李書(shū)壇 黃純蘭
[摘要] 目的 研究BMP-2聯(lián)合人骨髓間充質(zhì)干細(xì)胞(MSC)造血干細(xì)胞(HSC)體外增殖的影響。 方法 培養(yǎng)MSC至第三代,磁珠分選儀分選HSC,并用流式細(xì)胞術(shù)鑒定MSC與HSC。將獲得的MSC與HSC利用Transwell非接觸共培養(yǎng),100 ng/mL的骨形態(tài)發(fā)生蛋白(BMP-2)干預(yù),即實(shí)驗(yàn)分四組:HSC組、HSC+BMP2組、HSC+MSC組、HSC+MSC+BMP2組。培養(yǎng)3 d后比較不同培養(yǎng)條件下HSC計(jì)數(shù)、RNA濃度的不同,并通過(guò)實(shí)時(shí)熒光定量PCR法及免疫熒光方法檢測(cè)HSC的Ki67的mRNA及蛋白的表達(dá)。 結(jié)果 HSC的計(jì)數(shù)、總RNA含量、Ki67的表達(dá)在HSC+BMP2組高于HSC組、HSC+MSC組高于HSC組、HSC+MSC+BMP2組高于HSC+MSC組(P < 0.05)。 結(jié)論 MSC協(xié)同BMP-2蛋白可促進(jìn)HSC的增殖。
[關(guān)鍵詞] 造血干細(xì)胞;間充質(zhì)干細(xì)胞;BMP-2;增殖
[中圖分類(lèi)號(hào)] R331.2 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2018)04(c)-0004-05
The effect of bone marrow mesenchymal stem cell synergistic BMP-2 in the proliferation of hematopoietic stem cell
LI Shutan HUANG Chunlan
Department of Hematology, the Affiliated Hospital of Southwestern Medical University, Sichuan Province, Luzhou 646000, China
[Abstract] Objective To explore the proliferation effect of bone morphogenetic protein (BMP)-2 on hematopoietic stem cell (HSC) cocultured with mesenchymal stem cell (MSC). Methods MSCs were expanded to the third passage (P3) in the plastic dish; CD34+ cells were sorted by MACS Miltenyi Biotec. MSCs(P3) and HSCs were identified by FCM separately, and then MSC (P3) and HSC were co-cultured in the Transwell interfered with BMP-2 protein, four groups in the study: HSC group, HSC+BMP2 group, HSC+MSC group, HSC+MSC+BMP2 group. Cells were collected after 3 d to test HSC proliferation using the following methods:counting of the number, detecting of the total RNA, the mRNA and protein expression of Ki67 were detected by fluorescence qRT-PCR and immunofluorescence methods. Results The number of HSC, totel RNA, Ki67 expression of the HSC+BMP2 group was higher than HSC group, HSC+MSC group was higher than HSC group, HSC+MSC+BMP2 group was higher than HSC+MSC group (P < 0.05). Conclusion MSCs synergistic with BMP-2 can enhance MSC proliferation effect on HSC.
[Key words] Hematopoietic stem cell; Mesenchymal stem cell; BMP-2; Proliferation
造血干細(xì)胞(hematopoietie stem cells,HSC)自我更新及多向分化等生理過(guò)程都離不開(kāi)其生存的微環(huán)境增殖。骨髓基質(zhì)細(xì)胞及其前體間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)以及它分泌的黏附分子、細(xì)胞因子和細(xì)胞外基質(zhì)形成復(fù)雜的信號(hào)網(wǎng)絡(luò),它們共同構(gòu)成的微環(huán)境即微龕“niche”調(diào)控著HSC的增殖等。從微環(huán)境的角度研究MSC對(duì)HSC的增殖作用及其機(jī)制是當(dāng)前的研究熱點(diǎn)[1-3]。BMP-2蛋白是多功能蛋白,可直接參與造血的調(diào)控,對(duì)造血表現(xiàn)出抑制、促進(jìn)[4-5]等作用,此外BMP-2能促進(jìn)新骨的形成,同時(shí)新生出血管。已有大量研究證實(shí)MSC對(duì)HSC具有增殖作用[6],其依賴(lài)于細(xì)胞直接接觸間的相互作用、分泌的細(xì)胞外基質(zhì)和細(xì)胞因子[7-8],且接觸比非接觸共培養(yǎng)具有更強(qiáng)的擴(kuò)增作用[9]。本研究利用Transwel的上室底部網(wǎng)板微孔直徑僅0.4 μm,使得上室的HSC不能進(jìn)入下室,排除了細(xì)胞間直接接觸對(duì)HSC增殖的影響,但細(xì)胞分泌的細(xì)胞因子可以通過(guò)該微孔,利于探討這種作用可能是通過(guò)MSC分泌的細(xì)胞因子促進(jìn)了HSC的增殖。
1 材料與方法
1.1 主要試劑與儀器
LG-DMEM培養(yǎng)基、胎牛血清、0.25%胰蛋白酶(美國(guó)Gibco公司);鼠抗人ECD-CD34、PEcy7-CD45、FITC-CD105、IgG抗體(美國(guó)Pharminge公司);鼠抗人FITC-Ki67抗體(上海雷浩信息科技有限公司);干細(xì)胞因子(stem cell factor,SCF)、白介素-3(interleukin-3,IL-3)(美國(guó)Peprotech公司);重組人骨形態(tài)發(fā)生蛋白-2(recombinant human bone morphogenetic protein-2,rhBMP-2)(RD公司);流式細(xì)胞儀(美國(guó)BECKMAN公司),Mini MACS免疫磁性吸附柱分離裝置和CD34+細(xì)胞選擇試劑盒(德國(guó)Mitenyi Biotec公司);反轉(zhuǎn)錄試劑盒(日本TOYOBO公司),PCR試劑盒(德國(guó)QIAGEN公司);Trizol試劑盒(美國(guó)Invitrogen公司);引物:β-actin上游AGAGATGGCCACGGCTGCTT,下游ATTTGCGGTGGACGTGGAG,Ki67上游CAAGCCACA?鄄GTCCAAGAGAA,下游GTGTCCATAGCTTTCCCTAC?鄄TG(上海生工生物工程股份有限公司);Transwell小室(美國(guó)Costar公司);PCR儀(羅氏公司);熒光顯微鏡(羅氏公司)等。
1.2 方法
1.2.1 間充質(zhì)干細(xì)胞的培養(yǎng)和鑒定
取年齡20~45歲健康正常人髂骨骨髓液(經(jīng)醫(yī)院倫理委員會(huì)批準(zhǔn)及取得供者知情同意),與完全培養(yǎng)基按體積比為1∶4混合后于37℃、5%CO2孵箱中培養(yǎng)(完全培養(yǎng)基成分為89%LD-DMEM+10%胎牛血清+1%青-鏈霉素)。3 d換液1次,細(xì)胞融合達(dá)80%用0.25%胰蛋白酶消化1∶2傳代,傳至第三代(P3)備用,流式檢測(cè)MSC表面抗原CD105、CD34-ECD及CD45。
1.2.2 CD34+細(xì)胞的分選及純度鑒定
用Ficoll分選骨髓液中單個(gè)核細(xì)胞,根據(jù)miniMACS免疫磁性吸附柱分離裝置,用CD34+細(xì)胞選擇試劑盒按照其說(shuō)明進(jìn)行CD34+細(xì)胞的分離。流式檢測(cè)所分選細(xì)胞的純度。
1.2.3 共培養(yǎng)
實(shí)驗(yàn)分四組,HSC組:HSC單獨(dú)培養(yǎng),HSC+BMP2組:HSC添加BMP-2蛋白,HSC+MSC組:HSC種于Transwell上室、MSC種于下室,HSC+MSC+BMP2組:共培養(yǎng)并添加BMP-2,每組4復(fù)孔。CD34+細(xì)胞1.0×105個(gè)/孔,MSC 3.0×106個(gè)/孔,rhBMP-2濃度為100 ng/mL,每孔總體積700 μL(89%IMDM+10%胎牛血清+1%青-鏈霉素,IL-3濃度10 ng/mL、SCF50 ng/mL)。重復(fù)3次。
1.2.4 檢測(cè)HSC的增殖情況
培養(yǎng)72 h后收集HSC,流式細(xì)胞儀檢測(cè)HSC的表面抗原CD34的表達(dá)情況;計(jì)數(shù)板計(jì)數(shù)造血干細(xì)胞的數(shù)目,Trizol法提取HSC的RNA并用紫外線(xiàn)分光光度儀測(cè)其濃度,實(shí)時(shí)熒光定量PCR法檢測(cè)其Ki67 mRNA的表達(dá);細(xì)胞經(jīng)多聚甲醛固定,破膜,封閉,F(xiàn)ITC標(biāo)記的Ki67抗體孵育,洗滌等處理后,熒光顯微鏡觀(guān)察Ki67在細(xì)胞核內(nèi)的表達(dá)。重復(fù)3次。
1.3 統(tǒng)計(jì)學(xué)方法
采用SPSS 17.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用單因素方差分析,組間兩兩比較采用LSD檢驗(yàn);以P < 0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 分選出的細(xì)胞的生物學(xué)鑒定
2.1.1 間充質(zhì)干細(xì)胞
2.1.1.1 原代培養(yǎng)72 h可見(jiàn)散在的梭形貼壁細(xì)胞,第14天細(xì)胞融合度可達(dá)80%~90%,排列成放射狀、漩渦轉(zhuǎn)。P3代細(xì)胞在24 h內(nèi)大多能貼壁。見(jiàn)圖1。
2.1.1.2 流式鑒定第三代MSC的CDl05、CD34、CD45表達(dá),MSC表達(dá)非造血相關(guān)免疫標(biāo)記CDl05,不表達(dá)造血相關(guān)免疫標(biāo)記CD34、CD45。見(jiàn)圖2。
2.1.2 造血干細(xì)胞
經(jīng)磁珠分選后的CD34+細(xì)胞呈大小均一的小圓形,經(jīng)胎盤(pán)蘭染色后98%細(xì)胞拒染。流式細(xì)胞儀檢測(cè)經(jīng)磁珠分選后的CD34+細(xì)胞的純度為86.3%。
2.2 共培養(yǎng)第3天各組HSC的免疫表型
共培養(yǎng)3 d收集各組HSC,流式檢測(cè)其表面抗原CD34的表達(dá),各組HSC仍高表達(dá)CD34,均高于80%。見(jiàn)圖3。
2.3 共培養(yǎng)第3天各組HSC的增殖比較
2.3.1 細(xì)胞計(jì)數(shù)及熒光定量PCR
HSC的細(xì)胞計(jì)數(shù)、總RNA及增殖活性基因Ki67的表達(dá)在HSC+MSC+BMP2組高于HSC+MSC組,HSC+MSC組高于HSC組,HSC+BMP2組高于HSC組,差異有統(tǒng)計(jì)學(xué)意義(P < 0.05)。見(jiàn)表1。
2.3.2 Ki67免疫熒光
FITC標(biāo)記的Ki-67在各組HSC上表現(xiàn)為片狀翠綠色熒光,顯示Ki-67蛋白的分布基本覆蓋整個(gè)細(xì)胞核。且可以看出Ki67熒光強(qiáng)度在HSC+MSC+BMP2組高于HSC+MSC組,HSC+MSC組及HSC+BMP2組高于HSC組。見(jiàn)圖4(封三)。
3 討論
全骨髓貼壁法是目前培養(yǎng)間充質(zhì)干細(xì)胞的重要方法之一,有操作簡(jiǎn)便、所培養(yǎng)出的細(xì)胞活性高等優(yōu)點(diǎn)。我們采用該方法培養(yǎng)出的MSC具有貼壁生長(zhǎng)的特性,其生長(zhǎng)特點(diǎn)與文獻(xiàn)報(bào)道的相符合[10-11],表達(dá)非造血相關(guān)免疫標(biāo)記CD105,而不表達(dá)造血相關(guān)免疫標(biāo)記CD34和CD45,且在前期的實(shí)驗(yàn)中本課題組已對(duì)其成骨、成脂能力進(jìn)行鑒定[12]。CD34仍然是目前公認(rèn)的分選造血干細(xì)胞的主要免疫標(biāo)記,本研究應(yīng)用免疫磁珠法分選出的CD34+造血干細(xì)胞的純度及活性高。
Ki67基因與細(xì)胞增殖相關(guān),其表達(dá)的核蛋白,與核糖體RNA轉(zhuǎn)錄相關(guān),在增殖期細(xì)胞表達(dá),靜止期細(xì)胞不表達(dá)。Ki67的陽(yáng)性率越高,細(xì)胞增殖越活躍。本研究應(yīng)用PCR法及免疫熒光兩種方法檢測(cè)Ki67在不同組中的表達(dá),以比較HSC的增殖能力。此外,細(xì)胞數(shù)目的增加及增殖能力的增強(qiáng)可伴有總RNA增加。故本研究選用細(xì)胞計(jì)數(shù)、總RNA、Ki67來(lái)評(píng)估不同干預(yù)條件下HSC的增殖能力,并且發(fā)現(xiàn)BMP-2和/或MSC可以促進(jìn)HSC增殖,且增殖后的HSC經(jīng)流式細(xì)胞學(xué)鑒定仍高表達(dá)CD34。
本實(shí)驗(yàn)應(yīng)用Transwell將MSC與HSC進(jìn)行非接觸共培養(yǎng),根據(jù)結(jié)果發(fā)現(xiàn)MSC可以促進(jìn)HSC增殖,這可能是MSC分泌了相關(guān)的活性物質(zhì)經(jīng)Transwell的下室穿過(guò)Transwell的網(wǎng)膜進(jìn)入上室,促進(jìn)HSC增殖。BMP/TGF-β家族對(duì)HSC的調(diào)控作用很復(fù)雜,且與特定環(huán)境的精細(xì)調(diào)控相關(guān)[13-15]。BMP-2對(duì)HSC增殖的影響與HSC培養(yǎng)的時(shí)間及模式、BMP-2的濃度以及所聯(lián)合的細(xì)胞因子種類(lèi)等具體的環(huán)境相關(guān)[13-16]。本研究發(fā)現(xiàn)培養(yǎng)3 d濃度為100 ng/mL的BMP-2有促進(jìn)HSC增殖的作用。rhBMP-2在體外和體內(nèi)均能促進(jìn)MSC的增殖[17],并能促進(jìn)MSC分泌造血生長(zhǎng)因子,如IL-6、IL-11、G-CSF和SCF等。根據(jù)本研究,BMP-2協(xié)同MSC較MSC單獨(dú)對(duì)HSC的增殖作用更強(qiáng),說(shuō)明BMP-2協(xié)同MSC對(duì)HSC有增殖作用,由此推測(cè)這種增殖作用可能是BMP-2促進(jìn)MSC分泌了促HSC增殖的相關(guān)因子。
研究表明[18]BMP信號(hào)通路可通過(guò)成骨niche,也可能通過(guò)血管niche調(diào)控造血[19]。與前者相比,血管niche能促進(jìn)HSC增殖、分化[20]。本研究發(fā)現(xiàn)的BMP-2協(xié)同MSC對(duì)HSC的增殖作用是否是通過(guò)促進(jìn)血管形成相關(guān)物質(zhì)的表達(dá)相關(guān),在下一步實(shí)驗(yàn)中我們將繼續(xù)探討。
[參考文獻(xiàn)]
[1] Raynaud CM,Butler JM,Halabi NM,et al. Endothelial cells provide a niche for placental hematopoietic stem/progenitor cell expansion through broad transcriptomic modification [J]. Stem Cell Res,2013,11(3):1074-1090.
[2] Paraguassú-Braga FH,Alves AP,Santos IM,et al. An ectopic stromal implant model for hematopoietic reconstitution and in vivo evaluation of bone marrow niches [J]. Cell Transplant,2012,21(12):2677-2688.
[3] Tashiro K,Nonaka A,Hirata N,et al. Plasma Elevation of Vascular Endothelial Growth Factor Leads to the Reduction of Mouse Hematopoietic and Mesenchymal Stem/Progenitor Cells in the Bone Marrow [J]. Stem Cells,2014,23(18):2202-2210.
[4] Bai H,Xie YL,Gao YX,et al. The balance of positive and negative effects of TGF-β signaling regulates the development of hematopoietic and endothelial progenitors in human pluripotent stem cells [J]. Stem Cells Dev,2013,22(20):2765-2776.
[5] Robin C,Durand C. The roles of BMP and IL-3 signaling pathways in the control of hematopoietic stem cells in the mouse embryo [J]. Int J Dev Biol,2010,54(6-7):1189-2000.
[6] Walenda T,Bork S,Horn P,et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells [J]. Cell Mol Med,2010(14):337-350.
[7] Rodríguez-Pardo VM,Vernot JP. Mesenchymal stem cells promote a primitive phenotype CD34+ c-kit+ in human cord blood-derived hematopoietic stem cells during ex vivo expansion [J]. CellMol Biol Lett,2013,18(1):11-33.
[8] Andrade PZ,Santos F,Almeida-Porada G,et al. Systematic delineation of optimal cytokine concentrations to expand hematopoietic stem/progenitor cells in co-culture with mesenchymal stem cells [J]. Mol Biosyst,2010,6(7):1207-1215.
[9] da Silva CL,Gon?觭alves R,dos Santos F,et al. Dynamic cell-cell interactions between cord blood haematopoietic progenitors and the cellular niche are essential for the expansion of CD34+,CD34+CD38- and early lymphoid CD7+ cells [J]. Tissue Eng Regen Med,2010,4(2):149-158.
[10] 康少平,劉淑艷,李永升,等.低氧增強(qiáng)骨髓間充質(zhì)干細(xì)胞增殖維持分化潛能[J].中國(guó)比較醫(yī)學(xué)雜志,2017,27(7):70-74.
[11] 趙科研,王輝山,侯明曉,等.不同數(shù)目骨髓間充質(zhì)干細(xì)胞移植對(duì)大鼠肺損傷的抑制作用[J].中國(guó)比較醫(yī)學(xué)雜志,2012,22(1):34-38.
[12] Wang Q,Huang CL,Zeng FJ,et al. Activation of the Hh Pathway in Periosteum-Derived Mesenchymal Stem Cells Induces Bone formation in Vivo [J]. Stem Cells,Tissue Engineering and Hematopoietic Elements,2010,12(6):3100-3111.
[13] Nakamura Y,Arai F,Iwasaki H,et al. Isolation and chara?鄄cterization of endosteal niche cell populations that regulate hematopoietic stem cells [J]. Blood,2010,116(9):1422-1432.
[14] Kiel MJ,Morrison SJ.Uncertainty in the niches that maintain haematopoietic stem cells [J]. Nat Rev Immunol,2008, 8(4):290-301.
[15] S?derberg SS,Karlsson G,Karlsson S. Complex and Context Dependent Regulation of Hematopoiesis by TGF-βSuperfamily Signaling [J]. Ann N Y Acad Sci,2009, 1176:55-69.
[16] Bhatia M,Bonnet D,Wu D,et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells [J]. J Exp Med,1999,189(7):1139-1148.
[17] Detmer K,Walker AN. Bone morphogenetic proteins act synergistically with haematopoietic cytokines in the differentiation of hematopoietic progenitors [J]. Cytokine,2002,17(1):36-42.
[18] Grassinger J,Simon M,Mueller G,et al. Bone morphogenetic protein (BMP)-7 but not BMP-2 and BMP-4 impro?鄄ves maintenance of primitive peripheral blood-derived hematopoietic progenitor cells (HPC) cultured in serum-free medium supplemented with early actin cytokines [J]. Cytokine,2007,40(3):165-171.
[1] Liu SB,Hu PZ,Hou Y,et al. Recombinant human bone morphogenetic protein-2 promotes the proliferation of mesenchymal stem cells in vivo and in vitro [J]. Chin Med J (Engl),2009,122(7):839-843.
[2] Morrison SJ,Scadden DT. The bone marrow niche for haematopoietic stem cells [J]. Nature,2014,505(7483):327-334.
(收稿日期:2018-00-00 本文編輯:任 念)