王元迪
[摘? ? ? ? ? ?要]? 數(shù)學(xué)素養(yǎng)與“四基”(基礎(chǔ)知識(shí)、基本技能、基本數(shù)學(xué)思想及基本活動(dòng)經(jīng)驗(yàn))、“四能”(發(fā)現(xiàn)問(wèn)題的能力、提出問(wèn)題的能力、分析問(wèn)題的能力和解決問(wèn)題的能力),對(duì)照數(shù)學(xué)素養(yǎng)概念不難發(fā)現(xiàn)“四基”“四能”應(yīng)為數(shù)學(xué)素養(yǎng)的組成成分,是數(shù)學(xué)素養(yǎng)的核心要素。數(shù)學(xué)核心素養(yǎng)的培養(yǎng)依賴于數(shù)學(xué)教學(xué)活動(dòng)的有效實(shí)施,同時(shí)也是數(shù)學(xué)課程目標(biāo)的集中體現(xiàn),數(shù)學(xué)課程的有效實(shí)施需要教師首先明確目標(biāo),然后確定實(shí)施學(xué)習(xí)目標(biāo)的評(píng)價(jià)方式,最后設(shè)想實(shí)現(xiàn)目標(biāo)的教學(xué)活動(dòng),嘗試基于初中數(shù)學(xué)核心素養(yǎng),借助布魯姆的教育目標(biāo)分類,對(duì)“實(shí)際問(wèn)題與二次函數(shù)”一課數(shù)學(xué)素養(yǎng)的層級(jí)劃分進(jìn)行梳理。
[關(guān)? ? 鍵? ?詞]? 初中數(shù)學(xué);核心素養(yǎng);有效教學(xué);教學(xué)目標(biāo)
[中圖分類號(hào)]? G633.6 ? ? ? ? ? ? ? ? ? ?[文獻(xiàn)標(biāo)志碼]? A? ? ? ? ? ? ? ? ? ? ? [文章編號(hào)]? 2096-0603(2019)35-0212-02
一、引言
在以培養(yǎng)核心素養(yǎng)為目標(biāo)的數(shù)學(xué)教學(xué)中,教師要把握數(shù)學(xué)知識(shí)的本質(zhì)、合理創(chuàng)設(shè)教學(xué)情境。核心素養(yǎng)培養(yǎng)的數(shù)學(xué)教學(xué)應(yīng)該從本質(zhì)的方向去挖掘材料,以達(dá)到從數(shù)學(xué)“四基”角度的實(shí)現(xiàn)來(lái)分析教材,從實(shí)現(xiàn)數(shù)學(xué)“四能”的角度明確并理清教學(xué)思路,從數(shù)學(xué)思想的角度設(shè)計(jì)教學(xué)。但在現(xiàn)實(shí)生活的教學(xué)過(guò)程中,初中學(xué)生的數(shù)學(xué)核心素養(yǎng)培養(yǎng)現(xiàn)狀不是很樂(lè)觀,教師實(shí)施課堂教學(xué)的過(guò)程中,對(duì)是否對(duì)培養(yǎng)學(xué)生數(shù)學(xué)核心素養(yǎng)的有用關(guān)注極少,不符合課程標(biāo)準(zhǔn)的教學(xué)目標(biāo)的達(dá)成。因此,教師要注意重視對(duì)學(xué)生核心素養(yǎng)的培養(yǎng),以課標(biāo)為準(zhǔn),選取適合學(xué)生認(rèn)知發(fā)展教學(xué)內(nèi)容和教學(xué)方法,采用“自主探究、合作交流”的教學(xué)方式,在日常教學(xué)中逐步培養(yǎng)。
二、對(duì)構(gòu)成要素的分析說(shuō)明
為教師很好地把握課堂教學(xué),更容易、直觀地對(duì)課堂教學(xué)進(jìn)行反思,從而更利于數(shù)學(xué)核心素養(yǎng)的落實(shí)。以人教版“實(shí)際問(wèn)題與二次函數(shù)(1)”為課題。
首先,我們從數(shù)學(xué)知識(shí)的層面來(lái)進(jìn)行分析,本節(jié)課的內(nèi)容主要有:二次方程與一元二次函數(shù)的關(guān)系、利用一元二次函數(shù)的基本知識(shí),并結(jié)合圖像求實(shí)際問(wèn)題的最大(?。┲祮?wèn)題以及等量關(guān)系(譬如:利潤(rùn)=單價(jià)×銷售量-成本)等。從數(shù)學(xué)素養(yǎng)的層級(jí)性看,等量關(guān)系學(xué)生在學(xué)習(xí)實(shí)際問(wèn)題與一元二次方程的時(shí)候已經(jīng)有較深的知識(shí)經(jīng)驗(yàn),所以只需回憶、陳述便可以運(yùn)用,故稱之為數(shù)學(xué)知識(shí)的第一層級(jí)。在一元二次方程和二次函數(shù)關(guān)系學(xué)習(xí)的基礎(chǔ)上,在之前的課堂中學(xué)生已經(jīng)進(jìn)行過(guò)學(xué)習(xí),但是學(xué)生對(duì)本知識(shí)點(diǎn)普遍掌握得不是很好,需要進(jìn)行回憶、解釋、概括出它們之間的關(guān)系,有利于對(duì)實(shí)際問(wèn)題的分析解決;而利用二次函數(shù)知識(shí)求解實(shí)際問(wèn)題(面積、利潤(rùn))的最值,需要學(xué)生熟練掌握二次函數(shù)的圖像性質(zhì),能夠清晰地陳述出一元二次函數(shù)與二次方程之間的特殊關(guān)系,能夠自己聯(lián)系實(shí)際生活對(duì)其進(jìn)行理解,但僅從數(shù)學(xué)知識(shí)層面來(lái)討論的話,教師多以實(shí)際問(wèn)題與二次函數(shù)為依據(jù)進(jìn)行舉例闡釋,學(xué)生也能比較輕松地理解,故把它歸為數(shù)學(xué)知識(shí)的第三層級(jí)。當(dāng)然,以上分析是建立在學(xué)生對(duì)銷售情境深有體會(huì)的基礎(chǔ)上,根據(jù)這個(gè)分析,為了在本課中達(dá)到培養(yǎng)學(xué)生數(shù)學(xué)知識(shí)素養(yǎng)的目的,教師應(yīng)該通過(guò)不同方式了解學(xué)生是否掌握了一元二次函數(shù)與二次方程之間的本質(zhì)關(guān)系,然后創(chuàng)設(shè)比較生活化的具體情境,幫助學(xué)生鞏固和深化二次函數(shù)的圖像,應(yīng)該讓學(xué)生在解決問(wèn)題的過(guò)程中體會(huì)二次函數(shù)在解決實(shí)際問(wèn)題中的有效性,激發(fā)其學(xué)習(xí)興趣。
(一)從數(shù)學(xué)能力的素養(yǎng)的角度看
本堂課主要要求會(huì)引入合適的未知量,會(huì)根據(jù)實(shí)際問(wèn)題找出問(wèn)題中的等量關(guān)系建立二次函數(shù)模型,會(huì)用正確的方式檢驗(yàn)?zāi)P偷暮侠硇?。其中引入未知量屬于符?hào)意識(shí)和運(yùn)用能力,只需回憶,故應(yīng)屬于該角度的第一層級(jí);而建立模型屬于閱讀理解及問(wèn)題分析的能力,需要學(xué)生有解釋自己的思維過(guò)程,使用知識(shí)解決問(wèn)題的能力,該過(guò)程包括引入未知量,故該過(guò)程應(yīng)該屬于第二層級(jí)或第三層級(jí);最后檢驗(yàn)?zāi)P托枰獙W(xué)生掌握以上兩個(gè)內(nèi)容,涉及數(shù)學(xué)閱讀能力、抽象概括能力和信息加工等綜合能力。但由于情景與學(xué)生生活有相關(guān)聯(lián)系,故應(yīng)歸為第三或第四層級(jí)。根據(jù)上訴分析,要求學(xué)生熟悉學(xué)生現(xiàn)有的認(rèn)知,該課中的實(shí)際問(wèn)題包含面積最值問(wèn)題和最大利潤(rùn)問(wèn)題,是初中階段學(xué)習(xí)的一大重點(diǎn)及中考的常考點(diǎn),但學(xué)生對(duì)這塊內(nèi)容的掌握程度卻不盡如人意,教師在講解過(guò)程中應(yīng)該著重強(qiáng)調(diào)實(shí)際問(wèn)題中兩個(gè)因素(例如單價(jià)和銷售量遞減的一次函數(shù)關(guān)系或成某種倍數(shù)遞減)之間的關(guān)系,便于學(xué)生緊密聯(lián)系二次函數(shù)與實(shí)際問(wèn)題的關(guān)系,從而實(shí)現(xiàn)學(xué)生獨(dú)立解決二次函數(shù)有關(guān)的實(shí)際問(wèn)題。
(二)從數(shù)學(xué)思考的角度來(lái)看
問(wèn)題中的等量關(guān)系,屬于實(shí)際問(wèn)題的根本思考,只需概括解釋即可,故應(yīng)歸于第二層級(jí);學(xué)生要能夠?qū)⑸钪械膶?shí)際問(wèn)題化歸為二次函數(shù)的函數(shù)模型,需要其思考問(wèn)題中等量關(guān)系之間的表達(dá)方式是否為這個(gè)數(shù)學(xué)模型,即這個(gè)問(wèn)題與模型進(jìn)行比較分析,應(yīng)歸屬于第三層級(jí),從函數(shù)觀念上感知數(shù)學(xué)模型,需要對(duì)本節(jié)內(nèi)容進(jìn)行小節(jié)概括、對(duì)數(shù)學(xué)模型進(jìn)行敘述,分析其中所蘊(yùn)含的數(shù)學(xué)模型,故為第四層級(jí)。根據(jù)以上分析,在數(shù)學(xué)思考這一要素中,需要教師通過(guò)適當(dāng)?shù)那榫盎驅(qū)嵗?,引?dǎo)學(xué)生比較概括,體會(huì)出其中蘊(yùn)含的數(shù)學(xué)思想及數(shù)學(xué)模型,形成自主思考的好習(xí)慣。
(三)從數(shù)學(xué)思想的角度分析
本堂課主要包括建模思想、抽象思維、歸納思想。因?yàn)樵跀?shù)學(xué)建模的過(guò)程中,需要的步驟主要包括從現(xiàn)實(shí)生活的問(wèn)題或具體情境中事物之間的關(guān)系中抽象出相應(yīng)的數(shù)學(xué)問(wèn)題,用數(shù)學(xué)符號(hào)建立出合適的方程、不等式、函數(shù)等關(guān)系式表示數(shù)學(xué)問(wèn)題數(shù)量間的等量關(guān)系或其中的變化規(guī)律,而數(shù)學(xué)思想在層級(jí)分類中無(wú)法具體進(jìn)行,故目前將幾種思想同時(shí)歸為第一、二、三、四層級(jí)。
對(duì)數(shù)學(xué)態(tài)度,實(shí)際問(wèn)題類要達(dá)成的目標(biāo)區(qū)別不大。
三、層級(jí)劃分表
根據(jù)上面對(duì)核心素養(yǎng)幾個(gè)層面的要求分析,可以借助布魯姆核心素養(yǎng)下的教學(xué)目標(biāo)分類(認(rèn)知領(lǐng)域與情感領(lǐng)域)的動(dòng)詞層級(jí)劃分,做出如下表格。
四、實(shí)現(xiàn)各要素目標(biāo)的策略
首先,數(shù)學(xué)知識(shí)具有較強(qiáng)的邏輯性和系統(tǒng)性,本節(jié)課始終圍繞二次函數(shù)圖像性質(zhì)與實(shí)際問(wèn)題的聯(lián)系從一題多變?nèi)胧?,又?shí)現(xiàn)多題歸一,體現(xiàn)了知識(shí)的邏輯性,注重知識(shí)的遷移,利用數(shù)形結(jié)合,引導(dǎo)學(xué)生逐步深入思考,提高學(xué)生對(duì)知識(shí)點(diǎn)的掌握能力及概括能力。實(shí)現(xiàn)數(shù)學(xué)知識(shí)素養(yǎng)第三層次目標(biāo)。其次,通過(guò)實(shí)際問(wèn)題讓學(xué)生抽象出數(shù)學(xué)問(wèn)題,通過(guò)分析比較,有利于學(xué)生發(fā)現(xiàn)并歸納有關(guān)二次函數(shù)實(shí)際問(wèn)題的共同特征,用數(shù)學(xué)模型表達(dá)實(shí)際問(wèn)題,也就是用函數(shù)來(lái)解析實(shí)際問(wèn)題。以發(fā)展學(xué)生的推理能力和解釋、概括、敘述解題策略的數(shù)學(xué)能力素養(yǎng)。要實(shí)現(xiàn)學(xué)生數(shù)學(xué)思想素養(yǎng)的培養(yǎng),要求教師在教學(xué)過(guò)程中盡可能讓學(xué)生在體驗(yàn)實(shí)際生活背景的過(guò)程中,學(xué)會(huì)從中抽象出其中的數(shù)學(xué)問(wèn)題,并構(gòu)建出相應(yīng)的數(shù)學(xué)模型——函數(shù),從中概括二次函數(shù)與實(shí)際問(wèn)題的本質(zhì)關(guān)系,給出解題的思想方法,進(jìn)一步讓學(xué)生用數(shù)學(xué)的眼光觀察世界,發(fā)展數(shù)學(xué)抽象素養(yǎng);學(xué)生要學(xué)會(huì)用數(shù)學(xué)語(yǔ)言即數(shù)學(xué)符號(hào)或表達(dá)式來(lái)認(rèn)識(shí)世界,發(fā)展學(xué)生數(shù)學(xué)歸納的核心素養(yǎng)及數(shù)學(xué)建模素養(yǎng)。最后給出一個(gè)二次函數(shù)模型,讓學(xué)生賦予其實(shí)際背景。它代表不止一種實(shí)際背景,讓學(xué)生直觀感受到單一函數(shù)模型具有十分豐富的實(shí)際背景。這是一種逆向思維的訓(xùn)練,對(duì)學(xué)生的模型思想提出了更高的要求,也能進(jìn)一步讓學(xué)生體會(huì)和感受數(shù)學(xué)抽象和數(shù)學(xué)建模思想在實(shí)際情境中的運(yùn)用價(jià)值,從而學(xué)會(huì)思考如何歸納概括數(shù)學(xué)知識(shí),分析、解釋數(shù)學(xué)問(wèn)題,從而解決數(shù)學(xué)問(wèn)題。數(shù)學(xué)核心素養(yǎng)的發(fā)展具有漸進(jìn)性,教師教學(xué)過(guò)程中既要注重滲入數(shù)學(xué)知識(shí)產(chǎn)生及其發(fā)展過(guò)程,又要關(guān)注學(xué)生學(xué)習(xí)的思維活動(dòng)變化或發(fā)展過(guò)程。從這個(gè)原則出發(fā),在本堂課的教學(xué)過(guò)程當(dāng)中,教師可以先給學(xué)生呈現(xiàn)幾個(gè)生活化的問(wèn)題情境,通過(guò)引導(dǎo)學(xué)生數(shù)學(xué)抽象、數(shù)學(xué)建模,得出某幾個(gè)函數(shù)的關(guān)系式,再對(duì)不同的函數(shù)關(guān)系式進(jìn)行歸類統(tǒng)一,逐漸歸納出與二次函數(shù)有關(guān)實(shí)際問(wèn)題的基本特征,最后概括解決與二次函數(shù)有關(guān)的實(shí)際問(wèn)題的解題思想,本堂課應(yīng)以生活實(shí)例為情境,重視數(shù)學(xué)知識(shí)的概括過(guò)程,不僅讓學(xué)生經(jīng)歷知識(shí)的發(fā)展、應(yīng)用過(guò)程,而且關(guān)注學(xué)生的思維過(guò)程。在掌握二次函數(shù)圖像性質(zhì)的基礎(chǔ)上,讓學(xué)生獲得數(shù)學(xué)抽象、數(shù)學(xué)建模等新技能,感悟研究問(wèn)題的基本思想和基本方法。一旦學(xué)生具備一定的數(shù)學(xué)核心素養(yǎng),至少解題過(guò)程中腦海里就能夠呈現(xiàn)豐富的數(shù)學(xué)理念和概念,也就能學(xué)會(huì)對(duì)問(wèn)題進(jìn)行數(shù)學(xué)思考,用發(fā)展的眼光去看待數(shù)學(xué)。
五、對(duì)數(shù)學(xué)核心素養(yǎng)培養(yǎng)的反思
初中數(shù)學(xué)中學(xué)生核心素養(yǎng)的培養(yǎng)既體現(xiàn)了數(shù)學(xué)學(xué)科本身的意義與價(jià)值,又打破了傳統(tǒng)的數(shù)學(xué)教學(xué)模式,突出了學(xué)生的主體地位,還很好地體現(xiàn)了新課改倡導(dǎo)的素質(zhì)教育。因此初中數(shù)學(xué)教師應(yīng)對(duì)核心素養(yǎng)的培養(yǎng)提高重視,融進(jìn)平時(shí)的教學(xué)中去,滲透數(shù)學(xué)技能,拓展學(xué)生數(shù)學(xué)思維。故教師應(yīng)在教學(xué)過(guò)程中達(dá)到以下要求:認(rèn)真對(duì)教材和課程標(biāo)準(zhǔn),制定符合學(xué)生認(rèn)知發(fā)展的教學(xué)目標(biāo),教學(xué)過(guò)程中努力為學(xué)生營(yíng)造與課題相關(guān)的、生活化的探究情境,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,保證學(xué)生能夠?qū)⒕θ耐度霐?shù)學(xué)學(xué)習(xí)中,引導(dǎo)學(xué)生比較、概括,體會(huì)其中蘊(yùn)含的數(shù)學(xué)思想及數(shù)學(xué)模型,形成自主思考的好習(xí)慣。
參考文獻(xiàn):
[1]王文玲.淺談初中數(shù)學(xué)核心素養(yǎng)的培養(yǎng)[J].學(xué)周刊,2019(7):105.
[2]陳立順.基于核心素養(yǎng)培養(yǎng)的初中數(shù)學(xué)課堂導(dǎo)入方法初探[J].名師在線,2019(2).
◎編輯 趙瑞峰