程壓力分布模型。通過(guò)對(duì)比試驗(yàn)工況的實(shí)測(cè)值與模型計(jì)算值,得到沿程壓力的最大相對(duì)誤差為4.27%。
本文為滴灌管等多孔管路計(jì)算提供了一種思路,但所得的壓力分布模型不夠簡(jiǎn)潔,其實(shí)用性有待提高。今后的研究工作應(yīng)深入對(duì)流動(dòng)機(jī)理的研究,進(jìn)一步完善多孔管路的水動(dòng)力學(xué)模型,尤其需要更加廣泛地測(cè)定相關(guān)參數(shù),簡(jiǎn)化沿程壓力分布模型,提高實(shí)用性,從而便捷地為滴灌系統(tǒng)的設(shè)計(jì)、運(yùn)行和校核提供科學(xué)依據(jù)。
[1] 范軍亮,張富倉(cāng),吳立峰,等. 滴灌壓差施肥系統(tǒng)灌水與施肥均勻性綜合評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(12):96-101.
Fan Junliang, Zhang Fucang, Wu Lifeng, et al. Field evaluation of fertigation uniformity in drip irrigation system with pressure differential tank[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 96-101. (in Chinese with English abstract)
[2] 朱德蘭,張林. 基于流量偏差率的滴灌毛管管徑簡(jiǎn)易設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(5):14-20.
Zhu Delan, Zhang Lin. Simplified method for designing diameter of drip irrigation laterals based on emitter flow variation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(5): 14-20. (in Chinese with English abstract)
[3] 張林,范興科,吳普特,等. 均勻坡度下考慮三偏差的滴灌系統(tǒng)流量偏差率的計(jì)算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(4):7-14.
Zhang Lin, Fan Xingke, Wu Pute, et al. Calculation of flow deviation rate of drip irrigation system taking three deviation rates into account on uniform slopes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(4): 7-14. (in Chinese with English abstract)
[4] 田濟(jì)揚(yáng),白丹,任長(zhǎng)江,等. 滴灌雙向流流道灌水器水力特性分析[J].農(nóng)業(yè)工程學(xué)報(bào),2013,29(20):89-94.
Tian Jiyang, Bai Dan, Ren Changjiang, et al. Analysis on hydraulic performance of bidirectional flow channel of drip irrigation emitter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(20): 89-94. (in Chinese with English abstract)
[5] 劉楊,黃修橋,馮俊杰,等. 地下滴灌毛管水頭偏差率特性及與土壤水分均勻度的關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):108-114.
Liu Yang, Huang Xiuqiao, Feng Junjie, et al. Head deviation property and its relationship with soil moisture uniformity of subsurface drip irrigation laterals[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 108-114. (in Chinese with English abstract)
[6] Wu I P, Gitlin H M. Design of irrigation lines[J]. Technical Bulletin of the University of Hawaii, 1974, 96(1): 3-29.
[7] Wu I P, Gitlin H M. Drip irrigation design based on uniformity[J]. Transactions of the ASAE, 1974, 17(3): 429-432.
[8] Wu I P. A uni-plot for drip irrigation lateral and submain design[J]. Transactions of the ASAE, 1985, 28(2): 522-528.
[9] Jain S K, Singh K K, Singh R P, et al. Micro-irrigation lateral design using lateral discharge equation[J]. Journal of Irrigation and Drainage Engineering, 2002, 128(2): 125-128.
[10] Kang Y H, Nishiyam A S. Design of micro-irrigation sub-main units[J]. ASCE. Journal of Irrigation and Drainage Engineering, 1996, 122(2): 83-89.
[11] Kang Y H, Nishiyama S. Hydraulic analysis of microirrigation submain nuits[J]. Transactions of the ASAE, 1995, 38(5): 1377-1384.
[12] Kang Y H, Nishiyama S. A simplified method for design of microirrigation laterals[J]. Transactions of the ASAE, 1996, 39(5): 1681-1687.
[13] Demir V, Yurdem H, Degirmencioglu A, et al. Development of prediction models for friction losses in drip irrigation laterals equipped with integrated in-line and on-line emitters using dimensional analysis[J]. Bio-systems Engineering, 2007, 96(4): 617-631.
[14] Wang Y, Zhu D, Lin Z. Dimensional analysis for estimating the local head losses in trickle laterals equipped with integrated in-line emitters[J]. Journal of Hydraulic Engineering, 2015, 46(5):602-611.
[15] Gomes A W A, Frizzone J A, Rettore Neto O, et al. Local head losses for integrated drippers in polyethylene pipes[J]. Engenharia Agrícola, 2010, 30(3): 435-446.
[16] Zitterell D B, Frizzone J A, Neto O R. Dimensional analysis approach to estimate local head losses in microirrigation connectors[J]. Irrigation Science, 2014, 32(3): 169-179.
[17] Sadeghi S H, Peters R T, Lamm F R. Design of zero slope microirrigation laterals: Effect of the friction factor variation [J]. Journal of Irrigation & Drainage Engineering, 2015, 141(10): 04015012.
[18] 王新坤. 基于二分法的微灌毛管水力設(shè)計(jì)[J]. 排灌機(jī)械工程學(xué)報(bào),2007,25(6):27-30.
Wang Xinkun. Hydraulic design of micro-irrigation laterals based on bisection method[J]. Drainage and Irrigation Machinery, 2007, 25(6): 27-30. (in Chinese with English abstract)
[19] 白丹,王新. 基于遺傳算法的多孔變徑管優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(2):42-45.
Bai Dan, Wang Xin. Optimum design for tapered diameter pipeline with multiple outlets based on genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(2): 42-45. (in Chinese with English abstract)
[20] Martí P, Provenzano G, Royuela á, et al. Integrated emitter local loss prediction using artificial neural networks[J]. Journal of Irrigation & Drainage Engineering, 2010, 136(1): 11-22.
[21] Provenzano G, Dio P D, Salvador G P. New computational fluid dynamic procedure to estimate friction and local losses in coextruded drip laterals[J]. Journal of Irrigation and Drainage Engineering, 2007, 133(6): 520-527.
[22] 王福軍,王文娥. 滴頭流道CFD分析的研究進(jìn)展與問題[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(7):188-192.
Wang Fujun, Wang Wen’e. Research progress in analysis of flow passage in irrigation emitters using computational fluid dynamics techniques[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7): 188-192. (in Chinese with English abstract)
[23] 田濟(jì)揚(yáng),白丹,于福亮,等. 基于Fluent軟件的滴灌雙向流流道灌水器水力性能數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(20):65-71.
Tian Jiyang, Bai Dan, Yu Fuliang, et al. Numerical simulation of hydraulic performance on bidirectional flow channel of drip irrigation emitter using Fluent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 65-71. (in Chinese with English abstract)
[24] 張國(guó)祥. 多孔系數(shù)的一個(gè)近似計(jì)算公式[J]. 排灌機(jī)械工程學(xué)報(bào),1983(2):35-37.
[25] Bernuth R D V, Wilson T. Friction factors for small diameter plastic pipes[J]. Journal of Hydraulic Engineering, 1989, 115(2): 183-192.
[26] Bagarello V, Ferro V, Provenzano G, et al. Evaluating pressure losses in drip-irrigation lines[J]. Journal of Irrigation & Drainage Engineering, 1997, 123(1): 1-7.
[27] Losada A, Juana L, Rodr? Guezsinobas L. Determining minor head losses in drip irrigation laterals. I: Methodology [J]. Journal of Irrigation & Drainage Engineering, 2002, 128(6): 376-384.
[28] Provenzano G, Pumo D. Closure to “Experimental analysis of local pressure losses for microirrigation laterals” by Giuseppe Provenzano and Domenico Pumo[J]. Journal of Irrigation & Drainage Engineering, 2006, 132(2): 189-193.
[29] Yildirim G. Total energy loss assessment for trickle lateral lines equipped with integrated in-line and on-line emitters[J]. Irrigation Science, 2010, 28(4): 341-352.
Modelling and verification of pressure distribution along mainstream in drip irrigation pipe
Ding Falong1, Mao Zeyu1, Wang Wen’e2, Han Kai1
(1.,,100084,; 2.,712100,)
Irrigation uniformity is the core evaluation index of drip irrigation. The influence factors of irrigation uniformity include pressure along mainstream way, emitter manufacturing deviation and emitter clogging, etc., but the leading factor is the longitudinal pressure distribution. Therefore, calculation of pressure is prerequisite for hydraulic design of drip irrigation system, and it is also the most basic problem for the study of drip irrigation hydraulics. Scholars at home and abroad have done a lot of research on this problem. According to the author's references, all the past research results were based on the energy conservation law, researchers mainly calculated the frictional head loss to determine the pressure distribution along drip irrigation pipe, and the friction resistance was the default for the only factor affecting the pressure distribution. However, this method neglects the energy of the fluid flowing through sidewards orifices, and it is not completely applicable to the drip irrigation pipe. To reveal the behavior of variable mass flow, and simplify the hydraulic calculation of drip irrigation pipe, this study established the basic equation of variable mass flow based on mass conservation and momentum conservation theories, and thus developed an analytical model of pressure distribution along mainstream in drip irrigation pipe. Momentum equation of variable mass flow is clearer in physical meaning, and it does not require to investigate the complex flow mechanism in detail, but rather rationally simplify uncertain factors. The developed model shows longitudinal pressure profile in drip irrigation pipe is determined by the friction loss and the momentum exchange, the friction loss tends to decrease the pressure while the momentum exchange just the opposite. The solution of pressure in mainstream way is attributed to determination of friction coefficient and momentum exchange factor. The friction coefficient of drip irrigation pipes could be determined by Blasius resistance formula, according to many existing research conclusions. Function form of momentum exchange factor was qualitatively analyzed, and it was represented by area contraction ratio caused by in-line emitters and relative axial location. A series of indoor pressure tests were performed on 6 types of drip irrigation pipes with different lengths, different emitter spaces and different operating pressures. According to the test result, axial velocity distribution index was obtained by regression, and variance analysis of 2 factors was performed, 2 possible influencing factors were emitter type and number of emitters. Variance analysis results showed that at a significance level of 5%, emitter types did not have a significant impact on axial velocity distribution index, meaning that with the condition of same number of emitters, axial velocity distribution indexes of different emitter types had no significant statistical differences. However, test results showed axial velocity distribution index was linearly dependent on number of emitters. Empirical expression of momentum exchange factor was regressed. Combined with the Blasius formula, the momentum equation of variable mass flow was solved, and pressure distribution along main stream in drip irrigation pipe was obtained. Calculated values of longitudinal pressure agreed well with measured values among all cases, and the maximum relative error was 4.27%. Although drip irrigation has been widely applied, research of flow characteristics in drip irrigation pipe is still inadequate, corresponding hydraulic calculations tend to mechanically adopt old methods, regardless of the applicability. This study offers a idea for hydraulic calculation of drip irrigation, the results will provide scientific evidence not only for structural and operational optimization of drip irrigation, but also for hydrodynamics study of multiple outlet pipes. What needs to be improved is the obtained pressure distribution model is not simple enough, so further research should perfect the flow mechanism, and measure relevant parameters more widely to simplify the current model.
irrigation; models; pressure; mainstream way; flow of variable mass; friction resistance; momentum exchange
丁法龍,茅澤育,王文娥,韓 凱. 滴灌管主流道沿程壓力分布模型及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):117-124. doi:10.11975/j.issn.1002-6819.2019.03.015 http://www.tcsae.org
Ding Falong, Mao Zeyu, Wang Wen’e, Han Kai. Modelling and verification of pressure distribution along mainstream in drip irrigation pipe[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 117-124. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.015 http://www.tcsae.org
2018-07-05
2018-12-30
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC0402504)
丁法龍,博士生,主要從事水力學(xué)及河流動(dòng)力學(xué)方面的研究工作。Email:dflaizy@163.com
10.11975/j.issn.1002-6819.2019.03.015
S275.6
A
1002-6819(2019)-03-0015-08
農(nóng)業(yè)工程學(xué)報(bào)2019年3期