国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于履帶式底盤的改進型森林消防車通過性

2018-09-03 02:03孫術發(fā)任春龍陳建偉馬文良儲江偉
農(nóng)業(yè)工程學報 2018年17期
關鍵詞:壕溝原車爬坡

孫術發(fā),任春龍,李 濤,陳建偉,馬文良,儲江偉

?

基于履帶式底盤的改進型森林消防車通過性

孫術發(fā)1,任春龍1,李 濤2,陳建偉3,馬文良3,儲江偉4

(1. 東北林業(yè)大學工程技術學院,哈爾濱 150040; 2. 內(nèi)蒙古大興安嶺重點國有林管理局防火辦,牙克石 022150;3. 哈爾濱松江拖拉機有限公司,哈爾濱 150010; 4. 東北林業(yè)大學交通學院,哈爾濱 150040)

通過對林區(qū)復雜地形和現(xiàn)有消防設備的分析,在第一代消防車(LY1102XFSG30)結構上對底盤及上裝進行了優(yōu)化改造,由4個支重輪增加到5個支重輪,設計了一臺大型履帶式消防車(LF1352JP)。采用CREO軟件對整車結構進行了三維設計與仿真,對消防車橫向、縱向穩(wěn)定性以及垂直越障和跨越壕溝進行了理論分析,分析表明,LF1352JP消防車滿載時在斜坡上橫向行駛所允許的最大斜坡角度為40.6°,空載時45.1°;縱向行駛時,滿載時最大縱向上坡角度為52.0°,空載時60.9°,滿載時最大下坡角度為47.2°,空載時45.8°;滿載時越障高度為405 mm,空載時615 mm;滿載時跨越壕溝寬度為1 248 mm,空載時983 mm。最后在試驗場地進行了縱向爬坡、縱向下坡、跨越壕溝試驗,試驗驗證了改造后整車牽引力和穩(wěn)定性能方面都有了較大的提升,能夠滿足現(xiàn)階段大型林區(qū)火災作業(yè)的需求。

機械化;設計;優(yōu)化;履帶式;消防車;穩(wěn)定性;越障能力

0 引 言

隨著天然林保護工程的實施,林區(qū)由木材采伐作業(yè)為主轉變?yōu)榱帜颈Wo為主,森林火災是森林最大的威脅。森林火災突發(fā)性強、破壞性大、危險性高,是全球發(fā)生最頻繁、處置最困難、危害最嚴重的自然災害之一,是生態(tài)文明建設成果和森林資源安全的最大威脅,甚至引發(fā)生態(tài)災難和社會危機[1-3]。中國總體上是一個缺林少綠、生態(tài)脆弱的國家,是一個受氣候影響顯著、森林火災多發(fā)的國家。據(jù)統(tǒng)計,“十二五”期間,全國年均發(fā)生森林火災3 992起,受害森林面積1.7萬hm2,因災傷亡61人[4]。

目前國內(nèi)林區(qū)消防車主要有輪式消防車和履帶式消防車2種[5-6]。國內(nèi)森林消防車的發(fā)展相對較晚,王哲等[7]設計的輪式消防車雖然動力性能與越野性能較強,但其輪式底盤只適合在通過性能良好的道路上行駛,在林區(qū)復雜道路上通過性能較差。哈爾濱第一機械集團有限公司[8]研制的全地形雙節(jié)履帶車(蟒式消防車)采用全動力、全地形的履帶式底盤,雖然其對地形適應性強,但造價昂貴、普及成本高。美國研制的奧什科什·不死鳥[9]質(zhì)量達20 t,雖功能齊全,但其造價更加昂貴[10-12]。目前國內(nèi)市場上現(xiàn)有的履帶消防車多為坦克底盤改裝,雖然具有結實耐用的特點,但其底盤較低,難以適應林區(qū)多壕溝、多倒木的復雜地形。本文在第一代森林消防車(LY1102XFSG30)基礎上設計并制造一臺新型履帶式森林消防車(LF1352JP型),并對現(xiàn)車和原車在林區(qū)通過性方面進行了理論計算和試驗分析。

1 整機結構設計

現(xiàn)車與原車相比,底盤在長度和寬度上都有所增加,由4個支重輪增加到5個支重輪,軸間距離由2 040改為2 720 mm,軌距由原來的1 546增加為1 974 mm,加長增寬后的底盤在穩(wěn)定性能力方面優(yōu)于原底盤。保持了原底盤的離地間隙以保證其良好的通過性能,發(fā)動機功率由85增加為99.3 kW,功率增大后的發(fā)動機在車輛爬坡和遇到復雜障礙物時可提供足夠的動力,另外增加了排障器,使其在行駛過程中可推倒林區(qū)灌木、推平土堆等障礙物。

改進的消防車由動力系統(tǒng)、履帶式底盤、控制系統(tǒng)、排障器、液壓絞盤、水炮和水箱等組成,消防車結構如圖1所示,該車具有森林滅火、運送給養(yǎng)、絞盤自救和他救等功能。在進行森林滅火時,可使用多種水源供水,自身裝載的泵站可以使其不需要其他輔助設施即可實現(xiàn)遠距離供水。增加的排障器可使其排除灌木等路障縮短其到達火災區(qū)的時間。

圖1 CREO環(huán)境下LY1352JP整機簡圖

2 穩(wěn)定性分析

林區(qū)路況復雜且斜坡較多,消防車在斜坡上發(fā)生縱向傾翻和橫向側翻的概率幾乎占到事故總數(shù)的50%[13-17]。林區(qū)地形多為三維坡度,即既存在橫向坡度又存在縱向坡度。消防車在三維坡度上行駛時的受力簡圖如圖2所示。

注:G為重力,N;G1為重力的分力,N;N為支撐力,N;N1為支撐力沿橫向方向的分力,N;F為摩擦力,N;F1為摩擦力沿縱向方向的分力,N;α為橫行坡度,(°);β為縱向坡度,(°)。

在三維坡度分析中,消防車受到坡面對其的支撐力、摩擦力以及重力作用,為簡化分析,將其力進行分解,簡化為沿縱向方向和橫向方向的作用力,本文從橫坡和縱坡2個方向分別討論其滿載和空載時的穩(wěn)定性。

2.1 橫坡行駛時受力分析

消防車滿載時在斜坡上橫向行駛時的受力分析情況如圖3所示。

注:O為質(zhì)心;N2,N3分別為地面對左右支重輪沿橫向方向的支撐力;Z1與Z2均為地面作用于履帶的力,N;S為軌距(1 974 mm);e為質(zhì)心偏移距離(0 mm);h為質(zhì)心高度(滿載時為1 150 mm,空載時為950 mm)。

消防車在橫坡勻速行駛時,其總體受力集合等于0,其整機力矩是平衡的[18]。對點取力矩可得

對式(1)進行變形后可得

若消防車在橫坡上穩(wěn)定行駛,1需大于0,即cos(0.5+)?sin>0,設消防車穩(wěn)定行駛的極限橫向坡度為α,其中=0,由以上分析可得

從圖4中可以看出,極限坡度隨著質(zhì)心高度的增加而減少,當質(zhì)心高度相同時,極限坡度與軌距成正比,當質(zhì)心高度較小而軌距較大時極限坡度最大。對消防車進行三維模擬仿真,得出其滿載和空載時各相關參數(shù),如表1所示。由表1中可知,相對于原車,現(xiàn)車無論滿載還是空載其質(zhì)心高度都低于原車,將表1參數(shù)代入式(3)中,計算得到現(xiàn)車滿載時橫向行駛所允許的極限坡度為40.6°,空載時45.1°,原車滿載時橫向行駛所允許的極限坡度為31.9°,空載時為35.1°,可見現(xiàn)車相比于原車橫坡行駛能力顯著提高。

表1 消防車的相關參數(shù)

2.2 縱向行駛時穩(wěn)定性分析

消防車縱向上坡行駛時,其受力主要為重力的分力和地面對其的反力以及地面摩擦力,其受力分析圖如圖5所示。

注:m為支重輪B與垂直反力之間的距離,mm;N4為地面對整車沿縱向方向的支撐力,N。

消防車縱坡勻速行駛時,整車受力處于平衡狀態(tài),即其所受合力為零,對支重輪和分別取力矩,上坡時對支重輪取力矩可以得到

在豎直方向上所受合力為零,即4=cos

由式(4)得

使消防車在縱向上坡時不發(fā)生傾翻的臨界條件是=0,即

式中β1為縱向上坡最大坡度角,(°)。

圖6 下坡行駛時的受力簡圖

由圖7可知,消防車在上坡和下坡時,質(zhì)心的高度和質(zhì)心與支重輪的距離是影響斜坡最大角度的主要因素,當質(zhì)心距支重輪的距離一定時,最大角度與質(zhì)心高度成反比例關系,當質(zhì)心高度一定時,最大角度隨著質(zhì)心到支重輪距離的增大而增大。根據(jù)以上分析和表1數(shù)據(jù)計算可得,不同工況下的消防車極限爬坡角度如表2所示。由表2可知,現(xiàn)車相比于原車在爬坡能力方面有顯著提高。

圖7 最大爬坡角度和參數(shù)的關系

表2 不同工況下的極限爬坡角度

3 越障能力分析

林區(qū)中的典型路障包括2種:壕溝和倒木,當消防車行駛過程中攀越倒木時,可將倒木視為垂直障礙物[19-22]。下面對現(xiàn)車的越障能力進行分析。

3.1 垂直越障能力

消防車的越障能力可以定義為其可順利通過垂直障礙物的最大高度,根據(jù)消防車的實際攀爬情況,可以將整個越障過程分為3個階段[23-26]:第一階段,消防車導向輪與垂直障礙物在點接觸,如圖8a所示,此時由于牽引力的推動作用消防車將發(fā)生旋轉,隨后近壁側開始上升,開始進行越障;第二階段,此階段是決定消防車是否可以成功越障的階段,在此過程中,隨著消防車導向輪的上升主體重心不斷提高,消防車緩慢前移時,底盤與地面的夾角逐漸增大,隨著消防車的前移,其主體重心恰好在臺階邊緣線正上方時此時是消防車攀越垂直壁的臨界狀態(tài),如圖8b所示;第三階段,消防車的質(zhì)心作用線越過垂直壁邊緣,消防車重新回到水平面,消防車完成越障如圖8c所示。

根據(jù)式(8)和消防車相關參數(shù)模擬出其在越障過程底盤與地面的夾角與垂直壁高度0的關系圖,如圖9所示。由圖9可知,當消防車垂直越障時,隨著車身的前移,夾角值逐漸增大,垂直越障高度也隨之增加,當達到拋物線的頂峰時垂直越障高度最大,當夾角繼續(xù)增大時,垂直越障高度開始下降。另外,消防車的重心越低,到后支重輪的距離越大時,消防車面對垂直障礙物時的通過性能越好。根據(jù)以上分析,計算出現(xiàn)車與原車的最大爬坡角度和最大垂直越障高度,如表3所示。由表3可知,現(xiàn)車相比原車在垂直越障能力方面具有顯著提升。

注:為消防車重心與后支重輪中心線的距離,mm;0為垂直越障高度,mm;1為消防車重心距支重輪輪心的縱向距離,mm;為攀越垂直路障時底盤與地面的夾角,(o)。

Note:is distance between fire fighting truck core and back thrust wheel center line, mm;0is vertical obstacle height, mm;1is vertical distance of fire fighting core to thrust wheel center, mm;is angle between chassis and ground in climbing vertical barricade,(o).

圖8 攀越垂直路障過程

Fig.8 Process of climbing vertical barricade

圖9 最大垂直壁高度與夾角的關系

表3 不同工況下的垂直越障極限參數(shù)

3.2 跨越壕溝

壕溝是消防車在林區(qū)執(zhí)行任務時常見的一種路障,也是消防車越障能力的重要體現(xiàn)之一。根據(jù)履帶車的行駛方式及相關參數(shù),模擬出履帶式消防車跨越壕溝的分析模型[27-29],如圖10所示。消防車跨越壕溝時,對其跨越能力可以界定為:當不考慮消防車墜入溝道內(nèi)時,消防車低速勻速行駛,且車輛不發(fā)生墜落。當消防車的前支重輪觸碰到壕溝的另一側時其質(zhì)心應未越過近側溝道邊界線,如圖10a所示;當消防車后支重輪離開溝道邊界線時,其質(zhì)心應已經(jīng)越過溝道的近側邊界線,如圖10b所示,否則認定消防車跨越壕溝失敗。

圖10 消防車跨越壕溝過程

根據(jù)以上分析,消防車可跨越壕溝的最大寬度應為min(,),根據(jù)質(zhì)心位置分析計算可得,現(xiàn)車滿載時可跨最大壕溝寬度為1 248 mm,空載時最大為983 mm。原車滿載時可跨最大壕溝寬度為922 mm,空載時最大為726 mm?,F(xiàn)車相比與原車在跨越壕溝能力方面有顯著提高。

4 試驗驗證

4.1 試驗條件

本文試驗分2個階段進行,2017年5月在哈爾濱榆樹試驗場進行第一階段的縱向爬坡試驗,2017年10月在內(nèi)蒙古自治區(qū)牙克石林業(yè)局進行第二階段的縱向下坡、跨越壕溝試驗。圖11a為林業(yè)局行車道實拍圖,試驗樣機為哈爾濱松江拖拉機廠制造出的LF1352JP型履帶式森林消防車樣機,如圖11b所示。

圖11 試驗場地及樣車

4.2 試驗結果分析

4.2.1 縱向爬坡試驗

第一階段在哈爾濱榆樹試驗場進行底盤負載通過性實驗,此時還未對整車進行上裝設計(包括駕駛室也是使用J-50駕駛室),采用模擬加載的方法測試底盤的通過性試驗結果,試驗場地設置了不同角度的縱坡,測試不同擋位、不同角度的爬坡時間。由圖12可知,消防車以Ⅰ擋進行爬坡時,隨著坡度的緩慢增大爬坡時間并沒有明顯的變化,當坡度增加到48°時消防車達到最大爬坡角度。以Ⅱ擋和Ⅲ擋進行爬坡時,由于其牽引力較小,在坡度較低時就出現(xiàn)了爬坡失敗的現(xiàn)象,試驗所得的最大爬坡角度和上文理論上理論分析得到的最大角度52.0°相比誤差為7%,誤差的原因是:理論計算所得的最大角度是在理想的環(huán)境下得到的,而實際中林區(qū)路面土壤濕度較高,爬坡過程中路面易發(fā)生松動導致摩擦產(chǎn)生的推動力較小。

圖12 爬坡時間隨坡度的變化

4.2.2 縱向下坡試驗

該試驗為滿載情況下以不同擋位、不同坡度進行下坡時間測試。下坡試驗及試驗結果如圖13所示。從圖13b可以看出,在下坡試驗中,消防車的下坡時間與坡度呈反比例關系。具體試驗結果為:當消防車以Ⅰ擋在角度在小于35o斜坡向下行駛時,行駛速度較穩(wěn)定,當角度增加到35°時消防車有滑動的趨勢,采取剎車制動以更低的速度可緩慢的駛下斜坡如圖13b,出于駕駛安全考慮不以Ⅱ擋進行角度大于35°的試驗。試驗得出的極限坡度40°與前文理論上得到的極限坡度47.2°相比,誤差為15%,誤差的最大原因在于理論上斜坡是完全理想化的,而實際上路面在承受巨大壓力時會出現(xiàn)下陷的趨勢。

圖13 下坡試驗

4.2.3 跨越壕溝試驗

本試驗對Ⅰ擋和Ⅱ擋下跨越不同寬度的壕溝進行測試,測試結果如表4所示。在此試驗中,由于Ⅲ擋和Ⅳ擋的牽引力有限,為了防止消防車陷入壕溝中發(fā)生安全事故,選擇Ⅰ擋和Ⅱ擋作為試驗擋位。

表4 不同擋位不同壕溝寬度通過結果

當壕溝寬度增大到接近理論值時,使用Ⅱ擋在跨越寬度為1 150 mm的壕溝,消防車較為困難的完成跨越。使用Ⅰ擋跨越寬度為1 300 mm的壕溝時,消防車較為困難的完成跨越。實際值1 300 mm與理論值1 248 mm相比,誤差為4%,誤差原因為理論值未考慮消防車跨越過程中后支重輪陷入溝道內(nèi)但由于前輪摩擦推力的存在仍可成功越障的情況。

5 結 論

本文設計并制造了一臺LF1352JP型履帶式消防車,對該車結構進行三維模擬仿真,對其通過性進行了理論分析,并對整車進行了試驗測試,試驗結果與理論值較吻合,現(xiàn)車相比于原車在爬坡能力和越障能力都有顯著提高。具體結論如下:

1)對第一代LY1102XFSG30型森林消防車進行改造,設計并制造了LF1352JP型履帶式消防車,增大了發(fā)動機功率,由85增加為99.3 kW,整車動力性得到增強;增加了排障功能,可排除通行道路上灌木等路障;對底盤進行加寬和加長,使整車的穩(wěn)定性得到改善。

2)采用CREO軟件對消防車進行三維仿真分析,對消防車橫向、縱向穩(wěn)定性以及垂直越障和跨越壕溝進行了理論分析,通過計算得出:滿載時橫向行駛極限坡度為40.6°,空載時為45.1°;滿載時縱向上坡行駛極限坡度為52.0°,空載時為60.9°;滿載時縱向下坡行駛極限坡度為47.2°,空載時為45.8°;滿載時垂直越障極限高度為405 mm。空載為時為615 mm;滿載時可跨壕溝最大寬度為1 248 mm,空載時為983 mm。

3)試驗樣機分別在哈爾濱榆樹試驗場和內(nèi)蒙古自治區(qū)牙克石林業(yè)局進行了縱向爬坡試驗、縱向下坡試驗,跨越壕溝試驗。試驗結果為:縱向爬坡行駛極限坡度為48°,縱向下坡行駛極限坡度為40°,可跨壕溝最大寬度為1 300 mm,試驗結果與理論分析較吻合。

[1] 蘇立娟,何友均,陳紹志. 1950-2010年中國森林火災時空特征及風險分析[J]. 林業(yè)科學,2015,51(1):88-96.

Su Lijuan, He Youjun, Chen Shaozhi. Temporal and spatial characteristics and risk analysis of forest fires in China from 1950 to 2010[J]. Scientia Silvae Sinicae, 2015, 51(1): 88-96. (in Chinese with English abstract)

[2] 梁愛軍,孫龍,刁柄奇,等. 森林火災損失分類方法和評估指標評述[J]. 森林工程,2014,30(5):6-10,17.

Liang Aijun, Sun Long, Diao Bingqi, et al. Review of forest fire damage assessment index and classification methods[J]. Forest Engineering, 2014, 30(5): 6-10, 17. (in Chinese with English abstract)

[3] 高仲亮,王秋華,舒立福,等. 森林火災撲救消防車裝備的種類及使用技術[J]. 林業(yè)機械與木工設備2014,42(8):10-14.

Gao Zhongliang, Wang Qiuhua, Shu Lifu,et al. Kinds of fire engines and technology used[J].Forestry Machinery & Woodworking Equipment, 2014, 42(8): 10-14. (in Chinese with English abstract)

[4] 張惠蓮. 當前氣候變化下如何加強森林火災預測預報[J].森林防火,2010(4):33-36.

Zhang Huilian. How to strengthen forest fire forecast and forecast under current climate change[J]. Forest Fire Prevention, 2010(4): 33-36. (in Chinese with English abstract)

[5] 姜晨龍,叢靜華,汪東. 地面大型森林消防裝備發(fā)展現(xiàn)狀研究[J]. 安徽農(nóng)業(yè)科學,2014,42(12):3595-3597.

Jiang Chenlong, Cong Jinghua, Wang Dong. Study on development status of ground large forest fire-fighting equipment[J]. Journal of Anhui Agri. Sci, 2014, 42(12): 3595-3597. (in Chinese with English abstract)

[6] 喬啟宇. 水滅火森林消防設備系統(tǒng)研究[J]. 北京林業(yè)大學學報,2002(增刊1):191-195.

Qiao Qiyu. Techniques of forest fire fighting by using water and their development in China[J]. Journal of Beijing Forestry University, 2002(Supp.1): 191-195. (in Chinese with English abstract)

[7] 王哲,鄭燕萍,汪東,等. 輪式多功能森林消防車的設計[J]. 消防科學與技術,2016,35(2):244-247.

Wang Zhe, Zheng Yanping, Wang Dong, et al. Design of wheel multiffunctional forest fire fighting vehicle[J]. Fire Science and Technology, 2016, 35(2): 244-247. (in Chinese with English abstract)

[8] 黃郁馨,紀樹東,周忠海,等. 蟒式全地形車關鍵零件加工與裝備[J]. 世界制造技術與裝備場,2016(2):88-91.

Huang Yuxin, Ji Shudong, Zhou Zhonghai, et al. The key parts processing and equipment of the anaconda[J]. World Manufacturing Technology and Equipment Field, 2016(2): 88-91. (in Chinese with English abstract)

[9] 叢靜華,何瑞銀,王家勝. 森林消防車的發(fā)展現(xiàn)狀和功能分析[J]. 林業(yè)機械與木工設備,2006(8):4-6,13.

Cong Jinghua,He Ruiyin,Wang Jiasheng. Current situation and function analysis on forest fire fighting vehicle[J]. Forestry Machinery & Woodworking Equipment, 2006(8): 4-6,13. (in Chinese with English abstract)

[10] 鄭楠,茹煜,汪東,等. 三級林用消防泵內(nèi)部流場模擬及分析[J]. 林業(yè)工程學報,2017,2(3):124-130.

Zhang Nan, Ru Yu, Wang Dong, et al. Flow field simulation and working condition analysis of triple-stage forest fire pump[J]. Journal of Forestry Engineering, 2017, 2(3): 124-130. (in Chinese with English abstract)

[11] 劉平義,彭鳳娟,李海濤,等. 丘陵山區(qū)農(nóng)用自適應調(diào)平底盤設計與試驗[J]. 農(nóng)業(yè)機械學報,2017,48(12):42-47.

Liu Pingyi, Peng Fengjuan, Li Haitao, et al. Design and experiment of adaptive leveling chassis for hilly area[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(12): 42-47. (in Chinese with English abstract)

[12] 楊政,范樺,金義重. 對我國消防部隊裝備管理及建設的思考[J]. 消防科學與技術,2009,28(12):949-952.

Yang Zheng, Fan Hua, Jin Yizhong. Reflections on the equipment management and construction of China’s fire-fighting force[J]. Fire Science and Technology, 2009, 28(12): 949-952. (in Chinese with English abstract)

[13] 陳思成,陳劭,楊越. 森林消防車制動安全性評價與試驗研究[J]. 林業(yè)機械與木工設備,2015,43(11):10-13.

Chen Sicheng, Chen Shao, Yang Yue. Analysis on driving stability of caterpillar tractor on ramp[J]. Forestry Machinery & Woodworking Equipment, 2015, 43(11): 10-13. (in Chinese with English abstract)

[14] 曹付義,周志立,徐立友. 履帶車輛液壓機械差速轉向系統(tǒng)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學報,2013,29(18):60-66.

Cao Fuyi, Zhou Zhili, Xu Liyou. Parameter optimization of hydro-mechanic differential turning system for tracked vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(18): 60-66. (in Chinese with English abstract)

[15] 楊秀建,王增才,路玉峰,等. 極限工況下汽車穩(wěn)定性的最優(yōu)保性能控制[J]. 農(nóng)業(yè)機械學報,2008,39(6):38-41.

Yang Xiujian,Wang Zengcai,Lu Yufeng,et al. The optimal performance control of vehicle stability under extreme conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(6): 38-41. (in Chinese with English abstract)

[16] 汪偉,趙又群,黃超,等. 新型機械彈性車輪的建模與通過性研究[J]. 中國機械工程,2013,24(6):724-729.

Wang Wei, Zhao Youqun, Huang Chao, et al. Modeling and trafficability analysis of New mechanical elastic wheel[J]. China Mechanical Engineering, 2013, 24(6): 724-729. (in Chinese with English abstract)

[17] 李建橋,張廣權,王穎,等. 仿螃蟹步行機構及其通過性試驗[J]. 農(nóng)業(yè)工程學報,2016,32(14):47-54.

Li Jianqiao, Zhang Guangquan, Wang Ying, et al. Bionic crab walking mechanism and its kinematic characteristics analysis[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(14): 47-54. (in Chinese with English abstract)

[18] 王鑫,趙強,何法,等. 線性二自由度汽車操縱穩(wěn)定性仿真分析[J]. 森林工程,2016,32(1):64-67,76.

Wang Xin, Zhao Qiang, He Fa, et al. Simulation analysis on automobile handling stability with linear two degrees of freedom[J]. Forest Engineering, 2016, 32(1): 64-67,76. (in Chinese with English abstract)

[19] 楊衛(wèi)杰,孟兆新,秦國新. 聯(lián)合采伐機六足行走裝置單足力學解算與分析[J]. 森林工程,2015,32(1):66-69,74.

Yang Weijie, Meng Zhaoxin, Qin Guoxin. The mechanics calculation and analysis of a single foot withinthe six legged walking device of combined harvesting machine[J]. Forest Engineering, 2015, 32(1): 66-69, 74. (in Chinese with English abstract)

[20] 朱磊,陳偉,鄭云峰,等. 采用水文分析法對林區(qū)道路涵洞選址的研究[J]. 森林工程,2017,33(3):85-88.

Zhu Lei, Chen Wei, Zheng Yunfeng, et al. Research on hydrological analysis for locating forest road culvert[J]. Forest Engineering, 2017, 33(3): 85-88. (in Chinese with English abstract)

[21] 李衛(wèi)朋,孫建,沙玉坤,等. 西南地區(qū)亞高山典型林區(qū)土壤碳排放及影響因子[J]. 農(nóng)業(yè)工程學報,2015,31(1):255-263.

Li Weipeng, Sun Jian, Sha Yukun, et al. Carbon emission and its influence factors of subalpine forest soilin Southwest China[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(1): 255-263. (in Chinese with English abstract)

[22] 王亞,陳思忠,李海濤,等. 高地面仿形性動力底盤的設計與試驗[J]. 農(nóng)業(yè)工程學報,2012,28(增刊1):39-44.

Wang Ya, Chen Sizhong, Li Haitao, et al. Design and experiment of high performance profiling terrain chassis with power train[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(Supp.1): 39-44. (in Chinese with English abstract)

[23] 葛曉雯,侯捷建,王立海. 集材機可更換三角形履帶跨越壕溝動力學仿真分析[J]. 林業(yè)工程學報,2016,1(1):111-117.

Ge Xiaowen, Hou Jiejian, Wang Lihai.Trench-crossing dynamic simulation of the replace able triangular track of skidder[J]. Journal of Forestry Engineering, 2016, 1(1): 111-117. (in Chinese with English abstract)

[24] 黃晗,李建橋,吳寶廣,等. 輕載荷條件下輕型車輛車輪牽引通過性模型的建立與驗證[J]. 農(nóng)業(yè)工程學報,2015,31(12):64-70.

Huang Han, Li Jianqiao, Wu Baoguang, et al. Construction and verification of lightweight vehicle wheel tractive trafficability model under light load[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(12): 64-70. (in Chinese with English abstract)

[25] 張德,鄒樹梁. 履帶式防核輻射挖掘機越障過程動力學建模及影響因素研究[J]. 南華大學學報:自然科學版,2017,31(3):1-8,24.

Zhang De, Zou Shuliang. Dynamic model of crawler anti-radiation excavator climbing over obstacles and analysis on its influential factors[J]. Journal of University of South China: Science and Technology, 2017, 31(3): 1-8, 24. (in Chinese with English abstract)

[26] 牛建業(yè),王洪波,史洪敏,等. 變自由度輪足復合機器人軌跡規(guī)劃驗證及步態(tài)研究[J]. 農(nóng)業(yè)工程學報,2017,33(23):38-47.

Niu Jianye, Wang Hongbo, Shi Hongmin, et al. Trajectory planning verification and gait analysis of wheel-legged hybrid robot with variable degree of freedom[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 38-47. (in Chinese with English abstract)

[27] 劉平義,王振杰,李海濤,等. 行星履帶式農(nóng)用動力底盤設計與越障性能研究[J]. 農(nóng)業(yè)機械學報,2014,45(增刊1):17-23.

Liu Pingyi, Wang Zhenjie, Li Haitao, et al. Design and overcoming obstacles ability research of tracked driving chassis with planetary structure[J]. Journal of Agricultural Machinery, 2014, 45(Supp.1): 17-23. (in Chinese with English abstract)

[28] 楊春梅,趙洪元,宋文龍,等. 間伐材伐區(qū)用小型抓木機的設計與分析[J]. 林業(yè)工程學報,2017,2(3):112-116.

Yang Chunmei, Zhao Hongyuan, Song Wenlong, et al. The design and analysis of a small timber grab used in theinning plots[J]. Journal of Forestry Engineering, 2017, 2(3): 112-116. (in Chinese with English abstract)

[29] 趙治國,方宗德,黃英亮,等. 車輛動力學穩(wěn)定性系統(tǒng)變結構滑??刂蒲芯縖J]. 中國機械工程,2003(2):68-72,6.

Zhao Zhiguo, Fang Zongde, Huang Yingliang, et al. Research on structural sliding mode control of vehicle dynamics stability system[J]. China Journal of Mechanical Engineering, 2003(2): 68-72, 6. (in Chinese with English abstract)

Trafficability analysis of improved forest fire engine based on crawler chassis

Sun Shufa1, Ren Chunlong1, Li Tao2, Chen Jianwei3, Ma Wenliang3, Chu Jiangwei4

(1.&,150040,; 2.,,022150,; 3..,150010,; 4.,,150040,)

There are a large number of fallen trees and slopes in forest areas, which leads to complicated terrain. Most of the existing fire engines are wheeled fire engines and Caterpillar fire engines. However, the existing fire engines are limited in passage performance. A large Caterpillar forest fire engine (LF1352JP) was designed in this article. The fire engine was built on the basis of the first generation of Caterpillar forest fire engines (LY1102XFSG30) and performance optimization and transformation were carried out. The chassis of Caterpillar fire engine (LF1352JP) was modified on the basis of the chassis of the original skidding (J-50)crawler tractor, and the engine power increased from 85 to 99.3 kW. The width and length of the chassis were increased on the basis of the original chassis, and the cowcatcher and hydraulic capstan were added on the basis of the original vehicle to ensure the advantages of the existing vehicle function. It maintained the advantages of the elastic chassis of the original vehicle and the large gap from the ground. CREO three-dimensional simulation software was applied to Caterpillar forest fire engine (LF1352JP). The three-dimensional design simulation of the chassis, upper mount, barrier device and waterway system was carried out. The density of each structure was input into the CREO three-dimensional simulation software to simulate the center of gravity. The lateral and longitudinal stability of the fire engine and the performance of the vertical obstacle crossing and crossing the trench were analyzed theoretically. The results are as follows: When Caterpillar forest fire engine runs laterally, its maximum slope angle allowed on the slope at full load is 40.6°, and at no load it is 45.1°; when it runs longitudinally, the maximum longitudinal upslope angle is 52.0° at full load, and 60.9° at no load, and the maximum angle of downslope is 47.2° at full load and 45.8° at no load. The height of obstacle crossing is 405 mm at full load and 615 mm at no load. The width of crossing the trench is 1 248 mm at full load and 983 mm at no load. Compared with the first generation of Caterpillar forest fire engine (LY1102XFSG30), the vehicle has significant improvement in the performance including running upward and downward longitudinally, running horizontally, and crossing the trenches and vertical obstacles. The tests were performed at Yushu in Harbin, Heilongjiang and Yakeshi test site in Inner Mongolia Autonomous region. It included 4 experiments: longitudinal upslope, longitudinal downslope, crossing trenches, and 200 m velocity measurement. When the upslope experiment was carried out, the Caterpillar forest fire engine (LF1352JP) was made in different gears and different slope angles and then its upslope time was recorded, and the result showed that longitudinal upslope maximum angle was 48° according to the actual measurement when the current vehicle was at full load. In the longitudinal downslope experiment, the Caterpillar forest fire engine (LF1352JP) was made in different gears and different slope angles and then its downslope time was recorded. According to the actual measurement when the current vehicle was at full load, the vehicle would show the slipping trend. The maximum span width of crossing trenches experiment was 1 300 mm, which was not enlarged because of the safety considerations of fire engines. The experiment verified the upslope performance and obstacle surmounting performance of the vehicle, and the theoretical analysis results were verified by the experimental results. The performance of LF1352JP fire engine can meet the requirements of mountain fire fighting in complex terrain in forest area. It is a kind of large forest fire engine with excellent performance.

mechanization; design; optimization; crawler type; fire engine; stability; obstacle climbing ability

2018-01-27

2018-06-30

中央高?;鹂蒲袠I(yè)務費專項基金項目(2572016CB12);哈爾濱市應用技術研究與開發(fā)項目(2015RAQXJ043)。

孫術發(fā),副教授,主要從事林業(yè)運輸裝備方面研究。 Email:ssfangel@163.com

10.11975/j.issn.1002-6819.2018.17.009

S776

A

1002-6819(2018)-17-0061-07

孫術發(fā),任春龍,李 濤,陳建偉,馬文良,儲江偉. 基于履帶式底盤的改進型森林消防車通過性[J]. 農(nóng)業(yè)工程學報,2018,34(17):61-67.doi:10.11975/j.issn.1002-6819.2018.17.009 http://www.tcsae.org

Sun Shufa, Ren Chunlong, Li Tao, Chen Jianwei, Ma Wenliang, Chu Jiangwei. Trafficability analysis of improved forest fire engine based on crawler chassis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 61-67. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.17.009 http://www.tcsae.org

猜你喜歡
壕溝原車爬坡
陜西農(nóng)民收入:一路爬坡過坎
爬坡過坎
縫隙(外一首)
馬蹄坑中的蝌蚪
說好的走心
花小錢辦大事
基于CRUISE并聯(lián)式HEV動力總成參數(shù)匹配與仿真(續(xù)2)*
把水換成面粉
HAMANN MYSTèRE幻影
小烏龜爬坡