国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Geogebra軟件輔助數(shù)學概念有效學習的研究

2018-08-27 17:27李丹
文理導航 2018年11期
關鍵詞:有效學習數(shù)學概念

【摘 要】Geogebra軟件作為一款集代數(shù)、幾何、概率統(tǒng)計、微積分等內容于一體,源代碼開放可跨多平臺使用的免費數(shù)學軟件,近幾年頗受歡迎,普及率逐年遞增。如此優(yōu)秀的一款軟件如何在數(shù)學概念學習的各個環(huán)節(jié)中實施有效的輔助,從而促進數(shù)學概念的有效學習,本文結合具體實例進行探討。

【關鍵詞】 Geogebra軟件;數(shù)學概念;有效學習

一、Geogebra軟件的特點與優(yōu)勢

Geogebra軟件自2001年由設計者開發(fā)至今,經(jīng)過了十多年的發(fā)展已在世界上獲得了無數(shù)各類獎項,從問世開始一直堅持開源免費的發(fā)展思想,正是這種互聯(lián)網(wǎng)共享的開發(fā)模式不但吸引數(shù)學軟件界的精英加入研發(fā)團隊,也使世界各地的學習者對其發(fā)展都積極貢獻自己的綿薄之力。對眾多語言的支持和多平臺的融合與兼容,也為軟件的更快推廣提供了技術保障。相對于幾何畫板、超級畫板等數(shù)學軟件,Geogebra不但界面友好易于初學者入手,同時能夠完成的數(shù)學功能也非常豐富,而且版本更新與完善的升級速度特別快,也適于高手的創(chuàng)造性學習。目前Geogebra不但有pc版、在線版還最新開發(fā)了平板版與手機版,更利于在信息化的課堂教學與學習中發(fā)揮技術優(yōu)勢,更加多元的進行有效輔助。

二、數(shù)學概念有效學習的涵義

在概念的學習過程中,深刻體會概念產(chǎn)生的背景,獲得對概念的本質的認識,領悟概念內涵的意義與概念外延的拓展,形成明確的概念表象并通過概念的應用更進一步的理解并深化認識,與已有概念建立恰當而準確的聯(lián)系環(huán)環(huán)相扣、層層深入,從而形成條理清晰邏輯明確的概念結構,繼而達到對數(shù)學概念的有效學習。

三、Geogebra軟件如何在數(shù)學概念有效學習的各個環(huán)節(jié)中輔助

1.豐富概念的引入

引入是概念學習的重要環(huán)節(jié),合情合理的動態(tài)情景可以幫助學習者體會概念生成的過程及相關背景,理解概念生成的必要性從而心悅誠服地接受并認同。在圓錐曲線的引入中,如何讓學習者理解幾種圓錐曲線是由一個平面截圓錐得到的,并非易事僅僅依靠一成不變的靜態(tài)呈現(xiàn)也許不能很好的為學習者答疑解惑。利用Geogebra的3D繪圖功能便能恰當?shù)慕鉀Q這種動態(tài)呈現(xiàn)的迫切需要,可以快速的繪制圓錐并通過命令欄輸入命令語句建立平面和平面的運動軌跡,再通過滑動條的拖動使平面與圓錐的相交曲線實時變化,讓學習者充分的領悟截面形成圓、橢圓、雙曲線、拋物線所滿足的不同條件,使概念的學習生機盎然。

2.體驗概念的形成

概念的形成是學習者通過自身的直觀感覺或者某方面的知覺,感受概念表象的基礎上多重整合,從而進一步的分析、整理、篩選、提煉出概念的本質為抽象概括奠定一定的認知基礎。利用祖暅原理的重要方法對球的體積公式的推理過程教材中是以閱讀材料的方式給出的,雖未要求掌握但不少學習者還是很有興趣深入理解并探索的,運用傳統(tǒng)教學方式的嚴謹演繹推導未嘗不可,滿足科學性卻相對耗時耗力,顯然想尋求更合理的處理方式。利用Geogebra的度量功能就可以比較快速的完成驗證,同時Geogebra強大的3D作圖功能也使圖形唾手可得毫不費時費力,為此類探究性問題提供了一種務實、高效的解決途徑。

3.啟發(fā)概念的概括

概念的概括是通過對表象的分析理解從一類具有諸多相同屬性的對象中抽象概括出其本質屬性,并能借助升華后的思維模式與方法將其適時的運用到屬性相同的對象中去。函數(shù)導數(shù)的概念在高中階段是由其幾何意義出發(fā)引出的,由于其抽象程度較高有別于高中階段大多的概念定義形式而難于概括,其出發(fā)的是割線斜率為函數(shù)值的平均變化率,切線斜率即函數(shù)的瞬時變化率即為函數(shù)的導數(shù),利用Geogebra軟件的恰當設計可以將這一過程,連續(xù)而動態(tài)的表現(xiàn)出來,數(shù)與形的同步變化也會促進學習者對概念形式的直觀猜想與歸納,從而衍生出更貼切的形式化概括。平面向量基本定理是向量體系的基礎,對向量的后繼學習意義非凡但究其形式也相對不易提煉,其中涉及的數(shù)量與向量的計量與運算也較繁雜,借助Geogebra強大的計算功能將其中的狀態(tài)對應形式準確量化,親身體驗變化中的不變與規(guī)律,在Geogebra輔助下完成對定理文字敘述的準確提煉,并自主發(fā)現(xiàn)其特殊情況與約束條件達到深入的理解概括。

4.深化概念的理解

概念的理解是結合一些適合的具體實例與變式,使學習者對概念所蘊含的多層次意義與所能展開的多角度延伸,聯(lián)系相應的表示形式與直觀圖像形成具體的、動態(tài)的、邏輯條理清晰的概念意象。在現(xiàn)行的高中階段教材中,對定積分的要求是結合具體的連續(xù)函數(shù),由求解相關曲邊梯形的面積和的極限為出發(fā)點,期望學習者理解定積分的概念。這類復雜度高略顯抽象且敘述起來較為冗長,出錯率高計算量大的概念學習容易流于形式不易深入。借助Geogebra學習者可以自己動手將曲邊梯形任意分割成n個部分,求在一個區(qū)間范圍內的積分上和與相應的積分下和比較,體會從兩個方向無限接近于定積分的一個動態(tài)變化及無限趨近的極限思想。整個過程中避免運算錯誤及繁雜化簡帶來的厭倦感,為概念本質與核心的深入理解掃清了障礙,Geogebra軟件的技術支持使定積分的概念更加易于被學習者深入的理解,也為學習者大學階段對微積分的進一步探索提供了可借鑒的平臺,這種支持是可以延續(xù)且終身受益的寶貴財富。

5.探索概念的應用

將概念運用到千變萬化的問題情境中,并在具體環(huán)境中提煉甄別反饋,在靈活變通的各類問題中追根溯源形成對概念的再認識,提升概念的理解水平尋找與已有知識與經(jīng)驗千絲萬縷的聯(lián)系,鞏固理解同時創(chuàng)造性的運用概念探索解決問題的新途徑。如探究圓周率的近似值,古往今來在數(shù)學發(fā)展的任何階段都是數(shù)學家嘔心瀝血孜孜以求的一個重要問題,也是弘揚數(shù)學文化價值的一個優(yōu)秀案例,是概率的定義與定積分概念靈活運用的典例。因其難于省時而準確的模擬問題情境,在高中階段的教學中實現(xiàn)適時滲透絕非易事,借助技術優(yōu)勢便可解決這一矛盾。利用Geogebra可以輕松實現(xiàn)大量重復試驗的隨機模擬與定積分的逼近求和,如可借助幾何概率模型模擬在正方形與其內切圓中撒豆子的實驗,體驗概率意義下的簡單估計方法。又如可用Geogebra體會祖沖之割圓術中的夾逼思想,結合曲邊梯形的積分上下和構造這一趨勢形成對割圓術所蘊含的豐富思想的深刻領悟與啟示,讓學習者充分體驗與探究,使他們在對概念的科學探索中不斷進步。

6.建構概念的結構

要達到對概念結構的有效建構,需要將新概念與已有知識建立起廣泛而深入的聯(lián)系,既要理清他們的關系也要明確他們之間的區(qū)別,從不同的角度進行深入分析,從不同的方向進行廣泛的整合,使概念在頭腦中的表征更加明了,從而有機而高效的整合形成新的概念結構和更完備的知識體系。高中階段對圓錐曲線的學習是對橢圓、雙曲線、拋物線三種圓錐曲線分別深入探討后尋求他們的統(tǒng)一定義與共同性質的建構。圓錐曲線統(tǒng)一定義的具體實施與學習的過程卻并不輕松,甚至有些學習者理解起來也是困難重重,借助Geogebra操作恰當?shù)姆诸惻c整合、自主探索、小組合作、資源共享設計適合學習者的操作流程,可以輔助學習者尋找相互關系,全方位多視角的建構知識之間的聯(lián)系,完善知識體系。

四、研究的展望

本文主要探討Geogebra軟件在數(shù)學概念學習的各個環(huán)節(jié)中如何有效的輔助,Geogebra軟件在解題的學習等其他形式的教與學過程中如何更好地發(fā)揮技術優(yōu)勢,還有待進一步研究,同時Geogebra軟件的平板版和手機版的廣泛應用,也必將改變技術參與學習的傳統(tǒng)形式,相信在不久的將來,技術的輔助以傳統(tǒng)的學習形式會更加相得益彰。

【參考文獻】

[1]李丹.Geogebra軟件輔助數(shù)學概念理解性學習的研究[D].福州:福建師范大學,2014

猜你喜歡
有效學習數(shù)學概念
三教三探 尋根究底
在“破”與“立”中,加深概念理解
數(shù)學概念的分類、特征及其教學探討
高中數(shù)學概念的教學方法探討
運用體驗式教學方式,實現(xiàn)對數(shù)學知識的有效學習
高中文綜學科學習方法的中學生視角分析
淺談如何上好小學信息技術課
高中數(shù)學概念教學體會
小學數(shù)學課堂中小組有效學習的研究
基于學生心理的數(shù)學概念教學探析
湘潭县| 章丘市| 卓尼县| 平顺县| 木兰县| 朝阳市| 石嘴山市| 莫力| 陇南市| 那坡县| 莎车县| 浦城县| 商洛市| 无棣县| 南投市| 凤城市| 光山县| 叶城县| 织金县| 湟中县| 静海县| 玉树县| 邻水| 枝江市| 诏安县| 泊头市| 清河县| 得荣县| 繁昌县| 鹿泉市| 卢氏县| 大悟县| 聂拉木县| 金乡县| 托克托县| 大渡口区| 关岭| 侯马市| 凉城县| 通辽市| 玉树县|