劉 慧 李應(yīng)東 張鳳枰 劉耀敏
?
微波–干灰化混合消解和原子熒光光度法測定魚粉中總砷*
劉 慧1,2李應(yīng)東3張鳳枰1,2①劉耀敏1,2
(1. 四川威爾檢測技術(shù)股份有限公司 成都 610041;2. 通威股份有限公司 水產(chǎn)畜禽營養(yǎng)與健康養(yǎng)殖農(nóng)業(yè)農(nóng)村部重點(diǎn)實(shí)驗(yàn)室 成都 610041;3. 通威股份有限公司昆明分公司 昆明 650217)
采用微波–干灰化混合消解法進(jìn)行前處理,原子熒光光度法測定魚粉中的總砷含量。結(jié)果顯示,樣品經(jīng)微波消解、干灰化、原子熒光分光光度法分析,加標(biāo)回收率為96.8%~103.6%,相對標(biāo)準(zhǔn)偏差為2.4%,檢出限為0.1 μg/L;采用CNAS能力驗(yàn)證魚粉樣品,微波–干灰化混合消解法總砷測定結(jié)果與中位值一致。研究表明,微波–干灰化混合消解法能減少前處理過程中砷(As)因高溫或消解不完全導(dǎo)致的損失,使魚粉中的各種形態(tài)的As完全轉(zhuǎn)化為無機(jī)砷離子,方法重現(xiàn)性好、準(zhǔn)確可靠,是測定魚粉中的總砷含量理想的前處理方法,也可以用于砷形態(tài)比較復(fù)雜的食品、飼料等樣品中總砷的測定。
微波–干灰化混合消解;原子熒光光度法;總砷;魚粉
魚粉含有大量的蛋白質(zhì)和鈣(Ca)、磷(P)等礦物質(zhì),能促進(jìn)動(dòng)物生長發(fā)育,是最好的動(dòng)物飼料原料 (王丹紅等, 2004)。砷(As)是動(dòng)物生長的必需元素之一,當(dāng)缺乏 As元素時(shí),可導(dǎo)致動(dòng)物心肌和骨骼肌纖維萎縮、生長滯緩、懷孕率低、自發(fā)流產(chǎn)較多、死亡率較高等(賈濤, 2013; 唐志華, 2003)。但As也是一種蓄積性有害元素,當(dāng)其在體內(nèi)蓄積量超過一定限量,就會(huì)產(chǎn)生毒性作用,會(huì)對動(dòng)物的心肌、呼吸、生殖和免疫系統(tǒng)造成損傷(康家琦等, 2004),甚至?xí)斐苫蛲蛔?、DNA甲基化改變、誘發(fā)癌癥等(Hughes, 2002)。人類社會(huì)生產(chǎn)活動(dòng)產(chǎn)生的工業(yè)廢水、生活污水,風(fēng)化和生物活動(dòng)等自然過程使環(huán)境中 As 含量升高(楊婉玲等, 2013; 朱參勝等, 2009),魚類體中的As含量也隨之升高(Tisler, 2002),造成魚粉原料中As超標(biāo),直接導(dǎo)致飼料As超標(biāo),給人類食品安全帶來不利影響,從而威脅人類健康(康家琦等,2004; 朱參勝等,2009; 白愛梅等, 2007)。因此,對魚粉中As含量的準(zhǔn)確測定是非常重要的。樣品中總砷含量的檢測結(jié)果準(zhǔn)確與否,取決于前處理過程能否將樣品中不同形態(tài)的As完全轉(zhuǎn)化為砷離子,且前處理過程中As的損失量較少。目前,測定總砷的前處理方法主要有干灰化法、微波消解法和濕法消解法(宋洪強(qiáng)等, 2010; 安建博等, 2015; 王錕等, 2010; Nishimura, 2010)。干灰化法碳化階段樣品易起泡、飛濺,灰化過程中,As易因高溫?fù)p失,導(dǎo)致檢測結(jié)果偏低(宋洪強(qiáng)等, 2010);微波消解法受到酸種類、酸用量和最高溫度的限制,對As形態(tài)較為復(fù)雜的樣品,不能將樣品中不同形態(tài)的As完全轉(zhuǎn)化為砷離子,造成結(jié)果偏低(宋洪強(qiáng)等, 2010;傅余強(qiáng)等, 2010);濕法消解法一般采用硝酸–高氯酸–硫酸體系,若消解溫度低于300℃,無法將樣品中的As完全消解轉(zhuǎn)化為砷離子,這種方法通常需要放置過夜,耗費(fèi)時(shí)間較長,且該方法酸用量大,耗費(fèi)試劑多,危險(xiǎn)性較大,并在消解時(shí)需隨時(shí)觀察試劑的量值和避免碳化(宋洪強(qiáng)等, 2010)。本研究采用微波消解和干灰化法聯(lián)用,即微波–干灰化混合消解法(以下簡稱混合消解法),旨在克服干灰化法、微波消解法和濕法消解法3種前處理方法的缺點(diǎn),研究建立適合魚粉總砷含量測定的前處理方法,為魚粉的質(zhì)量控制提供技術(shù)支持。
1.1.1 儀器 AFS-9130原子熒光光度計(jì),AFS-9x (Version6.20) 數(shù)據(jù)處理軟件(北京吉天儀器有限公司);砷空心陰極燈(北京有色金屬研究總院);ETHOS I 微波消解儀(意大利Milestone公司);CP224S 電子分析天平(德國Sartorius公司);恒溫水浴鍋,萬用電爐(北京中興偉業(yè)儀器有限公司);箱式電阻爐(沈陽市節(jié)能電爐廠)。
所有玻璃器皿均在20%的稀硝酸中浸泡24 h后使用。
1.1.2 試劑 砷單元素溶液標(biāo)準(zhǔn)物質(zhì),1000 mg/L,編號為GBW08611(中國計(jì)量科學(xué)研究院);鹽酸,原子熒光純(成都科龍化工試劑廠);30%過氧化氫,優(yōu)級純(成都科龍化工試劑廠);硝酸,優(yōu)級純(國藥集團(tuán)化學(xué)試劑有限公司);硝酸鎂、硼氫化鉀、氫氧化鉀和硫脲,均為分析純(國藥集團(tuán)化學(xué)試劑有限公司);水為Milli-Q Gradient去離子水(電阻超過18 MΩ);高純氬氣(純度大于99.99 %)。
1.1.3 樣品 1、2、3號國產(chǎn)魚粉樣品于當(dāng)?shù)厥袌鲑徺I;CNAS T0508魚粉和T0744魚粉能力驗(yàn)證樣品(山東出入境檢驗(yàn)檢疫局檢驗(yàn)檢疫技術(shù)中心)。
1.2.1 樣品前處理
1.2.1.1 干灰化 稱取試樣2~3 g于50 ml瓷坩堝中,加入5 ml 150 g/L Mg(NO3)2,混勻,于低溫蒸干,碳化至無煙后,轉(zhuǎn)入高溫爐550℃,恒溫灰化3.5 h,取出冷卻,緩慢加入10 ml 6 mol/L HCl溶液,待激烈反應(yīng)后,煮沸并轉(zhuǎn)移至50 ml 容量瓶中,向容量瓶中加入2.5 ml 50 g/L硫脲溶液,用去離子水洗滌坩堝3~5次,洗液一并轉(zhuǎn)入容量瓶中,用去離子水定容,搖勻,待測(國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局等, 2006)。同時(shí),做試劑空白。
1.2.1.2 微波消解 稱取試樣0.3~0.5 g于消解罐中,加入6 ml HNO3,2 ml 30%H2O2,蓋好消解罐的安全閥,并放入微波爐消解系統(tǒng)中,設(shè)定升溫程序,20 min升溫至180℃,保溫20 min,冷卻至室溫,取出于電熱板上趕酸,冷卻后轉(zhuǎn)移至容量瓶,向容量瓶中加入2.5 ml 50 g/L硫脲溶液,定容,搖勻,待測(王錕等, 2010)。同時(shí),做試劑空白。
1.2.1.3 微波–干灰化混合消解 稱取試樣0.3~ 0.5 g于消解罐中,步驟同1.2.1.2,消解程序完成后,冷卻至常溫,用去離子水轉(zhuǎn)移至25 ml容量瓶中,定容,混勻備用。準(zhǔn)確移取10 ml消解液于50 ml瓷坩堝中,加入5 ml 150 g/L Mg(NO3)2,混勻,于沸水浴中蒸干,低溫碳化至無煙,然后轉(zhuǎn)入高溫爐550℃,恒溫灰化3.5 h。取出冷卻后,步驟同1.2.1.1。同時(shí),做試劑空白。
1.2.2 儀器工作條件 AFS-9130 原子熒光光度計(jì)測定As的儀器工作條件:負(fù)高壓207 V,燈電流65 mA,原子化器溫度200℃,原子化器高度8 mm,載氣流量400 ml/min,屏蔽氣流量800 ml/min,讀數(shù)時(shí)間7 s,延遲時(shí)間1.5 s。
1.2.3 校正曲線及樣品分析 用5% HCl配制最高濃度為50.00 μg/L的標(biāo)準(zhǔn)溶液,測量時(shí),儀器自動(dòng)配制5.00、10.00、20.00、30.00、50.00 μg/L As標(biāo)準(zhǔn)系列,標(biāo)準(zhǔn)曲線相關(guān)系數(shù)為0.9995以上。在相同條件下測定樣品,從校正曲線上求得樣品中總砷的含量。
3個(gè)國產(chǎn)魚粉樣品分別用干灰化法、微波消解法、混合消解法處理,氫化物–原子熒光分光光度法測定其總砷含量,結(jié)果見表1。從表1可以看出,與混合消解法相比,干灰化法處理的魚粉中總砷的檢測結(jié)果偏低50%左右,微波消解法偏低90%以上。這可能是由于干灰化法的碳化階段樣品起泡、飛濺,液態(tài)Mg(NO3)2與固態(tài)樣品不能充分反應(yīng),未能與樣品中的As完全反應(yīng),生成不揮發(fā)的焦砷酸鎂,從而使大量的As在550℃的高溫灰化階段揮發(fā)損失,導(dǎo)致結(jié)果偏低。微波消解法的溫度較低,不超過200℃,這僅將樣品消解為溶液狀態(tài),不能將魚粉中的有機(jī)砷如二甲基胂、三甲基胂、砷糖等消解為砷離子(李朝霞等, 2011; 劉敏敏等, 2013; 戚平等, 2011),且在硝酸氧化體系中,消解溫度須達(dá)300℃才能將有機(jī)砷完全轉(zhuǎn)為五價(jià)砷離子(宋洪強(qiáng)等, 2010),因此,微波消解法不適合As形態(tài)比較復(fù)雜樣品中總砷的測定。而混合消解法很好地克服前2種方法的缺點(diǎn),魚粉經(jīng)微波消解后呈液態(tài),再加入Mg(NO3)2溶液,液–液反應(yīng)更完全,在灰化階段Mg(NO3)2能與As完全反應(yīng)生成焦砷酸鎂而被固定住,大大減少了As的揮發(fā),降低了As的損失。
表1 干灰化法、微波消解法和混合消解魚粉總砷測定結(jié)果
Tab.1 The amount of total arsenic in fishmeal determined by dry-ashing, microwave digestion and microwave-dry ashing mixed digestion (mg/kg)
對3個(gè)國產(chǎn)魚粉進(jìn)行了混合消解法精密度研究,結(jié)果見表2。從表2可以看出,3個(gè)國產(chǎn)魚粉樣品中總砷的檢測結(jié)果相對標(biāo)準(zhǔn)偏差(RSD)均小于2%,說明該方法重現(xiàn)性好。
對CNAS T0508魚粉和T0744魚粉進(jìn)行加標(biāo),采用混合消解法進(jìn)行消解,以能力驗(yàn)證魚粉樣品總砷含量中位值計(jì)算方法回收率,結(jié)果見表3。從表3可以看出,采用微波–干灰化混合消解法處理魚粉樣品,總砷回收率為96.8%~103.6%,平均回收率為99.8%,相對標(biāo)準(zhǔn)偏差為2.4%,由此可見,該方法能較準(zhǔn)確測定魚粉中的總砷含量。
表2 精密度實(shí)驗(yàn)結(jié)果
Tab.2 The results for the method precision
表3 回收率實(shí)驗(yàn)結(jié)果
Tab.3 The results for recovery
對CNAS T0508魚粉和T0744魚粉采用混合消解法處理,總砷檢測結(jié)果見表4。從表4可以看出,混合消解法測定的總砷含量與能力驗(yàn)證報(bào)告中位值基本一致,相對偏差小于1%,而干灰化和微波消解的魚粉總砷含量與中位值的相對偏差約達(dá)45%和95%。因此,混合消解法較干灰化和微波消解法而言,能更準(zhǔn)確地測出魚粉中總砷的含量。
在線性范圍0 ~50 μg/L內(nèi),As的相關(guān)系數(shù)良好,2=0.9996,對樣品空白溶液連續(xù)進(jìn)行11次熒光強(qiáng)度測定,以3倍空白的標(biāo)準(zhǔn)偏差除以標(biāo)準(zhǔn)曲線的斜率求出檢出限為0.1 μg/L。
表4 CNAS T0508和T0744魚粉樣品干灰化、微波消解和混合消解法測定結(jié)果
Tab.4 The determination result of CNAS T0508 and T0744 fishmeal by dry-ashing, microwave digestion and mixed digestion
分別采用干灰化、微波消解和微波–干灰化混合消解法對3個(gè)國產(chǎn)魚粉樣品、2個(gè)CNAS能力驗(yàn)證魚粉樣品進(jìn)行前處理,利用氫化物–原子熒光分光光度法測定總砷含量,微波–干灰化消解法克服了干灰化易損失、微波消解不能使有機(jī)砷轉(zhuǎn)化為砷離子的缺點(diǎn),能減少前處理過程中As因高溫或消解不完全導(dǎo)致的損失,使魚粉中各種形態(tài)的As完全轉(zhuǎn)化為無機(jī)砷離子。該方法靈敏、準(zhǔn)確、重現(xiàn)性好,與常用的微波消解、干灰化消解和濕法消解3種消解方式相比較,不僅能將魚粉中的As完全轉(zhuǎn)化為無機(jī)砷離子,而且比濕法消解節(jié)省了約20 ml濃酸的用量,避免了消解過夜,節(jié)省至少約5 h的前處理時(shí)間,更加環(huán)保、安全,是測定魚粉中的總砷含量理想的前處理方法,也可以用于As形態(tài)比較復(fù)雜的樣品中總砷的測定。
An JB, Shen NM, Zhang YW,. The comparison of 3 pretreatment methods for total arsenic determination by with atomic fluorescence spectrometry in food. Chinese Journal of Food Hygiene, 2015, 27(5): 520–524[安建博, 沈訥敏, 張祎瑋, 等. 原子熒光法測定食品中總砷的3種前處理法比較. 中國食品衛(wèi)生雜志, 2015, 27(5): 520–524]
Bai AM, Li Y, Fan ZX. The hazardous effects of arsenic on human health. Studies of Trace Elements and Health, 2007, 24(1): 61–62 [白愛梅, 李躍, 范中學(xué). 砷對人體健康的危害. 微量元素與健康研究, 2007, 24(1): 61–62]
Fu YQ, Wang YT, Xu Q,. The effect of conditions of wet digestion of shrimp meal on determination of total arsenic content. Chinese Journal of Analysis Laboratory, 2010, 29(S1): 435–437 [傅余強(qiáng), 王妍婷, 徐琴, 等. 濕法消解蝦粉的條件對總砷含量測定的影響. 分析試驗(yàn)室, 2010, 29(S1): 435–437]
General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of the People’s Republic of China. Determination of total arsenic in feed(GB/T 13079–2006), 2006 [國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局, 國家標(biāo)準(zhǔn)化管理委員會(huì). 飼料中總砷的測定(GB/T 13079–2006), 2006]
Jia T. Determination of arsenic in fish meal by atomic fluorescence spectrometry. Feed and Husbandry, 2013(3): 36–38[賈濤. 原子熒光法檢測魚粉中砷的含量. 飼料與畜牧, 2013(3): 36–38]
Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 2002, 133(1): 1–16
Kang JQ, Jin YL. Study progress of adverse effects of arsenic on health. Journal of Hygiene Research, 2004, 33(3): 372–375[康家琦, 金銀龍. 砷對健康危害的研究進(jìn)展. 衛(wèi)生研究, 2004, 33(3): 372–375]
Li ZX, Cai HM, Sun WH,. Optimization of digestion method of arsenic in fish meal. Feed Research, 2011(12): 39–42[李朝霞, 才洪美, 孫衛(wèi)華, 等. 魚粉中砷消解方法的優(yōu)化. 飼料研究, 2011(12): 39–42]
Liu MM, Chen Q. Effects of different digestion methods on determination of total arsenic in fish meal by hydride generation atomic fluorescence spectrometry. Chinese Journal of Health Laboratory Technology, 2013, 23(4): 1041–1042[劉敏敏, 陳俏. 不同消化方法對氫化物發(fā)生-原子熒光法測定魚粉中總砷的影響. 中國衛(wèi)生檢驗(yàn)雜志, 2013, 23(4): 1041–1042]
Nishmura T, Hamanonagaoka M, Sakakibara N, e. Determination method for total arsenic and partial-digestion method with nitric acid for inorganic arsenic speciation in several varieties of rice. Journal of Food Hygiene Safety Sciences, 2010, 51(4): 178–181
Qi P, Zeng T. Affection of digestion methods on the determination of As in shrimp by hydride generation atomic fluorescence spectrometry. Studies of Trace Elements and Health, 2011, 28(6): 30–32[戚平, 曾濤. 消解方式對氫化物原子熒光法測定蝦粉中總砷的影響. 微量元素與健康研究, 2011, 28(6): 30–32]
Song HQ, Hao YB, Wu YC,. Comparison of wet, microwave digestion and dry ash pretreatment methods for the determination of total arsenic in seafood by atomic fluorescence spectrometer. Journal of Zhejiang Ocean University (Natural Science), 2010, 29(4): 367–372 [宋洪強(qiáng), 郝云彬, 吳益春, 等. 原子熒光光度法中濕法消解、微波消解、干灰化前處理法測定水產(chǎn)品中總砷含量的比較. 浙江海洋學(xué)院學(xué)報(bào)(自然科學(xué)版), 2010, 29(4): 367– 372]
Tang ZH. Trace element arsenic and health. Guangdong Trace Elements Science, 2003, 10(3): 10–13[唐志華. 微量元素砷與人體健康. 廣東微量元素科學(xué), 2003, 10(3): 10–13]
TislerT, Zagorc-KoncanJ. Acute and chronic toxicity of arsenic to some aquatic organisms. Bulletin of Environmental Contamination and Toxicology, 2002, 69(3): 421–429
Wang DH, Cai CP, Wu W. Monitoring and risk of heavy metals in imported fish meal. Inspection and Quarantine Science , 2004, 14(6): 32–33 [王丹紅, 蔡春平, 吳文, 等. 進(jìn)口魚粉中重金屬的監(jiān)測與風(fēng)險(xiǎn)分析. 檢驗(yàn)檢疫科學(xué), 2004, 14(6): 32–33]
Wang K, Wei XH, Wang KY,. Research on the determination of total arsenic content in shrimp power. Chemical Analysis and Meterage, 2010, 19(2): 42–44[王錕, 衛(wèi)曉紅, 王開宇, 等. 蝦粉中總砷測定方法的探討. 化學(xué)分析計(jì)量, 2010, 19(2): 42–44]
Yang WL, Pang SX, Wang C,. Arsenic concentrations in water, sediment, and aquatic animals from the Pearl River estuaries and its distribution characteristics and ecological risk evaluation. Ecology and Environmental Sciences, 2013, 22(4): 650–656 [楊婉玲, 龐世勛, 王超, 等. 珠江口水、沉積物及生物體As含量分布特征及生態(tài)風(fēng)險(xiǎn)評價(jià). 生態(tài)環(huán)境學(xué)報(bào), 2013, 22(4): 650–656]
Zhu CS, Liang XZ. Arsenic toxicology and its effects on human Health. Journal of Environment Health, 2009, 26(6): 562–563[朱參勝, 梁曉聰. 砷的毒理及其對人體健康的影響. 環(huán)境與健康雜志, 2009, 26(6): 562–563]
(編輯 陳嚴(yán))
Determination of Total Arsenic in Fishmeal Using Microwave-Dry Ashing Mixed Digestion Coupling with Atomic Fluorescence Spectrophotometry
LIU Hui1,2, LI Yingdong3, ZHANG Fengping1,2①, LIU Yaomin1,2
(1. Sichuan Willtest Technology Co. Ltd., Chengdu 610041;2. Key Laboratory of Aquatic, Livestock, Poultry Nutrition and Healthy Culturing, Ministory of Agriculture and Rural Affairs, Tongwei Co. Ltd., Chengdu 610041; 3. Kunming Tongwei Feed Stuff Co. Ltd, Kunming 650217)
Fishmeal is an important animal protein feed that is rich in protein and vitamins and is a major raw material of animal feed. Arsenic is an essential element for animal growth but is also a cumulative toxic element. Arsenic poses a great threat to animals when its concentration exceeds a certain limit. Serious environmental pollution has caused an increase in the level of arsenic in the environment, and thus, the content of arsenic has increased in fish. This can directly affect the quality of fishmeal, with unfavorable effects on food safety. Therefore, it is crucial to accurately determine the content of total arsenic in feed stuffs. The accurate determination of total arsenic in samples depends on pre-treatment methods. At present, the major pre-treatment methods for arsenic include dry-ashing, wet digestion, and microwave digestion, but none of these methods can completely convert the speciation of arsenic to arsenic ion. Dry-ashing leads to the loss of arsenic due to high temperature and spatter. Wet digestion and microwave digestion do not convert complex forms of arsenic to arsenic ion because of temperature, acid type, and dosage. A novel method was established for the quantitative determination of total arsenic in fishmeal by atomic fluorescence spectrophotometry after microwave dry-ashing mixed digestion. Fishmeal was digested in a microwave, ashed, and the arsenic content was detected by atomic fluorescence spectrophotometry. Recovery was in the range 96.8%~103.6%, the relative standard deviation was 2.4%, and the detection limit was 0.1 μg/L. Results of China National Accreditation Service for Conformity Assessment proficiency testing were in accordance with the median. The results indicated that microwave dry-ashing mixed digestion can reduce the loss associated with the high-temperature of ashing and incomplete microwave digestion, and convert different forms arsenic into arsenic ion. This effective, sensitive, and reproducible method can be used to determine total arsenic levels in fishmeal and other complex samples containing arsenic forms.
Microwave-dry ashing mixed digestion; Atomic fluorescence spectrophotometry; Total arsenic; Fishmeal
ZHANG Fengping, E-mail: fengpingzhang@163.com
10.19663/j.issn2095-9869.20170516001
O655.9;TS201.6
A
2095-9869(2018)04-0167-06
* 四川省科技支撐計(jì)劃(2016NZ0068)和四川省青年科技創(chuàng)新研究團(tuán)隊(duì)專項(xiàng)計(jì)劃(2015TD0024)共同資助 [This work was supported by the Technology Research and Development Program of the Department of Science and Technology of Sichuan (2016NZ0068), and Youth Science and Technology Innovation Team Program of Department of Science and Technology of Sichuan(2015TD0024)]. 劉 慧,E-mail: liuh@willtest.cn
張鳳枰,高級工程師,E-mail: fengpingzhang@163.com
2017-05-16,
2017-06-11
劉慧, 李應(yīng)東, 張鳳枰, 劉耀敏. 微波-干灰化混合消解和原子熒光光度法測定魚粉中總砷. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(4): 167–172
Liu H, Li YD, Zhang FP, Liu YM. Determination of total arsenic in fishmeal using Microwave-Dry ashing mixed digestion coupling with atomic fluorescence spectrophotometry. Progress in Fishery Sciences, 2018, 39(4): 167–172