張明春
【摘要】對(duì)于數(shù)學(xué)科學(xué)來(lái)說(shuō)主要是抽象思維和理論思維,這是事實(shí);但從人類(lèi)數(shù)學(xué)思維系統(tǒng)的發(fā)展來(lái)說(shuō),形象思維是最早出現(xiàn)的,并在數(shù)學(xué)研究和教學(xué)中都起著重要的作用.隨著計(jì)算機(jī)多媒體的出現(xiàn)和飛速發(fā)展,在網(wǎng)絡(luò)技術(shù)廣泛應(yīng)用于各個(gè)領(lǐng)域的同時(shí),也給學(xué)校教育帶來(lái)了一場(chǎng)深刻的變革——用計(jì)算機(jī)輔助教學(xué),改善人們的認(rèn)知環(huán)境——越來(lái)越受到重視.從國(guó)外引進(jìn)的教育軟件幾何畫(huà)板以其學(xué)習(xí)入門(mén)容易和操作簡(jiǎn)單的優(yōu)點(diǎn)及其強(qiáng)大的圖形和圖像功能、方便的動(dòng)畫(huà)功能被國(guó)內(nèi)許多數(shù)學(xué)教師看好,并已成為制作中學(xué)數(shù)學(xué)課件的主要?jiǎng)?chuàng)作平臺(tái)之一.那么,幾何畫(huà)板在高中數(shù)學(xué)教學(xué)中有哪些應(yīng)用呢?作為一名高中數(shù)學(xué)教師,筆者就此談幾點(diǎn)體會(huì).
【關(guān)鍵詞】曲線與方程;數(shù)形結(jié)合;追蹤;軌跡
一、幾何畫(huà)板在高中代數(shù)教學(xué)中的應(yīng)用
“函數(shù)”是中學(xué)數(shù)學(xué)中最基本、最重要的概念,它的概念和思維方法滲透在高中數(shù)學(xué)的各個(gè)部分;同時(shí),函數(shù)是以運(yùn)動(dòng)變化的觀點(diǎn)對(duì)現(xiàn)實(shí)世界數(shù)量關(guān)系的一種刻畫(huà),這又決定了它是對(duì)學(xué)生進(jìn)行素質(zhì)教育的重要材料.就如華羅庚所說(shuō):“數(shù)缺形少直觀,形缺數(shù)難入微.”函數(shù)的兩種表達(dá)方式——解析式和圖像,兩者之間常常需要對(duì)照(如,研究函數(shù)的單調(diào)性、討論方程或不等式的解的情況、比較指數(shù)函數(shù)和對(duì)數(shù)函數(shù)圖像之間的關(guān)系等).為了解決數(shù)形結(jié)合的問(wèn)題,在有關(guān)函數(shù)的傳統(tǒng)教學(xué)中多以教師手工繪圖為主,但手工繪圖有不精確、速度慢的弊端;應(yīng)用幾何畫(huà)板快速直觀地顯示及變化功能則可以克服上述弊端,大大提高課堂效率,進(jìn)而起到事半功倍的效果.
具體說(shuō)來(lái),可以用幾何畫(huà)板根據(jù)函數(shù)的解析式快速作出函數(shù)的圖像,并可以在同一個(gè)坐標(biāo)系中作出多個(gè)函數(shù)的圖像,如在同一個(gè)直角坐標(biāo)系中作出函數(shù)y=x2,y=x3和y=x12的圖像,比較各圖像的形狀和位置,歸納冪函數(shù)的性質(zhì);還可以作出含有若干參數(shù)的函數(shù)圖像,當(dāng)參數(shù)變化時(shí)函數(shù)圖像也相應(yīng)地變化,如,在講函數(shù)y=Asin(ωx+φ)的圖像時(shí),傳統(tǒng)教學(xué)只能將A,ω,φ代入有限個(gè)值,觀察各種情況時(shí)的函數(shù)圖像之間的關(guān)系;
利用幾何畫(huà)板則可以以線段b,T的長(zhǎng)度和A點(diǎn)到x軸的距離為參數(shù)作圖(如圖1所示),當(dāng)拖動(dòng)兩條線段的某一端點(diǎn)(即改變兩條線段的長(zhǎng)度)時(shí)分別改變?nèi)呛瘮?shù)的首相和周期,拖動(dòng)點(diǎn)A則改變其振幅,這樣在教學(xué)時(shí)既快速靈活,又不失一般性.
幾何畫(huà)板在高中代數(shù)的其他方面也有很多用途.例如,借助于圖形對(duì)不等式的一些性質(zhì)、定理和解法進(jìn)行直觀分析——由“半徑不小于半弦”證明不等式a+b≥2ab(a,b∈R+)等;再比如,講解數(shù)列的極限的概念時(shí),作出數(shù)列an=10-n的圖形(即作出一個(gè)由離散點(diǎn)組成的函數(shù)圖像),觀察曲線的變化趨勢(shì),并利用幾何畫(huà)板的制表功能以“項(xiàng)數(shù)、這一項(xiàng)的值、這一項(xiàng)與0的絕對(duì)值”列表,幫助學(xué)生直觀地理解這一較難的概念.
二、幾何畫(huà)板在立體幾何教學(xué)中的應(yīng)用
立體幾何是在學(xué)生已有的平面圖形知識(shí)的基礎(chǔ)上討論空間圖形的性質(zhì);它所用的研究方法是以公理為基礎(chǔ),直接依據(jù)圖形的點(diǎn)、線、面的關(guān)系來(lái)研究圖形的性質(zhì).從平面圖形到空間圖形,從平面觀念過(guò)渡到立體觀念,無(wú)疑是認(rèn)識(shí)上的一次飛躍.如,兩條互相垂直的直線不一定畫(huà)成交角為直角的兩條直線;正方體的各面不能都畫(huà)成正方形等.這樣一來(lái),學(xué)生不得不根據(jù)“歪曲真相”的圖形去想象真實(shí)情況,這便給學(xué)生認(rèn)識(shí)立體幾何圖形增加了困難.而應(yīng)用幾何畫(huà)板將圖形動(dòng)起來(lái),就可以使圖形中各元素之間的位置關(guān)系和度量關(guān)系惟妙惟肖,使學(xué)生從各個(gè)不同的角度去觀察圖形.這樣,不僅可以幫助學(xué)生理解和接受立體幾何知識(shí),還可以讓學(xué)生的想象力和創(chuàng)造力得到充分發(fā)揮.
像在講二面角的定義時(shí)(如圖2所示),當(dāng)拖動(dòng)點(diǎn)A時(shí),點(diǎn)A所在的半平面也隨之轉(zhuǎn)動(dòng),即改變二面角的大小,圖形的直觀的變動(dòng)有利于幫助學(xué)生建立空間觀念和空間想象力;在講棱臺(tái)的概念時(shí),可以演示由棱錐分割成棱臺(tái)的過(guò)程(如圖3所示),更可以讓棱錐和棱臺(tái)都轉(zhuǎn)動(dòng)起來(lái),使學(xué)生在直觀掌握棱臺(tái)的定義,并通過(guò)棱臺(tái)與棱錐的關(guān)系由棱錐的性質(zhì)得出棱臺(tái)的性質(zhì)的同時(shí),讓學(xué)生欣賞到數(shù)學(xué)的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;在講錐體的體積時(shí),可以演示將三棱柱分割成三個(gè)體積相等的三棱錐的過(guò)程(如圖4所示),既避免了學(xué)生空洞的想象而難以理解,又鍛煉了學(xué)生用分割幾何體的方法解決問(wèn)題的能力;在用祖暅原理推導(dǎo)球的體積時(shí),運(yùn)用動(dòng)畫(huà)和軌跡功能作圖5,當(dāng)拖動(dòng)點(diǎn)O時(shí),平行于桌面的平面截球和柱錐所得截面也相應(yīng)地變動(dòng),直觀美麗的畫(huà)面在學(xué)生學(xué)得知識(shí)的同時(shí),給人以美的感受,創(chuàng)建一個(gè)輕松、樂(lè)學(xué)的氛圍.
三、幾何畫(huà)板在平面解析幾何教學(xué)中的應(yīng)用
平面解析幾何是用代數(shù)方法來(lái)研究幾何問(wèn)題的一門(mén)數(shù)學(xué)學(xué)科,它研究的主要問(wèn)題,即它的基本思想和基本方法是:根據(jù)已知條件,選擇適當(dāng)?shù)淖鴺?biāo)系,借助形和數(shù)的對(duì)應(yīng)關(guān)系,求出表示平面曲線的方程,把形的問(wèn)題轉(zhuǎn)化為數(shù)來(lái)研究;再通過(guò)方程,研究平面曲線的性質(zhì),把數(shù)的研究轉(zhuǎn)化為形來(lái)討論.而曲線中各幾何量受各種因素的影響而變化,導(dǎo)致點(diǎn)、線按不同的方式做運(yùn)動(dòng),曲線和方程的對(duì)應(yīng)關(guān)系比較抽象,學(xué)生不易理解,顯而易見(jiàn),展示幾何圖形變形與運(yùn)動(dòng)的整體過(guò)程在解析幾何教學(xué)中是非常重要的.這樣,幾何畫(huà)板又以其極強(qiáng)的運(yùn)算功能和圖形圖像功能在解析幾何的教與學(xué)中大顯身手.如,它能作出各種形式的方程(普通方程、參數(shù)方程、極坐標(biāo)方程)的曲線;能對(duì)動(dòng)態(tài)的對(duì)象進(jìn)行“追蹤”,并顯示該對(duì)象的“軌跡”;能通過(guò)拖動(dòng)某一對(duì)象(如點(diǎn)、線)觀察整個(gè)圖形的變化來(lái)研究?jī)蓚€(gè)或兩個(gè)以上曲線的位置關(guān)系.
具體地說(shuō),比如,在講平行直線系y=x+b或中心直線系y=kx+2時(shí),如圖6所示,分別拖動(dòng)圖(1)中的點(diǎn)A和圖(2)中的點(diǎn)B時(shí),可以相應(yīng)的看到一組斜率為1的平行直線和過(guò)定點(diǎn)(0,2)的一組直線(不包括y軸).再比如,在講橢圓的定義時(shí),可以由“到兩定點(diǎn)F1,F(xiàn)2的距離之和為定值的點(diǎn)的軌跡”入手——如圖7所示,令線段AB的長(zhǎng)為“定值”,在線段AB上取一點(diǎn)E,分別以F1為圓心、AE的長(zhǎng)為半徑和以F2為圓心、AE的長(zhǎng)為半徑作圓,則兩圓的交點(diǎn)軌跡即滿(mǎn)足要求.先讓學(xué)生猜測(cè)這樣的點(diǎn)的軌跡是什么圖形,學(xué)生各抒己見(jiàn)之后,教師演示,如圖7(1)所示,學(xué)生豁然開(kāi)朗:“原來(lái)是橢圓”.這時(shí)教師用鼠標(biāo)拖動(dòng)點(diǎn)B(即改變線段AB的長(zhǎng)),使得|AB|=|F1F2|,如圖7(2)所示,滿(mǎn)足條件的點(diǎn)的軌跡變成了一條線段F1F2,學(xué)生開(kāi)始謹(jǐn)慎起來(lái)并認(rèn)真思索,不難得出圖7(3)所示(|AB|<|F1F2|時(shí))的情形.經(jīng)過(guò)這個(gè)過(guò)程,學(xué)生不僅能很深刻地掌握橢圓的概念,也鍛煉了其思維的嚴(yán)密性.
綜上所述,使用幾何畫(huà)板進(jìn)行數(shù)學(xué)教學(xué),通過(guò)具體的感性的信息呈現(xiàn),能給學(xué)生留下更為深刻的印象,使學(xué)生不是把數(shù)學(xué)作為單純的知識(shí)去理解,而是能夠更有實(shí)感地去把握.這樣,既能激發(fā)學(xué)生的情感、培養(yǎng)學(xué)生的興趣,又能大大提高課堂效率.
【參考文獻(xiàn)】
[1]朱俊杰,繆亮,周傳高.幾何畫(huà)板課件制作百例[M].北京:清華大學(xué)出版社,2005.
[2]魏志雄,王豫黔.幾何畫(huà)板數(shù)學(xué)課件制作實(shí)例教程[M].北京:人民郵電出版社,2006.