李坤 葉小紅
【摘要】新課標(biāo)提出的“數(shù)學(xué)核心素養(yǎng)”在不同的學(xué)段具有不同的要求,為了使“數(shù)學(xué)核心素養(yǎng)”更好地落實(shí)立德樹人的教育目標(biāo),更好地實(shí)現(xiàn)學(xué)生的全面發(fā)展,呂傳漢教授在“情境—問題”數(shù)學(xué)教學(xué)模式下提出了用“教思考、教體驗(yàn)、教表達(dá)”(以下簡(jiǎn)稱“三教”理念)的教育理念指導(dǎo)教學(xué),讓“數(shù)學(xué)核心素養(yǎng)”對(duì)于學(xué)生的培育更好地落到實(shí)處,讓高中數(shù)學(xué)課堂的效率得以更好地發(fā)展.
【關(guān)鍵詞】“三教”理念;高中數(shù)學(xué);課堂教學(xué)
“教思考、教體驗(yàn)、教表達(dá)”是貴州師范大學(xué)呂傳漢教授及其團(tuán)隊(duì)在分析和總結(jié)基礎(chǔ)教育課程改革經(jīng)驗(yàn)的基礎(chǔ)上,經(jīng)過實(shí)踐的探索和理論的研究背景下提出的教育理念.呂教授認(rèn)為,“三教”即“三引”.教思考,引導(dǎo)學(xué)生“想”,突出培養(yǎng)學(xué)生的思辨能力;教體驗(yàn),引導(dǎo)學(xué)生“做”,突出強(qiáng)化學(xué)生的實(shí)踐技能;教表達(dá),引導(dǎo)學(xué)生“說”,突出促進(jìn)學(xué)生的交流能力.本文以高中數(shù)學(xué)中“比較兩指數(shù)值(冪值)的大小”一題為例,借助于“三教”教育理念,培養(yǎng)中學(xué)生數(shù)學(xué)思維的靈活性、實(shí)踐的能動(dòng)性、表達(dá)的準(zhǔn)確性.
一、教思考,培養(yǎng)問題意識(shí)
鄭毓信教授曾說:“無論教學(xué)中采用了什么樣的教學(xué)方法或模式,應(yīng)更加關(guān)注自己的教學(xué)是否真正促進(jìn)了學(xué)生更為積極地進(jìn)行思考,并能逐步學(xué)會(huì)想得更清晰、更全面、更深刻、更合理.”因此,課堂教學(xué),重在教思考.教學(xué)生思考,要以知識(shí)為載體,以核心問題驅(qū)動(dòng),引導(dǎo)學(xué)生“想”,讓學(xué)生思考知識(shí)的形成過程,問題的產(chǎn)生背景,并思考尋求解決問題的途徑和方法.恩格斯曾說:“數(shù)學(xué)是人類悟性的自由創(chuàng)造物.”即是說,數(shù)學(xué)的創(chuàng)造源于人類的思考.因此,在數(shù)學(xué)教學(xué)過程中,教師要積極引導(dǎo)學(xué)生思考,理清數(shù)學(xué)知識(shí)的邏輯脈絡(luò),在學(xué)生對(duì)教學(xué)內(nèi)容的理解過程中滲透分析、比較、抽象、判斷、演繹、綜合等數(shù)學(xué)思想方法[1],讓學(xué)生逐步學(xué)會(huì)用數(shù)學(xué)的方式思考問題.
【教學(xué)案例】(人教A版教材P57例7)比較下列各題中兩個(gè)值的大小:
(1)1.72.5,1.73;(2)0.8-0.1,0.8-0.2;(3)1.70.3,0.93.1.
分析:從數(shù)的結(jié)構(gòu)特征歸納出此題所考查的知識(shí)點(diǎn)屬于“指數(shù)函數(shù)及其性質(zhì)”中指數(shù)值(冪值)的大小比較問題.本節(jié)內(nèi)容的學(xué)習(xí)是學(xué)生在經(jīng)歷了將指數(shù)冪由正整數(shù)指數(shù)冪不斷擴(kuò)充到實(shí)數(shù)指數(shù)冪,指數(shù)的概念由正整數(shù)推廣到了實(shí)數(shù)的前提下進(jìn)行的,保證了指數(shù)冪ax總有意義,為指數(shù)函數(shù)y=ax中的底數(shù)a只能取正實(shí)數(shù)奠基.“指數(shù)函數(shù)及其性質(zhì)”的學(xué)習(xí)又為比較指數(shù)值的大小提供方法.
比較:已知比較數(shù)的大小的方法有作差法、作商法、直接計(jì)算法、數(shù)形結(jié)合法、單調(diào)性法等.
抽象:第(1)問和第(2)問中冪的底數(shù)相同,冪的指數(shù)不同;第(3)問中冪的底數(shù)和冪的指數(shù)均不相同.
判斷:思考(1)(2)(3)問分別采用哪種方法最為合適,哪種方法最優(yōu)?
演繹:將思考過程進(jìn)行合情推理,并對(duì)不同方法進(jìn)行比較,選擇適合自己的最優(yōu)解法.
綜合:思考第(3)問能不能采用函數(shù)的單調(diào)性法解決?
二、教體驗(yàn),實(shí)現(xiàn)經(jīng)驗(yàn)內(nèi)化
弗賴登塔爾曾說:“數(shù)學(xué)是人的一種活動(dòng),如同游泳一樣,要在游泳中學(xué)會(huì)游泳,我們也必須在做數(shù)學(xué)中學(xué)習(xí)數(shù)學(xué),也就是在創(chuàng)造數(shù)學(xué)中學(xué)習(xí)數(shù)學(xué).”這句話充分體現(xiàn)了在學(xué)習(xí)數(shù)學(xué)的過程中做數(shù)學(xué)、體驗(yàn)數(shù)學(xué)的重要性.教體驗(yàn),是對(duì)思考過程的實(shí)踐,讓學(xué)生在“做中學(xué)”的學(xué)習(xí)活動(dòng)中獲得知識(shí)學(xué)習(xí)與技能訓(xùn)練、過程探究與思想方法、情感態(tài)度與價(jià)值觀念的體驗(yàn).對(duì)于數(shù)學(xué)學(xué)科而言,最重要的是積累“發(fā)現(xiàn)問題,提出問題”的體驗(yàn),以及“分析問題,解決問題”的體驗(yàn).體驗(yàn)知識(shí)的內(nèi)涵與邏輯脈絡(luò);體驗(yàn)知識(shí)呈現(xiàn)的數(shù)學(xué)思想方法.在自主探究、合作交流、小組討論、結(jié)論表達(dá)等學(xué)習(xí)活動(dòng)過程中獲得體驗(yàn).
發(fā)現(xiàn)問題:采用函數(shù)單調(diào)性法比較1.70.3與0.93.1的大小關(guān)系.
分析問題:將采用不同的方法解題的同學(xué)混合成小組,然后進(jìn)行小組討論.將討論結(jié)果進(jìn)行展示,教師引導(dǎo)學(xué)生再采用數(shù)形結(jié)合的方法探究1.70.3與0.93.1的大小關(guān)系時(shí),對(duì)于指數(shù)函數(shù)y=1.7x的圖像,當(dāng)x=0.3時(shí),所對(duì)應(yīng)的函數(shù)值y>1;對(duì)于指數(shù)函數(shù)y=0.93.1的圖像,當(dāng)x=3.1時(shí),所對(duì)應(yīng)的函數(shù)值y<1.這里面我們很自然地將1.70.3與0.93.1都與中間量1做了比較.因此,在采用函數(shù)單調(diào)性法判斷既不同底數(shù),也不同指數(shù)的冪值大小關(guān)系時(shí),可以尋求第三個(gè)數(shù),間接將兩數(shù)進(jìn)行比較.
解決問題:由指數(shù)函數(shù)的性質(zhì)知:∵1.70.3>1.70=1,093.1<0.90=1,∴1.70.3>0.93.1.
反思問題:“中間量法”也是比較兩個(gè)數(shù)的大小的一種方法,試比較0.80.6與0.60.8兩數(shù)的大小,通過解答變式題目實(shí)現(xiàn)經(jīng)驗(yàn)的內(nèi)化.
三、教表達(dá),提升表達(dá)能力
弗賴登塔爾曾說:“數(shù)學(xué)學(xué)習(xí)的過程就是要通過數(shù)學(xué)語言,用它特定的符號(hào)、詞匯、句法和成語去交流,去認(rèn)識(shí)世界.”表達(dá)是思考和體驗(yàn)的結(jié)果.教表達(dá),就是在教學(xué)過程中借助于提出問題、交流討論、成果展示、實(shí)踐反思等活動(dòng),通過師生互動(dòng)、生生互動(dòng)等來實(shí)現(xiàn)學(xué)生以口頭或書面形式表達(dá)自己的理解和看法,提出學(xué)習(xí)過程中的疑難與困惑的一種教學(xué)理念.對(duì)于數(shù)學(xué)表達(dá)而言,教師要引導(dǎo)學(xué)生將解決數(shù)學(xué)問題的過程中所遇到的知識(shí)、技能、方法和思想等采用自然語言、圖形語言、符號(hào)語言表達(dá)出來,讓學(xué)生學(xué)會(huì)用數(shù)學(xué)的語言表達(dá)世界.
提出問題:從指數(shù)值的形式上分別比較(1)(2)(3)問的特點(diǎn).
學(xué)生表達(dá):第(1)問和第(2)問中冪的底數(shù)相同,冪的指數(shù)不同;第(3)問中冪的底數(shù)和冪的指數(shù)均不相同.
提出問題:請(qǐng)同學(xué)們分別歸納總結(jié)比較指數(shù)值大小的方法.
交流討論:① 冪的底數(shù)相同,指數(shù)不同的兩個(gè)指數(shù)值比較大小時(shí),利用指數(shù)函數(shù)的單調(diào)性或者采用作商法;② 冪的底數(shù)和指數(shù)均不相同,比較兩個(gè)指數(shù)值的大小,利用各自的圖像判斷或者采用“中間量法”.
教師引導(dǎo):① 冪的底數(shù)相同,指數(shù)不同的兩個(gè)指數(shù)值比較大小時(shí),利用指數(shù)函數(shù)的單調(diào)性最為簡(jiǎn)便;采用實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì),運(yùn)用作商法也容易實(shí)現(xiàn);② 冪的底數(shù)和指數(shù)均不相同,比較兩個(gè)指數(shù)值的大小,利用各自的指數(shù)函數(shù)圖像進(jìn)行判斷很直觀;“中間量法”的運(yùn)用略帶技巧性,對(duì)于想象能力具有較高要求.
成果展示:
實(shí)踐反思:在利用指數(shù)函數(shù)的性質(zhì)對(duì)兩個(gè)數(shù)進(jìn)行大小比較時(shí),首先把這兩個(gè)數(shù)看作指數(shù)函數(shù)的兩個(gè)指數(shù)值,利用指數(shù)函數(shù)的單調(diào)性比較.若兩個(gè)數(shù)不是同一函數(shù)的兩個(gè)函數(shù)值,則尋求一個(gè)中間量,兩個(gè)數(shù)都與這個(gè)中間量進(jìn)行比較.
四、結(jié)束語
在高中數(shù)學(xué)教學(xué)中,教思考、教體驗(yàn)、教表達(dá)在同一問題的發(fā)生過程中是相互依存、不可分割的,只不過各個(gè)環(huán)節(jié)關(guān)注的側(cè)重點(diǎn)不同而已[2].“三教”理念通過教師引導(dǎo)學(xué)生將“想”的過程“做”出來,將“做”的體會(huì)“說”出來,并且在“做”和“說”的過程中引導(dǎo)學(xué)生發(fā)現(xiàn)新問題,引發(fā)學(xué)生新的思考,充分重視了知識(shí)的形成過程,充分尊重了學(xué)生的主體地位,充分發(fā)揮了教師的引導(dǎo)作用.
【參考文獻(xiàn)】
[1]楊孝斌,呂傳漢.論數(shù)學(xué)教育對(duì)中小學(xué)生核心素養(yǎng)的培育[J].興義民族師范學(xué)院學(xué)報(bào),2015(5):74-79.
[2]張曉斌,付大平.落實(shí)“三教”理念,培育數(shù)學(xué)核心素養(yǎng)[J].中小學(xué)教師培訓(xùn),2017(8):54-57.