趙紫霞 許 建 江炎亮 白慶利 蔣立坤 陳葆華 徐 鵬,3
?
虹鱒免疫誘導(dǎo)型基因啟動(dòng)子功能分析*
趙紫霞1①許 建1江炎亮1白慶利2蔣立坤1陳葆華1徐 鵬1,3
(1. 中國(guó)水產(chǎn)科學(xué)研究院 農(nóng)業(yè)農(nóng)村部水生動(dòng)物基因組學(xué)重點(diǎn)實(shí)驗(yàn)室 漁業(yè)生物技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室 北京 100141;2. 中國(guó)水產(chǎn)科學(xué)研究院黑龍江水產(chǎn)研究所 哈爾濱 150070; 3. 廈門大學(xué)海洋與地球?qū)W院 廈門 361102)
本研究通過實(shí)時(shí)熒光定量PCR實(shí)驗(yàn)對(duì)虹鱒()()基因的轉(zhuǎn)錄模式進(jìn)行了分析。結(jié)果顯示,該基因在鰓、頭腎等與機(jī)體免疫防御功能密切相關(guān)的組織內(nèi)轉(zhuǎn)錄,在細(xì)菌和病毒感染后,轉(zhuǎn)錄水平均顯著升高。對(duì)基因上游調(diào)控序列進(jìn)行啟動(dòng)子和轉(zhuǎn)錄因子結(jié)合位點(diǎn)預(yù)測(cè),發(fā)現(xiàn)該啟動(dòng)子具有真核生物典型的TATA盒和CAAT盒結(jié)構(gòu),基因上游直至第一內(nèi)含子區(qū)域內(nèi),密集存在多個(gè)免疫相關(guān)轉(zhuǎn)錄因子結(jié)合位點(diǎn),其中,2個(gè)核因子κB(Nuclear factor kappa B,NFκB)預(yù)測(cè)結(jié)合位點(diǎn)均位于核心啟動(dòng)子正鏈區(qū)域。在草魚()腎組織細(xì)胞系內(nèi),綠色熒光蛋白和螢火蟲熒光素酶基因都能夠在該啟動(dòng)子驅(qū)動(dòng)下表達(dá),表明其具有啟動(dòng)子活性,且啟動(dòng)子活性在受到免疫誘導(dǎo)后增強(qiáng),包括細(xì)菌脂多糖(Lipopolysaccharides, LPS)模擬的細(xì)菌感染和聚肌胞苷酸(Polyinosinic polycytidylic acid, Poly I:C)模擬的病毒感染。雙熒光素酶報(bào)告基因檢測(cè)顯示,啟動(dòng)子活性在與NFκB轉(zhuǎn)錄因子表達(dá)時(shí),增強(qiáng)至4.39倍,證明基因受NFκB通路調(diào)控。研究表明,虹鱒基因能夠在多種免疫刺激誘導(dǎo)下表達(dá),其啟動(dòng)子可以應(yīng)用為免疫誘導(dǎo)型的基因工程元件,驅(qū)動(dòng)外源免疫基因在魚體內(nèi)適時(shí)表達(dá),抵御外界病原感染,同時(shí),避免非必要條件下的過度表達(dá)形成生長(zhǎng)負(fù)擔(dān)。
虹鱒;抗菌肽;;啟動(dòng)子;轉(zhuǎn)錄調(diào)控
抗菌肽(Antimicrobial peptide, AMP)又稱為宿主防御肽(Host defense peptide, HDP),是非特異性免疫系統(tǒng)的關(guān)鍵組分之一,在生物體對(duì)抗病原微生物感染中發(fā)揮著重要的分子屏障作用。Cathelicidin是已知最大的抗菌肽家族之一,在脊椎動(dòng)物中廣泛分布,包括哺乳動(dòng)物、鳥類、爬行動(dòng)物、兩棲動(dòng)物和魚類中都有報(bào)道(Maier, 2008; Hao, 2012; Cheng, 2015),其中,哺乳動(dòng)物Cathelicidin的結(jié)構(gòu)和功能研究較為深入(Hilchie, 2013; 王晨等, 2017)。
第1個(gè)硬骨魚類基因由Chang等(2005)在虹鱒()中發(fā)現(xiàn),此后,在大西洋鮭()等多種鮭科(Salmonidae魚類(D'Este, 2016)、大西洋鱈() (Shewring, 2011)、香魚() (Nsrelden, 2017)、日本鰻鱺() (張東玲等, 2015)等物種中陸續(xù)發(fā)現(xiàn),并因其具廣譜抗菌能力而吸引了廣泛的注意,但另一些已完成的硬骨魚類基因組圖譜中卻無法篩查到該家族基因(Shewring, 2011),如斑馬魚()、青鳉()、河豚()等。因此,Cathelicidin可能為部分硬骨魚類群所特有,其基因功能和表達(dá)調(diào)控的研究將有助于加深對(duì)魚類,特別是對(duì)鮭科魚類非特異性免疫機(jī)制的理解,并促進(jìn)魚類抗病育種研究進(jìn)展。
Cathelicidin成熟肽為帶有正電荷的短肽,主要通過插入并破壞細(xì)胞膜結(jié)構(gòu)殺滅病原微生物。體外實(shí)驗(yàn)表明,虹鱒4個(gè)基因的各種可變剪切表達(dá)產(chǎn)物均能夠抑制多種革蘭氏陽性和陰性菌的生長(zhǎng)(Zhang, 2015),基因產(chǎn)物還具有一定的抗真菌效果,能夠延緩水霉()孢子形成(de Bruijn, 2012)。而在大西洋鮭的研究中則發(fā)現(xiàn),基因表達(dá)呈現(xiàn)出廣泛的免疫應(yīng)答特征,不僅能夠被細(xì)菌所誘導(dǎo),也能夠被不具有細(xì)胞結(jié)構(gòu)的病毒模擬物所誘導(dǎo)(Shewring, 2011; Broekman, 2013),其轉(zhuǎn)錄調(diào)控機(jī)制尚不明確。本研究以虹鱒基因?yàn)槔ㄟ^實(shí)時(shí)熒光定量PCR(Quantitative Real Time PCR, qRT-PCR)實(shí)驗(yàn)驗(yàn)證了該基因的免疫誘導(dǎo)轉(zhuǎn)錄模式,并開展了啟動(dòng)子克隆與功能分析,對(duì)基因轉(zhuǎn)錄調(diào)控機(jī)制進(jìn)行了初步探索。
無特定病原虹鱒5尾,采自中國(guó)水產(chǎn)科學(xué)研究院黑龍江水產(chǎn)研究所渤海冷水性魚試驗(yàn)站;自然感染鰻弧菌()發(fā)病的虹鱒5尾,采自山西朔州;自然感染傳染性造血器官壞死病毒(, IHNV)發(fā)病的虹鱒5尾,采自北京懷柔。草魚腎組織細(xì)胞系(Kidney, CIK)保藏于國(guó)家水產(chǎn)種質(zhì)資源平臺(tái)。
使用Trizol試劑(Life technologies)分別提取鰓、頭腎組織總RNA,DNase I(Sigma-Aldrich)處理以避免基因組DNA污染。使用ReverTra Ace-α-RT-PCR cDNA第一鏈合成試劑盒(TOYOBO)進(jìn)行mRNA反轉(zhuǎn)錄。使用SYBR Green RT-PCR試劑盒(TOYOBO)在Applied Biosystems?7500 Real-Time PCR系統(tǒng)(Life technologies)上進(jìn)行qRT-PCR實(shí)驗(yàn),分析各樣本內(nèi)基因(NCBI:NM_001124463.1)的表達(dá)量差異。使用(NCBI:NM_001124235.1)作為內(nèi)參基因,2–DDCt法(Schmittgen2008)計(jì)算基因相對(duì)表達(dá)量。定量引物Cath2-qPCR-F:CAACACCCTCAACACTGACCG;Cath2-qPCR-R:GAATCTTTTCTACCCATCTTAGG;定量引物actin-F:ACAGGTCATCACCATCGGCA;actin-R:GGTCTCGTGGATACCGCAAG。
以虹鱒基因組圖譜序列(Berthelot2014)為參考,通過基因組步移法測(cè)定基因序列,使用CLC Genomics Workbench 9.5.4數(shù)據(jù)分析平臺(tái)拼接,并結(jié)合在線分析軟件Neural Network Promoter Prediction(Reese, 2001)(http://www.fruitfly.org/seq_tools/promoter. html),JASPAR2016 (Mathelier2016)(http://jaspar. genereg.net/),AliBaba2.1(http://gene-regulation.com/pub/ programs/alibaba2/index.html),PROMO (Messeguer2002)(http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3),開展啟動(dòng)子位置和轉(zhuǎn)錄因子結(jié)合位點(diǎn)分析。
以虹鱒基因組DNA為模板,使用Cath2啟動(dòng)子引物Cath2-promoter-F:TCTCACGCGTGGCAGAC-AGGCATGGGAATA;Cath2-promoter-R: TCTCAAG-CTTCTGACCTCTGACCAGCAAGC進(jìn)行PCR擴(kuò)增。將純化后的擴(kuò)增產(chǎn)物進(jìn)行MluⅠ、HindⅢ雙酶切處理,獲取帶有黏性末端的啟動(dòng)子片段。分別將pGL3- EGFP和pGL3-basic載體(Promega)進(jìn)行MluⅠ、HindⅢ雙酶切處理,獲取帶有黏性末端的載體質(zhì)粒。將純化后的啟動(dòng)子和載體質(zhì)粒按照物質(zhì)的量比例3∶1混合,T4 DNA連接酶16℃處理12 h,轉(zhuǎn)化DH5α感受態(tài)細(xì)菌,涂布含有氨芐青霉素的平板,37℃倒置培養(yǎng)12 h。挑取單克隆,堿裂解法提取質(zhì)粒,測(cè)序鑒定,獲得成功插入虹鱒Cath2啟動(dòng)子完整序列的pGL3- EGFP-Cath2和pGL3-Cath2啟動(dòng)子載體。按照同樣步驟構(gòu)建插入核因子κB (Nuclear factor kappa B,NFκB)編碼序列(NCBI:XM_019064772.1)的pEGFP-NFκB表達(dá)載體,酶切位點(diǎn)為EcoRⅠ和BamHⅠ。
使用含5% 胎牛血清的杜氏改良伊格爾培養(yǎng)基(Dulbecco’s Modified Eagle Medium,DMEM),初始接種濃度為每孔2×105個(gè)細(xì)胞,5% CO2培養(yǎng)箱25℃培養(yǎng)12 h,待單層細(xì)胞貼壁超過60%后,用pH為7.4的PBS緩沖液洗滌細(xì)胞3次,每孔加入無血清DMEM培養(yǎng)基900 μl,1 h后進(jìn)行轉(zhuǎn)染。
轉(zhuǎn)染實(shí)驗(yàn)使用Lipofectamine?2000(Life technologies)體系進(jìn)行脂質(zhì)體轉(zhuǎn)染,分為7組,每組6孔,各孔分別加入(1)2000 ng pGL3-EGFP空載體+6 μl Lipofectamine? 2000轉(zhuǎn)染試劑+994 μl無血清DMEM培養(yǎng)基;(2)、(3)、(4)2000 ng pGL3-EGFP-Cath2啟動(dòng)子載體+6 μl Lipofectamine? 2000轉(zhuǎn)染試劑+994 μl無血清DMEM培養(yǎng)基;(5)1200 ng pEGFP空載體+600 ng pGL3-basic載體+60 ng PRL-CMV海腎熒光素酶內(nèi)參載體+6 μl Lipofectamine? 2000轉(zhuǎn)染試劑+994 μl無血清DMEM培養(yǎng)基;(6)1200 ng pEGFP空載體+600 ng pGL3-Cath2啟動(dòng)子載體+60 ng PRL-CMV海腎熒光素酶內(nèi)參載體+6 μl Lipofectamine? 2000轉(zhuǎn)染試劑+998 μl無血清DMEM培養(yǎng)基;(7)1200 ng pEGFP- NFκB表達(dá)載體+600 ng pGL3-Cath2啟動(dòng)子載體+60 ngPRL-CMV海腎熒光素酶內(nèi)參載體+6 μl Lipofectamine? 2000轉(zhuǎn)染試劑+994 μl無血清DMEM培養(yǎng)基。輕輕搖動(dòng)平皿混勻,5% CO2培養(yǎng)箱25℃培養(yǎng)。
轉(zhuǎn)染后6 h,換半液,換液使用含有5%胎牛血清的DMEM培養(yǎng)基,繼續(xù)5% CO2培養(yǎng)箱25℃培養(yǎng)。轉(zhuǎn)染后24 h,在熒光顯微鏡下觀察各組細(xì)胞形態(tài)和綠色熒光蛋白熒光信號(hào),計(jì)數(shù)并計(jì)算轉(zhuǎn)染效率,轉(zhuǎn)染效率=表達(dá)綠色熒光蛋白的細(xì)胞數(shù)/活細(xì)胞總數(shù)。向(3)組各孔中加入1 μg/μl的細(xì)菌脂多糖(Lipopolysaccharides, LPS)10 μl,向(4)組各孔中加入10 μg/μl的聚肌胞苷酸(Polyinosinic polycytidylic acid,Poly I:C)10 μl,輕輕混勻,繼續(xù)5% CO2培養(yǎng)箱25℃培養(yǎng)6 h。在熒光顯微鏡下觀察(1)~(4)組細(xì)胞形態(tài)和綠色熒光蛋白熒光信號(hào)。
使用Dual-Luciferase? Reporter Assay System雙熒光素酶報(bào)告基因檢測(cè)試劑盒(Promega),按說明書完成檢測(cè)步驟。將(5)~(7)組各孔內(nèi)細(xì)胞充分裂解后,分別測(cè)定螢火蟲熒光素酶和海腎熒光素酶活力。使用海腎熒光素酶活力值作為內(nèi)參,使螢火蟲熒光素酶活力值正態(tài)化,熒光素酶活性=螢火蟲熒光素酶活力/海腎熒光素酶活力。再以只轉(zhuǎn)染對(duì)照載體和內(nèi)參載體的第(5)組數(shù)值為對(duì)照,將該組熒光素酶活性歸一化,熒光素酶相對(duì)活性=實(shí)驗(yàn)組熒光素酶活性/對(duì)照組熒光素酶活性(Pannier, 2007)。
通過qRT-PCR對(duì)虹鱒基因轉(zhuǎn)錄特征進(jìn)行了研究。結(jié)果表明,該基因轉(zhuǎn)錄呈現(xiàn)出顯著的免疫應(yīng)答特征,細(xì)菌和病毒感染均能增強(qiáng)該基因轉(zhuǎn)錄。基因在健康個(gè)體的鰓、頭腎組織內(nèi)均有表達(dá),其中,頭腎表達(dá)量較高;在鰻弧菌感染個(gè)體中,基因表達(dá)量顯著上調(diào),上升幅度達(dá)到10.7倍(鰓)和13.5倍(頭腎);在IHNV感染個(gè)體中,基因表達(dá)量也有明顯上調(diào),但上升幅度小于鰻弧菌感染個(gè)體(圖1),分別為6.98倍(鰓)和6.84倍(頭腎)。
圖1 虹鱒Cath2基因在感染條件下mRNA表達(dá)量變化
1:健康個(gè)體;2:鰻弧菌感染個(gè)體;3:IHNV感染個(gè)體
1: Healthy control; 2:infected; 3: IHNV infected
圖中實(shí)驗(yàn)組相對(duì)表達(dá)量以健康對(duì)照組鰓組織基因表達(dá)量為基準(zhǔn)計(jì)算,誤差線為相對(duì)標(biāo)準(zhǔn)差(=5),星號(hào)為檢驗(yàn)顯著性水平(**,< 0.01),下同
The relative expression level in each group was calculated by comparing with the value in gill of healthy control. Error bars represented standard error of the mean (=5). Statistical differences relative to unaffected tissues were calculated by using Student’s t test (**,< 0.01), the same as below
將虹鱒基因(NCBI:NM_001124463.1)序列在虹鱒基因組圖譜中進(jìn)行Blat比對(duì),該基因被定位于ChrUn_8重疊群,使用該區(qū)段序列為參考,通過基因組步移法對(duì)基因上游調(diào)控序列進(jìn)行Sanger測(cè)序和拼接,獲得起始密碼子前1000 bp序列。對(duì)該區(qū)域進(jìn)行啟動(dòng)子功能分析,推測(cè)基因轉(zhuǎn)錄起始位點(diǎn)自–7 bp開始,在–30 bp位置有TATA盒,在–69 bp位置有CAAT盒,具有典型的真核生物啟動(dòng)子結(jié)構(gòu)。
圖2 虹鱒Cath2基因上游調(diào)控序列功能預(yù)測(cè)示意
預(yù)測(cè)該基因核心啟動(dòng)子區(qū)為–1~–351 bp區(qū)間,為更完整地保留特征性轉(zhuǎn)錄調(diào)控區(qū)域,設(shè)計(jì)PCR引物擴(kuò)增–927 bp~76 bp間的1003 bp序列,將其克隆進(jìn)入啟動(dòng)子載體用于轉(zhuǎn)錄活性分析實(shí)驗(yàn)。
在虹鱒基因–1000~312 bp區(qū)間范圍內(nèi),密集存在著多個(gè)順式作用元件(圖2),其中,既包括免疫應(yīng)答轉(zhuǎn)錄因子結(jié)合位點(diǎn),如核因子κB(Nuclear factor kappa B, NFκB)、Ccaat增強(qiáng)子結(jié)合蛋白(Ccaat /Enhancer Binding Protein,CEBP)、cAMP應(yīng)答元件結(jié)合蛋白(cAMP-responsive element binding proteins,CREBP)、巨噬細(xì)胞活化因子相關(guān)轉(zhuǎn)錄因子(Macrophage activating factor related factor,MAFF)、干擾素調(diào)節(jié)因子(Interferon regulatory factors, IRF)等,也包括高頻出現(xiàn)的干擾素增強(qiáng)子GAAA基序以及數(shù)個(gè)環(huán)境壓力應(yīng)答元件,如低氧應(yīng)答元件(Hypoxia response element, HRE)。
對(duì)預(yù)測(cè)得到的虹鱒基因啟動(dòng)子區(qū)域進(jìn)行PCR擴(kuò)增,將該啟動(dòng)子連接進(jìn)入pGL3-EGFP質(zhì)粒載體,使虹鱒啟動(dòng)子驅(qū)動(dòng)綠色熒光蛋白(Green fluorescent protein, GFP)基因表達(dá),構(gòu)建成功pGL3- EGFP-Cath2質(zhì)粒載體。
使用pGL3-EGFP-Cath2質(zhì)粒轉(zhuǎn)染CIK細(xì)胞,轉(zhuǎn)染后細(xì)胞生長(zhǎng)狀況良好(圖3A),熒光顯微鏡下可見GFP綠色熒光(圖3B),表明轉(zhuǎn)入的DNA片段能夠成功驅(qū)動(dòng)GFP基因表達(dá),具有啟動(dòng)子活性,轉(zhuǎn)染效率為(34.7±4.6)%。向細(xì)胞培養(yǎng)液中加入免疫刺激劑LPS (圖3C、圖3D)或Poly I:C(圖3E、圖3F),分別模擬細(xì)菌感染和病毒感染,細(xì)胞的熒光強(qiáng)度顯著強(qiáng)于無免疫刺激對(duì)照組,表明啟動(dòng)子活性在免疫激活后顯著增強(qiáng),為免疫誘導(dǎo)型啟動(dòng)子。
圖3 轉(zhuǎn)染pGL3-EGFP-Cath2質(zhì)粒的CIK細(xì)胞
A:無免疫刺激,明場(chǎng)顯微鏡照片;B:無免疫刺激,熒光顯微鏡照片;C:LPS模擬細(xì)菌感染,明場(chǎng)顯微鏡照片; D:LPS模擬細(xì)菌感染,熒光顯微鏡照片;E:Poly I:C模擬病毒感染,明場(chǎng)顯微鏡照片;F:Poly I:C模擬病毒感染,熒光顯微鏡照片
A: Control cells without immune stimulus, by bright field microscope; B: Control cells without immune stimulus, by fluorescence microscope; C: Immune stimulated cells with LPS, by bright field microscope; D: Immune stimulated cells with LPS, by fluorescence microscope; E: Immune stimulated cells with Poly I:C, by bright field microscope; F: Immune stimulated cells with Poly I:C, by fluorescence microscope
將虹鱒基因啟動(dòng)子序列連接進(jìn)入pGL3- basic質(zhì)粒載體,使虹鱒啟動(dòng)子驅(qū)動(dòng)螢火蟲熒光素酶基因表達(dá),構(gòu)建成功pGL3-Cath2質(zhì)粒載體;將虹鱒基因cDNA序列連接進(jìn)入pEGFP載體,使虹鱒基因與GFP基因共表達(dá),構(gòu)建成功pEGFP-NFκB質(zhì)粒載體。
圖4 雙熒光素酶報(bào)告基因?qū)嶒?yàn)測(cè)定虹鱒Cath2基因啟動(dòng)子活性
使用pGL3-Cath2啟動(dòng)子載體質(zhì)粒、pEGFP-NFκB轉(zhuǎn)錄因子表達(dá)載體質(zhì)粒單獨(dú)或共同轉(zhuǎn)染CIK細(xì)胞,所有細(xì)胞中均有PRL-CMV海腎熒光素酶內(nèi)參質(zhì)粒共轉(zhuǎn)染,使用未負(fù)載啟動(dòng)子的pGL3-basic空質(zhì)粒和未負(fù)載轉(zhuǎn)錄因子的pEGFP空質(zhì)粒作為對(duì)照,使各組轉(zhuǎn)染DNA總量均等
CIK cells were transfected by pGL3-Cath2 promoter vector plasmid and pEGFP-NFκB transcription factors expression vector plasmid, independently or simultaneously. All cells were co-transfected by PRL-CMV renilla luciferase plasmids as internal control. Blank vectors, pGL3-basic and pEGFP plasmids were also used for co-transfection, to keep equal quantity of transfected DNA among different groups
使用pGL3-Cath2啟動(dòng)子載體、pEGFP-NFκB表達(dá)載體,與PRL-CMV海腎熒光素酶內(nèi)參載體質(zhì)粒共轉(zhuǎn)染CIK細(xì)胞,轉(zhuǎn)染效率為(28.9 ± 3.5)%。定量測(cè)定啟動(dòng)子活性,結(jié)果見圖4。從圖4可以看出,轉(zhuǎn)染pGL3- Cath2實(shí)驗(yàn)組測(cè)定的螢光素酶活性比空載體對(duì)照組顯著增強(qiáng),表明基因啟動(dòng)子在該體系中表現(xiàn)出明顯的啟動(dòng)子活性;pGL3-Cath2和pEGFP-NFκB共轉(zhuǎn)染實(shí)驗(yàn)組測(cè)定的螢光素酶活性顯著高于單獨(dú)轉(zhuǎn)染pGL3-Cath2實(shí)驗(yàn)組,前者約為后者的4.39倍,表明外源NFκB轉(zhuǎn)錄因子的增強(qiáng)性表達(dá)能夠提高啟動(dòng)子活性,證實(shí)了NFκB為促進(jìn)基因啟動(dòng)子表達(dá)的反式作用因子。
多項(xiàng)不同來源的轉(zhuǎn)錄組數(shù)據(jù)分析表明,虹鱒基因轉(zhuǎn)錄水平不僅在細(xì)菌感染或LPS模擬刺激后大幅度上升(MacKenzie, 2008; Langevin, 2012; Bridle, 2012),也在病毒或模擬物刺激后有不同程度的上升,如IHNV BLK94和WA毒株(Purcell, 2011),IHNV滅活病毒(MacKenzie, 2008),病毒性出血敗血癥病毒(Viral hemorrhagic septicemia virus, VHSV)(Aquilino, 2014)以及病毒雙鏈RNA模擬物Poly I:C(Pacitti, 2016)誘導(dǎo)后的表達(dá)譜數(shù)據(jù)中,基因均呈現(xiàn)上調(diào)表達(dá)。
為在實(shí)驗(yàn)層面確認(rèn)以上生物信息學(xué)分析數(shù)據(jù),本研究通過qRT-PCR檢測(cè),證實(shí)自然感染鰻弧菌或IHNV的虹鱒鰓、頭腎組織中,基因轉(zhuǎn)錄水平都有顯著升高(圖1),進(jìn)一步的體外轉(zhuǎn)錄研究結(jié)果(圖3)顯示,細(xì)菌模擬物L(fēng)PS和病毒模擬物Poly I:C都能夠誘導(dǎo)基因啟動(dòng)子表達(dá)增強(qiáng)?;虮磉_(dá)能夠被細(xì)菌感染所誘導(dǎo),與其抗菌生理功能相吻合,而該基因同樣參與病毒感染免疫應(yīng)答,該基因可能不局限于通常所知的生物學(xué)功能,即破壞病原生物膜結(jié)構(gòu),還可能以其他的方式發(fā)揮作用,以抵御不具有細(xì)胞結(jié)構(gòu)的病毒感染。
D’Este等(2016)對(duì)鮭科魚類Cathelicidin成熟多肽結(jié)構(gòu)進(jìn)行了分析,并推測(cè)其富含絲氨酸和甘氨酸的分子,可通過刺激吞噬細(xì)胞的吞噬功能來發(fā)揮免疫調(diào)節(jié)作用,而非直接殺傷病原體。本研究從轉(zhuǎn)錄特征方面支持了Cathelicidin的非直接殺菌功能,這種受病毒誘導(dǎo)表達(dá)的轉(zhuǎn)錄模式在魚類抗菌肽中并非個(gè)例,在大西洋鱈中也曾有報(bào)道,包括Hepcidin (Solstad, 2008)和Cathelicidin(Shewring, 2011; Broekman, 2013),其抗病毒機(jī)制仍需進(jìn)一步研究驗(yàn)證。
為解析虹鱒基因轉(zhuǎn)錄調(diào)控機(jī)制,本研究對(duì)基因上游調(diào)控序列進(jìn)行了測(cè)序和分析,成功獲得了長(zhǎng)度為351 bp的核心啟動(dòng)子序列。序列相似性比對(duì)結(jié)果表明,虹鱒基因起始密碼子前的上游調(diào)控序列與人()、大西洋鱈基因以及虹鱒基因?qū)?yīng)序列的堿基一致性較低,但具有一些共同的結(jié)構(gòu)特征,各基因啟動(dòng)子均具有真核生物啟動(dòng)子典型的TATA盒和CAAT盒結(jié)構(gòu),在基因上游直至第一內(nèi)含子區(qū)域,密集存在多個(gè)免疫相關(guān)轉(zhuǎn)錄因子結(jié)合位點(diǎn)(Chang, 2005; Chakraborty, 2009; Shewring, 2011;Dhawan, 2015)。
虹鱒基因上游調(diào)控區(qū)共有3個(gè)NFκB預(yù)測(cè)結(jié)合位點(diǎn),其中,2個(gè)都在核心啟動(dòng)子正鏈上,分別位于–78 bp和–180 bp位置,靠近CAAT盒。對(duì)已報(bào)道的魚類其他基因序列進(jìn)行了NFκB結(jié)合位點(diǎn)預(yù)測(cè),包括虹鱒、大西洋鱈研究發(fā)現(xiàn),NFκB結(jié)合特征性序列普遍存在于基因上游,但此前尚無NFκB調(diào)控基因轉(zhuǎn)錄的研究結(jié)果。本研究通過雙熒光素酶報(bào)告基因研究,將虹鱒啟動(dòng)子連入pGL3質(zhì)粒載體,轉(zhuǎn)染草魚CIK細(xì)胞系,螢火蟲熒光素酶基因能夠在該啟動(dòng)子驅(qū)動(dòng)下表達(dá),當(dāng)與NFκB表達(dá)載體共轉(zhuǎn)染時(shí),螢火蟲熒光素酶活性顯著增強(qiáng),表明NFκB是增強(qiáng)基因轉(zhuǎn)錄的反式作用因子。
NFκB是經(jīng)典的炎癥和免疫調(diào)控核轉(zhuǎn)錄因子,該通路既能被細(xì)胞表面病原識(shí)別受體直接激活,也能被多種誘導(dǎo)磷酸激酶活化的胞內(nèi)信號(hào)所激活,在接受免疫刺激后,數(shù)分鐘即可迅速活化,參與包括細(xì)菌和病毒在內(nèi)的多種病原感染應(yīng)答(Ghosh, 1998;Varejckova, 2017)。虹鱒基因轉(zhuǎn)錄受NFκB調(diào)控,因此,能夠在不同病原感染個(gè)體中迅速大幅上調(diào)表達(dá),呈現(xiàn)出免疫誘導(dǎo)型轉(zhuǎn)錄特征。
啟動(dòng)子常根據(jù)作用方式及功能分為3類:組成型啟動(dòng)子,在全部或多數(shù)組織中保持持續(xù)的轉(zhuǎn)錄活性;特異型啟動(dòng)子,在特定的組織或發(fā)育時(shí)期具有轉(zhuǎn)錄活性;誘導(dǎo)型啟動(dòng)子,受特定物理或化學(xué)信號(hào)調(diào)控 (李圣彥等, 2014)。本研究中獲得的虹鱒啟動(dòng)子即為免疫誘導(dǎo)型啟動(dòng)子,在基因工程抗病育種中具有較高的應(yīng)用價(jià)值。
利用基因工程技術(shù),將免疫基因,如免疫球蛋白或抗菌肽等轉(zhuǎn)入養(yǎng)殖魚類體內(nèi),培育疾病抗性品種,是防控養(yǎng)殖病害的有效途徑之一(葉鼎等, 2014)。啟動(dòng)子是各種轉(zhuǎn)基因技術(shù)方案中必備的轉(zhuǎn)基因元件,轉(zhuǎn)基因載體中負(fù)載的外源目的基因必須置于有效的啟動(dòng)子介導(dǎo)之下,才能夠在宿主細(xì)胞內(nèi)成功轉(zhuǎn)錄表達(dá)。
目前,已報(bào)道的用作轉(zhuǎn)基因元件的魚類啟動(dòng)子多為組成型,如鯉()β-肌動(dòng)蛋白、美洲大綿鳚()抗凍蛋白啟動(dòng)子等(葉星等, 2011; Ledford, 2015; 汪亞平等, 2016; 胡煒等, 2016)。但對(duì)抗病轉(zhuǎn)基因魚而言,使用組成型啟動(dòng)子,將使未接觸病原的魚體內(nèi)長(zhǎng)期大量表達(dá)外源免疫基因,不僅沒有必要,還可能因消耗能量而造成生長(zhǎng)負(fù)擔(dān)。如果使用免疫誘導(dǎo)型啟動(dòng)子,則可介導(dǎo)外源基因僅在魚體遭受免疫脅迫時(shí)出現(xiàn)高表達(dá),合理利用能量并抵御病害。
目前,關(guān)于免疫誘導(dǎo)型啟動(dòng)子的報(bào)道仍較少 (杜小溪等, 2013; Fu, 2016),本研究即提供了一種具有快速免疫響應(yīng)特征的魚類啟動(dòng)子。虹鱒基因的表達(dá)模式較好地符合了抗病轉(zhuǎn)基因魚對(duì)外源免疫基因轉(zhuǎn)錄特征的需求,將該基因啟動(dòng)子用作抗病轉(zhuǎn)基因載體構(gòu)建的啟動(dòng)子元件,可能驅(qū)動(dòng)外源免疫基因保持類似的表達(dá)模式。
鰓和頭腎組織都在魚類免疫防御中具有重要地位。鰓是魚類的呼吸器官,比表面積大,表面密布毛細(xì)血管,隨時(shí)與外界水流接觸,因而易受環(huán)境中的病原菌侵襲。頭腎是硬骨魚類特有的淋巴器官,在魚體內(nèi)發(fā)揮重要的免疫功能。將虹鱒基因啟動(dòng)子用作轉(zhuǎn)基因元件,可能使轉(zhuǎn)基因魚在受到免疫刺激時(shí),鰓和頭腎大量表達(dá)轉(zhuǎn)入的免疫基因,及時(shí)抵御外界病原感染,同時(shí),避免在不必要的組織和健康狀態(tài)下過多表達(dá)外源基因,在魚類基因工程抗病育種領(lǐng)域具有廣闊的應(yīng)用前景。
Aquilino C, Castro R, Fischer U,. Transcriptomic responses in rainbow trout gills upon infection with viral hemorrhagic septicemia virus (VHSV). Developmental and Comparative Immunology, 2014, 44(1): 12–20
Berthelot C, Brunet F, Chalopin D,. The rainbow trout genome provides novel insights into evolution after whole- genome duplication in vertebrates. Nature Communication, 2014, 5(4): 3657
Bridle AR, Koop BF, Nowak BF. Identification of surrogates of protection against yersiniosis in immersion vaccinated Atlantic salmon. PLoS One, 2012, 7(7): e40841
Broekman DC, Guemundsson GH, Maier VH. Differential regulation of cathelicidin in salmon and cod. Fish and Shellfish Immunology, 2013, 35(2): 532–538
Chakraborty K, Maity PC, Sil AK,. cAMP stringently regulates human cathelicidin antimicrobial peptide expression in the mucosal epithelial cells by activating cAMP-response element-binding protein, AP-1, and inducible cAMP early repressor. Journal of Biological Chemistry, 2009, 284(33): 21810–21827
Chang CI, Pleguezuelos O, Zhang YA,. Identification of a novel cathelicidin gene in the rainbow trout,. Infection and Immunity, 2005, 73(8): 5053–5064
Cheng Y, Prickett MD, Gutowska W,. Evolution of the avian β-defensin and cathelicidin genes. BMC Evolutionary Biology, 2015, 15(1): 188
de Bruijn I, Belmonte R, Anderson VL ,. Immune gene expression in trout cell lines infected with the fish pathogenic oomycete. Developmental and Comparative Immunology, 2012, 38(1): 44–54
D'Este F, Benincasa M, Cannone G,. Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from salmonid cathelicidins. Fish and Shellfish Immunology, 2016(59): 456–468
Dhawan P, Wei R, Sun C,. C/EBPα and the vitamin D receptor cooperate in the regulation of cathelicidin in lung epithelial cells. Journal of Cellular Physiology, 2015, 230(2): 464–472
Du XX, Gao XG, Chen PH,. Research on gene promoter of fish. Biotechnology Bulletin, 2013(8): 12–16 [杜小溪, 高祥剛, 陳潘海,等. 魚類基因啟動(dòng)子的研究進(jìn)展. 生物技術(shù)通報(bào), 2013(8): 12–16]
Fu XQ, Ding ZJ, Fan J,. Characterization, promoter analysis and expression of the interleukin-6 gene in blunt snout bream,. Fish Physiology and Biochemistry, 2016, 42(6): 1527–1540
Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annual Review of Immunology, 1998, 16(1): 225–260
Hao X, Yang H, Wei L,. Amphibian cathelicidin fills the evolutionary gap of cathelicidin in vertebrate. Amino Acids, 2012, 43(2): 677–685
Hilchie AL, Wuerth K, Hancock RE. Immune modulation by multifaceted cationic host defense (Antimicrobial) peptides. Nature Chemical Biology, 2013, 9(12): 761–768
Hu W, Zhu ZY. Enlightenments for China from the industrialization of the transgenic atlantic salmon in the US. Engineering Sciences, 2016, 18(3): 105–109 [胡煒, 朱作言. 美國(guó)轉(zhuǎn)基因大西洋鮭產(chǎn)業(yè)化對(duì)我國(guó)的啟示. 中國(guó)工程科學(xué), 2016, 18(3): 105–109]
Langevin C, Blanco M, Martin SA,Transcriptional responses of resistant and susceptible fish clones to the bacterial pathogen. PLoS One, 2012, 7(6): 39126
Ledford H. Salmon approval heralds rethink of transgenic animals. Nature, 2015, 527(7579): 417–418
Li SY, Lang ZH, Huang DF. Research progress on eukaryotic promoter. Current Biotechnology, 2014, 4(3): 158–164 [李圣彥, 郎志宏, 黃大昉. 真核生物啟動(dòng)子研究概述. 生物技術(shù)進(jìn)展, 2014, 4(3): 158–164]
MacKenzie S, Balasch JC, Novoa B,. Comparative analysis of the acute response of the trout,head kidney tochallenge with virulent and attenuated infectious hematopoietic necrosis virus and LPS-induced inflammation. BMC Genomics, 2008, 9(1): 141
Maier VH, Dorn KV, Gudmundsdottir BK,. Characterisation of cathelicidin gene family members in divergent fish species. Molecular Immunology, 2008, 45(14): 3723–3730
Mathelier A, Fornes O, Arenillas DJ,. JASPAR 2016: A major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 2016, 44(D1): 110–115
Messeguer X, Escudero R, Farré D,. PROMO: Detection of known transcription regulatory elements using species- tailored searches. Bioinformatics, 2002, 18(2): 333–334
Nsrelden RM, Horiuchi H, Furusawa S. Expression of ayu antimicrobial peptide genes after LPS stimulation. Journal of Veterinary Medical Science, 2017, 79(6): 1072–1080
Pacitti D, Lawan MM, Feldmann J,. Impact of selenium supplementation on fish antiviral responses: A whole transcriptomic analysis in rainbow trout () fed supranutritional levels of Sel-Plex?. BMC Genomics, 2016, 17(1): 116
Pannier AK, Ariazi EA, Bellis AD,. Bioluminescence imaging for assessment and normalization in transfected cell arrays. Biotechnology and Bioengineering, 2007, 98(2): 468–497
Purcell MK, Marjara IS, Batts W,. Transcriptome analysis of rainbow trout infected with high and low virulence strains of infectious hematopoietic necrosis virus. Fish and Shellfish Immunology, 2011, 30(1): 84–93
Reese MG. Application of a time-delay neural network to promoter annotation in thegenome. Computers and Chemistry, 2001, 26(1): 51–56
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 2008, 3(6): 1101–1108
Shewring DM, Zou J, Corripio-Miyar Y,. Analysis of the cathelicidin 1 gene locus in Atlantic cod (). Molecular Immunology, 2011, 48(5): 782–787
Solstad T, Larsen AN, Seppola M,. Identification, cloning and expression analysis of a hepcidin cDNA of the Atlantic cod (L.). Fish and Shellfish Immunology, 2008, 25(3): 298–310
Varejckova M, Gallardo-Vara E, Vicen M,Soluble endoglin modulates the pro-inflammatory mediators NF-κB and IL-6 in cultured human endothelial cells. Life Sciences, 2017, 175: 52–60
Wang C, Feng L, Yu HN,. Relationship between structure and function of Cathelicidins and their molecular design: A review. Chinese Journal of Biotechnology, 2017, 33(1): 27–35 [王晨, 馮蘭, 于海寧,等. Cathelicidins 結(jié)構(gòu)與功能的關(guān)系及其分子設(shè)計(jì)研究進(jìn)展. 生物工程學(xué)報(bào), 2017, 33(1): 27–35]
Wang YP, He LB. Retrospect and prospect of transgenic fish breeding in China. Chinese Journal of Biotechnology, 2016, 32(7): 851–860 [汪亞平, 何利波. 我國(guó)轉(zhuǎn)基因魚研制的歷史回顧與展望. 生物工程學(xué)報(bào), 2016, 32(7): 851–860]
Ye D, Zhu ZY, Sun YH. Fish genome manipulation and directional breeding. Science China: Life Sciences, 2014, 44(12): 1253–1261 [葉鼎, 朱作言, 孫永華. 魚類基因組操作與定向育種. 中國(guó)科學(xué): 生命科學(xué), 2014, 44(12): 1253–1261]
Ye X, Tian YY, Gao FY. Progress in transgenic fish techniques and application. Hereditas (Beijing), 2011, 33(5): 494–503 [葉星, 田園園, 高風(fēng)英. 轉(zhuǎn)基因魚的研究進(jìn)展與商業(yè)化前景. 遺傳, 2011, 33(5): 494–503]
Zhang DL, Yu DH. Cloning and prokaryotic expression of Cathelicidin gene from Japanese Eel I,. Biotechnology Bulletin,2015, 31(7): 124–131 [張東玲, 喻達(dá)輝. 日本鰻鱺I型Cathelicidin基因的克隆與原核表達(dá). 生物技術(shù)通報(bào), 2015, 31(7): 124–131]
Zhang XJ, Zhang XY, Zhang N,. Distinctive structural hallmarks and biological activities of the multiple cathelicidin antimicrobial peptides in a primitive teleost fish. Journal of Immunology, 2015, 194(10): 4974–4987
(編輯 陳嚴(yán))
Functional Analysis of the Immune-Induced Promoter of the Rainbow TroutGene
ZHAO Zixia1①, XU Jian1, JIANG Yanliang1, BAI Qingli2, JIANG Likun1, CHEN Baohua1, XU Peng1,3
(1. Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141; 2. Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070;3. College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102)
This study aimed to investigate the transcriptional regulation of a teleost antimicrobial peptide. The expression pattern of the rainbow trout() gene was analyzed by quantitative real-time PCR (qRT-PCR).was expressed in tissues closely related to immune defense, including the gill and head kidney, and expression significantly increased after both bacterial and viral infections. Promoter and transcription factor binding sites were analyzed for the upstream regulatory sequence ofgene. The predicted promoter contained characteristic eukaryotic TATA and CAAT boxes, as well as multiple binding sites for immune-related transcription factors, including two candidate binding sites for nuclear factor kappa B (NFκB) on the positive strand of the core promoter. Inkidney cell lines, transcription of both green fluorescent protein and firefly luciferase genes was initiated by the predictedpromoter. Both the bacterial mimetic lipopolysaccharide and the viral mimetic polyinosinic polycytidylic acid up-regulated promoter activity. As shown in the dual luciferase reporter assay, promoter activity was enhanced by co-expression of the transcription factor NFκB, indicating thatis regulated by the NFκB pathway. These results suggest that expression of the rainbow troutgene could be induced by different immune stimuli, and its promoter might serve as an immune-inducible transgenic element. Thepromoter may initiate the transcription of heterologous immune genes against exogenous infection in a proper expression pattern, avoiding excessive transcription under unnecessary conditions; therefore, it has potential for genetic engineering approaches in the breeding of disease-resistant fish.
Rainbow trout; Antimicrobial peptide;; Promoter; Transcription regulation
ZHAO Zixia. E-mail: zhaozx@cafs.ac.cn
10.19663/j.issn2095-9869.20170614001
Q812, S917.4
A
2095-9869(2018)04-0037-09
* 國(guó)家科技支撐計(jì)劃項(xiàng)目(2015BAD25B01)和中國(guó)水產(chǎn)科學(xué)研究院基本科研業(yè)務(wù)費(fèi)專項(xiàng)(2015C007)共同資助 [This work was supported by the National Science and Technology Pillar Program (2015BAD25B01), and Central Public-interest Scientific Institution Basal Research Fund, CAFS (2015C007)]
趙紫霞, E-mail: zhaozx@cafs.ac.cn
2017-06-14,
2017-07-07
趙紫霞, 許建, 江炎亮, 白慶利, 蔣立坤, 陳葆華, 徐鵬. 虹鱒免疫誘導(dǎo)型基因啟動(dòng)子功能分析. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(4): 37–45
Zhao ZX, Xu J, Jiang YL, Bai QL, Jiang LK, Chen BH, Xu P. Functional analysis of the immune-induced promoter of the rainbow troutgene. Progress in Fishery Sciences, 2018, 39(4): 37–45