蘇日雅,呼群,蘇烏云
內(nèi)蒙古醫(yī)科大學(xué)附屬醫(yī)院腫瘤內(nèi)科,呼和浩特 010050
三陰性乳腺癌(triple negative breast cancer,TNBC)是指缺少雌激素受體(estrogen receptor,ER)、孕激素受體(progesterone receptor,PR)以及缺少人表皮生長(zhǎng)因子受體2(human epidermal growth factor receptor 2,HER2)的高度惡性的腫瘤亞型,占所有乳腺癌病理類(lèi)型的10%~20%[1]。TNBC通常與患者年齡、絕經(jīng)前狀態(tài)、高組織學(xué)分級(jí)及預(yù)后不良關(guān)系密切[2]。由于缺乏分子靶點(diǎn),TNBC的治療一直面臨著挑戰(zhàn)。近年來(lái)的研究發(fā)現(xiàn),乳腺癌易感基因1(breast cancer susceptibility gene 1,BRCA1)突變或功能缺失及miRNA表達(dá)異常與TNBC的發(fā)生有著密切聯(lián)系。BRCA1在多種DNA修復(fù)過(guò)程中發(fā)揮重要作用,包括單鏈退火以及通過(guò)同源重組和非同源末端連接修復(fù)DNA雙鏈斷裂[3]。在DNA雙鏈斷裂修復(fù)中,同源重組修復(fù)失敗是晚期惡性腫瘤亞型的標(biāo)志,而B(niǎo)RCA1是同源重組修復(fù)通路的核心組成部分。有文獻(xiàn)指出,特定miRNA與乳腺癌侵襲、藥物治療反應(yīng)及患者預(yù)后相關(guān)[4]。另有研究發(fā)現(xiàn),在TNBC患者中,miRNA可直接或間接調(diào)控BRCA1的表達(dá),反之BRCA1也可調(diào)控miRNA的表達(dá)[5]。因此,進(jìn)一步了解BRCA1和miRNA在TNBC中的生物學(xué)作用及兩者之間的相互作用機(jī)制可為T(mén)NBC的診治提供新的思路。本文就BRCA1與miRNA在TNBC中的研究進(jìn)展作一綜述。
BRCA1是參與DNA修復(fù)和維持人類(lèi)基因組完整性的腫瘤抑制基因[6],是乳腺癌特異性抑癌基因。1994年Miki等[7]采用克隆定位方法首次將BRCA1分離出來(lái)。BRCA1位于17q21染色體上,由22個(gè)外顯子組成,編碼由1863個(gè)氨基酸組成的極大蛋白質(zhì)分子[7-8],其主要構(gòu)象特征為N末端環(huán)指結(jié)構(gòu)域及C末端串聯(lián)BRCT結(jié)構(gòu)域[9]。研究證明,BRCA1在DNA雙鏈斷裂修復(fù)、細(xì)胞周期調(diào)節(jié)和轉(zhuǎn)錄激活等多種細(xì)胞生物學(xué)過(guò)程中發(fā)揮重要作用[10]。與其他腫瘤抑制基因一樣,BRCA1可以防止細(xì)胞過(guò)快地或失去控制地生長(zhǎng)和分化。
TNBC的發(fā)生與BRCA1功能缺失及突變有關(guān),可導(dǎo)致同源重組介導(dǎo)的DNA雙鏈斷裂修復(fù)受損。Tun等[11]總結(jié)含2533例乳腺癌患者的12項(xiàng)研究,結(jié)果發(fā)現(xiàn),TNBC患者的BRCA1突變率約為非TNBC患者的5.6倍,約22%的TNBC患者存在BRCA1突變。由此可認(rèn)為,TNBC可能是由于BRCA1基因發(fā)生胚系突變導(dǎo)致。BRCA1突變可通過(guò)改變蛋白結(jié)合位點(diǎn)或改變細(xì)胞內(nèi)BRCA1的數(shù)量,從而影響其與輔酶因子PALB2和FANCD2的結(jié)合[12]。Vaclová等[13]研究發(fā)現(xiàn),在乳腺癌發(fā)展初期,與其他類(lèi)型突變相比,DNA縮短突變攜帶者可表現(xiàn)出較高水平的DNA損傷(尤其是危險(xiǎn)的雙鏈斷裂)。該研究還發(fā)現(xiàn),在含有錯(cuò)義突變的細(xì)胞系中,免疫應(yīng)答相關(guān)基因(IFNG、IRF5、ICOS、ITGB5)表達(dá)下調(diào)。由此可推測(cè),相對(duì)于其他乳腺癌患者,攜帶BRCA1錯(cuò)義突變的患者可能表現(xiàn)出更差的免疫功能,這很可能是導(dǎo)致TNBC患者預(yù)后較差的原因之一。Ignatov等[14]通過(guò)對(duì)BRCA1啟動(dòng)子甲基化譜進(jìn)行分析,結(jié)果發(fā)現(xiàn),BRCA1甲基化是TNBC進(jìn)展和復(fù)發(fā)的危險(xiǎn)因素,BRCA1啟動(dòng)子甲基化可明顯降低BRCA1蛋白的表達(dá)水平。研究發(fā)現(xiàn),BRCA1啟動(dòng)子甲基化只存在于TNBC患者中,在TNBC患者中的發(fā)生率為16%,且與淋巴管浸潤(rùn)、高分級(jí)、BRCA1 mRNA低表達(dá)及BRCA1蛋白表達(dá)缺失有關(guān)[1]。因此,BRCA1啟動(dòng)子甲基化是BRCA1功能缺失的重要機(jī)制,與BRCA1表達(dá)減少、腫瘤的侵略性表型及預(yù)后不良有關(guān)。
目前已研發(fā)的多腺苷二磷酸核糖聚合酶[poly(ADP-ribose)polymerase,PARP]抑制劑包括依尼帕尼(BSI-201)、奧拉帕尼(AZD-2281)和維利帕尼(ABT-888)等。攜帶BRCA1突變的TNBC患者對(duì)PARP抑制劑尤為敏感[15]。Arun等[16]研究發(fā)現(xiàn),PARP抑制劑中AZD2281是最有效的,并且在BRCA1和BRCA2突變細(xì)胞系中可明顯誘導(dǎo)生長(zhǎng)抑制,對(duì)BRCA1等位基因缺失的細(xì)胞(包括ER+、HER2/Neu+和TNBC細(xì)胞)的生長(zhǎng)抑制率為20%~50%。該研究還發(fā)現(xiàn),AZD2281可誘導(dǎo)線粒體自噬,導(dǎo)致BRCA突變或缺失細(xì)胞的凋亡。一項(xiàng)納入93例Ⅰ~ⅢA期TNBC或BRCA1/2突變相關(guān)乳腺癌的Ⅱ期新輔助化療研究顯示,與BRCA1/2野生型乳腺癌相比,術(shù)前聯(lián)合應(yīng)用吉西他濱、卡鉑和依尼帕尼治療早期TNBC或BRCA1/2突變相關(guān)乳腺癌可獲得更高的病理完全緩解率(pathologic complete response,pCR)[17]。另一項(xiàng)納入 141例Ⅱ~ⅢA 期TNBC患者的Ⅱ期新輔助化療研究顯示,依尼帕尼聯(lián)合紫杉醇化療方案與紫杉醇單藥化療方案相比,可明顯提高患者的pCR[18]。雖然以上研究提示PARP抑制劑可能成為治療TNBC及BRCA1/2突變相關(guān)乳腺癌的新策略,但仍有臨床研究顯示PARP抑制劑未給患者帶來(lái)明顯獲益[19],故對(duì)于PARP抑制劑的療效仍有待于進(jìn)一步探索。
miRNA是一種長(zhǎng)度為19~22個(gè)堿基的非編碼RNA,成熟單鏈miRNA通常與細(xì)胞質(zhì)中目標(biāo)mRNA的3’UTR結(jié)合,促進(jìn)mRNA降解或抑制翻譯,從而負(fù)調(diào)節(jié)蛋白質(zhì)編碼基因的表達(dá)[4,20]。人體內(nèi)生理環(huán)境的維持離不開(kāi)miRNA表達(dá)水平的正確調(diào)控,miRNA通過(guò)作用于廣泛的靶基因幾乎影響從細(xì)胞周期檢查點(diǎn)、細(xì)胞增殖到凋亡的各種遺傳途徑[5]。例如,miRNA-1255b、miRNA-148b和miRNA-193b可抑制G1期同源重組修復(fù)通路,從而影響同源重組修復(fù)基因(如BRCA1、BRCA2和RAD51)的轉(zhuǎn)錄。因此,抑制miRNA-1255b、miRNA-148b和miRNA-193b可使DNA雙鏈斷裂得到修復(fù)[21]。Matamala等[22]推測(cè),三陰性特異性miRNA可靶向調(diào)控與細(xì)胞增殖和遷移有關(guān)的若干途徑,例如調(diào)節(jié)肌動(dòng)蛋白細(xì)胞骨架、黏著斑、PI3K-AKT、MAPK和Wnt信號(hào)通路等。
有文獻(xiàn)指出,miRNA可將一些腫瘤相關(guān)基因作為靶向目標(biāo),從而誘導(dǎo)腫瘤的發(fā)生、發(fā)展、轉(zhuǎn)移和耐藥性[4]。第一個(gè)與乳腺癌有關(guān)的miRNA于2005年被首次提出,隨后越來(lái)越多的研究證明,miRNA在乳腺癌尤其是TNBC中發(fā)揮癌基因或抑癌基因的作用[23]。致癌miRNA可抑制腫瘤抑制基因的表達(dá),其過(guò)表達(dá)與腫瘤的發(fā)展有關(guān),而抑癌miRNA表達(dá)的減少或缺失可誘導(dǎo)其靶向癌基因的表達(dá)上調(diào)[20]。Liang等[24]研究發(fā)現(xiàn),與非TNBC患者比較,miRNA-206在TNBC患者中的表達(dá)下降。miRNA-206作為一種抑癌基因,可降低血管內(nèi)皮生 長(zhǎng) 因 子(vascular endothelial growth factor,VEGF)、絲裂原活化蛋白激酶3(mitogen-activated protein kinase 3,MAPK3)和SOX9的表達(dá),并且可抑制TNBC細(xì)胞的侵襲及血管再生。因此,miRNA-206的低表達(dá)可促進(jìn)TNBC細(xì)胞的增殖和轉(zhuǎn)移。
在TNBC患者中,部分miRNA可通過(guò)靶向調(diào)控BRCA1或被BRCA1調(diào)控而發(fā)揮致癌或抑癌基因的作用。Matamala等[22]研究發(fā)現(xiàn),miRNA-498和miRNA-187-5p可與BRCA1基因的3’UTR結(jié)合,從而調(diào)控BRCA1的表達(dá)。其中miRNA-187-5p在Luminal B細(xì)胞系中過(guò)表達(dá),而miRNA-498是一種三陰性特異性miRNA,在三陰性細(xì)胞系Hs578T中高度表達(dá),其與BRCA1的表達(dá)水平呈負(fù)相關(guān);該研究結(jié)果還表明,miRNA-498在乳腺癌細(xì)胞系中可抑制BRCA1的表達(dá),抑制miRNA-498可抑制三陰性細(xì)胞系Hs578T的增殖。此結(jié)果表明,miRNA-498在TNBC中充當(dāng)癌基因的角色,miRNA-498對(duì)BRCA1的下調(diào)作用可促進(jìn)腫瘤細(xì)胞增殖。
Moskwa等[25]研究顯示,miRNA-182可選擇性地下調(diào)BRCA1在乳腺癌細(xì)胞系中的表達(dá),導(dǎo)致錯(cuò)誤的同源重組和非同源末端連接,并導(dǎo)致細(xì)胞對(duì)電離輻射的敏感性升高;同時(shí),BRCA1轉(zhuǎn)錄本可選擇性地富集在Argonaute/miRNA-182復(fù)合體中并拮抗miRNA-182的表達(dá)。Martinez-Ruiz等[26]研究發(fā)現(xiàn),TGFβ可通過(guò)降低miRNA-182的峰度來(lái)穩(wěn)定BRCA1的峰度,從而嚴(yán)格控制乳腺祖細(xì)胞的自我更新和譜系定向。因此,TGFβ-miRNA-182-BRCA1軸可控制乳腺癌分化程度,并決定著不同的乳腺癌亞型。
miRNA-155為致癌miRNA,miRNA-155表達(dá)上調(diào)與人乳腺腫瘤中BRCA1突變有關(guān)。BRCA1不直接調(diào)控miRNA-155,而是通過(guò)與組蛋白去乙酰化酶2(histone deacetylase 2,HDAC2)結(jié)合,使miRNA-155啟動(dòng)子上的組蛋白H2A和H3脫乙?;?,從而抑制miRNA-155的表達(dá)[27]。由此可以推斷,當(dāng)BRCA1發(fā)生突變時(shí),BRCA1將失去與HDAC2正常結(jié)合的能力,導(dǎo)致miRNA-155高表達(dá),從而促進(jìn)乳腺癌的發(fā)生。有研究指出,miRNA-155可降低RAD51的表達(dá),此作用可增強(qiáng)乳腺癌的放射敏感性[28]。Gao等[29]研究證實(shí),在乳腺癌細(xì)胞系和原發(fā)性乳腺癌中,F(xiàn)OXP3與miRNA-155的表達(dá)呈正相關(guān);在乳腺癌細(xì)胞中,F(xiàn)OXP3可以通過(guò)轉(zhuǎn)錄抑制BRCA1從而誘導(dǎo)miRNA-155的表達(dá),并且循環(huán)的miRNA-155源于血細(xì)胞。這些發(fā)現(xiàn)揭示了乳腺癌細(xì)胞中FOXP3-BRCA1-miRNA-155的轉(zhuǎn)錄軸,并且表明血漿miRNA-155可作為檢測(cè)早期乳腺癌的非侵入性生物標(biāo)志物。
Tanic等[30]研究證明,BRCA1可調(diào)節(jié)多種miRNA并間接調(diào)節(jié)數(shù)百個(gè)基因的表達(dá),從而抑制NF-κB和MAPK信號(hào)通路。該研究還認(rèn)為,腫瘤壞死因子受體相關(guān)因子2(tumour necrosis factor receptor-associated factor 2,TRAF2)可作為miRNA-146、miRNA-99和miRNA-205的新型靶基因,并通過(guò)實(shí)驗(yàn)表明這3種miRNA可明顯降低乳腺癌細(xì)胞中NF-κB信號(hào)通路的活性,而MAPK/ERK信號(hào)通路的活性?xún)H在采用miRNA-146a轉(zhuǎn)染時(shí)才明顯降低,對(duì)于MAPK/JNK信號(hào)通路,僅1個(gè)miRNA的表達(dá)不足以調(diào)節(jié)該信號(hào)通路的活性。此實(shí)驗(yàn)揭示,失調(diào)的miRNA的不同組合可以造成不同的生物學(xué)結(jié)果。Kumaraswamy等[31]研究證實(shí),miRNA-146a為BRCA1的下游基因,其表達(dá)與BRCA1水平呈正相關(guān),而且表皮生長(zhǎng)因子受體(epidermal growth factor receptor,EGFR)是 miRNA-146a的直接靶點(diǎn),miRNA-146a可與EGFR的3’UTR結(jié)合,從而抑制EGFR的表達(dá)。因此,miRNA-146a在乳腺癌的發(fā)生和發(fā)展中充當(dāng)著抑癌基因的角色,BRCA1表達(dá)降低可使miRNA-146a表達(dá)下降,導(dǎo)致EGFR表達(dá)升高,從而促進(jìn)腫瘤的發(fā)展和轉(zhuǎn)移,甚至可使腫瘤對(duì)放療和化療的敏感性降低。
miRNA-200c在TNBC中扮演抑癌基因的角色。Erturk等[32]研究發(fā)現(xiàn),與正常組織相比,miRNA-200c在TNBC組織中下調(diào)(2.12倍),但是在BRCA突變的TNBC組織中,這種降低明顯升高(5.75倍)。該研究還發(fā)現(xiàn),血管內(nèi)皮生長(zhǎng)因子A(VEGFA)基因的表達(dá)與miRNA-200c呈負(fù)相關(guān),推測(cè)VEGFA為miRNA-200c的靶基因。因此,miRNA-200c可能與TNBC的侵襲和轉(zhuǎn)移有關(guān)。
綜上所述,miRNA可通過(guò)調(diào)控多種基因和信號(hào)通路,參與BRCA1相關(guān)性乳腺癌的發(fā)生和發(fā)展。進(jìn)一步研究這些基因及信號(hào)通路,揭示其在腫瘤發(fā)生中的作用,可為T(mén)NBC的診斷與治療提供新思路。
參考文獻(xiàn)
[1]Yamashita N,Tokunaga E,Kitao H,et al.Epigenetic inactivation of BRCA1 through promoter hypermethylation and its clinical importance in triple-negative breast cancer[J].Clin Breast Cancer,2015,15(6):498-504.
[2]Reddy KB.Triple-negative breast cancers:an updated review on treatment options[J].Curr Oncol,2011,18(4):e173-179.
[3]Roy R,Chun J,Powell SN.BRCA1 and BRCA2:different roles in a common pathway of genome protection[J].Nat Rev Cancer,2011,12(1):68-78.
[4]Kurozumi S,Yamaguchi Y,Kurosumi M,et al.Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes[J].J Hum Genet,2017,62(1):15-24.
[5]Mishra S,Yadav T,Rani V.Exploring miRNA based approaches in cancer diagnostics and therapeutics[J].Crit Rev Oncol Hematol,2016,98:12-23.
[6]Caestecker KW,Van de Walle GR.The role of BRCA1 in DNA double-strand repair:past and present[J].Exp Cell Res,2013,319(5):575-587.
[7]Miki Y,Swensen J,Shattuck-Eidens D,et al.A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1[J].Science,1994,266(5182):66-71.
[8]Hall JM,Lee MK,Newman B,et al.Linkage of early-onset familial breast cancer to chromosome 17q21[J].Science,1990,250(4988):1684-1689.
[9]Wu W,Togashi Y,Johmura Y,et al.HP1 regulates the localization of FANCJ at sites of DNA double-strand breaks[J].Cancer Sci,2016,107(10):1406-1415.
[10]Zhang J,Powell SN.The role of the BRCA1 tumor suppressor in DNA double-strand break repair[J].Mol Cancer Res,2005,3(10):531-539.
[11]Tun NM,Villani G,Ong K,et al.Risk of having BRCA1 mutation in high-risk women with triple-negative breast cancer:a meta-analysis[J].Clin Genet,2014,85(1):43-48.
[12]Loke J,Pearlman A,Upadhyay K,et al.Functional variant analyses(FVAS)predict pathogenicity in the BRCA1 DNA double-strand break repair pathway[J].Hum Mol Genet,2015,24(11):3030-3037.
[13]Vaclová T,Gómez-López G,Setién F,et al.DNA repair capacity is impaired in healthy BRCA1 heterozygous mutation carriers[J].Breast Cancer Res Treat,2015,152(2):271-282.
[14]Ignatov T,Poehlmann A,Ignatov A,et al.BRCA1 promoter methylation is a marker of better response to anthracycline-based ththerapy in sporadic TNBC[J].Breast Cancer Res Treat,2013,141(2):205-212.
[15]Boerner JL,Nechiporchik N,Mueller KL,et al.Protein expression of DNA damage repair proteins dictates response to topoisomerase and PARP inhibitors in triple-negative breast cancer[J].PLoS One,2015,10(3):e0119614.
[16]Arun B,Akar U,Gutierrez-Barrera AM,et al.The PARP inhibitor AZD2281(Olaparib)induces autophagy/mitophagy in BRCA1 and BRCA2 mutant breast cancer cells[J].Int J Oncol,2015,47(1):262-268.
[17]Telli ML,Jensen KC,Vinayak S,et al.Phase II study of gemcitabine,carboplatin,and iniparib as neoadjuvant therapy for triple-negative and BRCA1/2 mutation-associated breast cancer with assessment of a tumor-based measure of genomic instability:PrECOG 0105[J].J Clin Oncol,2015,33(17):1895-1901.
[18]Llombart-Cussac A,Bermejo B,Villanueva C,et al.SOLTI NeoPARP:a phase II randomized study of two schedules of iniparib plus paclitaxel versus paclitaxel alone as neoadjuvant therapy in patients with triple-negative breast cancer[J].Breast Cancer Res Treat,2015,154(2):351-357.
[19]O’Shaughnessy J,Schwartzberg L,Danso MA,et al.Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer[J].Clin Oncol,2014,32(34):3840-3847.
[20]Goto Y,Kurozumi A,Enokida H,et al.Functional significance of aberrantly expressed microRNAs in prostate cancer[J].Int J Urol,2015,22(3):242-252.
[21]Choi YE,Pan Y,Park E,et al.MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability[J].Elife,2014,3:e02445.
[22]Matamala N,Vargas MT,González-Cámpora R,et al.MicroRNA deregulation in triple negative breast cancer reveals a role of miR-498 in regulating BRCA1 expression[J].Oncotarget,2016,7(15):20068-20079.
[23]Iorio MV,Ferracin M,Liu CG,et al.MicroRNA gene expression deregulation in human breast cancer[J].Cancer Res,2005,65(16):7065-7070.
[24]Liang Z,Bian X,Shim H,et al.Downregulation of microRNA-206 promotes invasion and angiogenesis of triple negative breast cancer[J].Biochem Biophys Res Commun,2016,477(3):461-466.
[25]Moskwa P,Buffa FM,Pan Y,et al.miR-182-mediated downregulationof BRCA1 impacts DNA repair and sensitivity to PARP inhibitors[J].Mol Cell,2011,41(2):210-220.
[26]Martinez-Ruiz H,Illa-Bochaca I,Omene C,et al.A TGFβmiR-182-BRCA1 axis controls the mammary differentiation hierarchy[J].Sci Signal,2016,9(457):ra118.
[27]Chang S,Wang RH,Akagi K,et al.Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155[J].Nat Med,2011,17(10):1275-1282.
[28]Gasparini P,Lovat F,Fassan M,et al.Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation[J].Proc Natl Acad Sci U S A,2014,111(12):4536-4541.
[29]Gao S,Wang Y,Wang M,et al.MicroRNA-155,induced by FOXP3 through transcriptional repression of BRCA1,is associated with tumor initiation in human breast cancer[J].Oncotarget,2017,8(25):41451-41464.
[30]Tanic M,Zajac M,Gómez-López G,et al.Integration of BRCA1-mediated miRNA and mRNA profiles reveals microRNA regulation of TRAF2 and NFκB pathway[J].Breast Cancer Res Treat,2012,134(1):41-51.
[31]Kumaraswamy E,Wendt KL,Augustine LA,et al.BRCA1 regulation of epidermal growth factor receptor(EGFR)expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function[J].Oncogene,2015,34(33):4333-4346.
[32]Erturk E,Cecener G,Tezcan G,et al.BRCA mutations cause reduction in miR-200c expression in triple negative breast cancer[J].Gene,2015,556(2):163-169.