文浙江省溫州中學(xué) 任芷樂
媽媽開車外出時,因難以找到停車位,停車總要花費很多時間。盡管有些手機App能顯示當前車庫車位的空位數(shù),但往往等我們把車開過去時車庫就已經(jīng)停滿了。如果能提前預(yù)測車庫在幾分鐘之內(nèi)有空位,可以直接開過去停車,該有多好啊。
要想預(yù)測出幾分鐘之后的車庫空位,我認為必須用一種可根據(jù)歷史停車信息推斷出未來空位信息的智能算法。
經(jīng)過搜索,我發(fā)現(xiàn)有很多智能預(yù)測算法,其中BP神經(jīng)網(wǎng)絡(luò)可根據(jù)歷史信息推算出未來的信息。在BP神經(jīng)網(wǎng)絡(luò)研究者的探索下,BP神經(jīng)網(wǎng)絡(luò)的各方面都趨向成熟,如今已被運用到多個領(lǐng)域,如數(shù)據(jù)挖掘、模式識別、圖像處理、股票預(yù)測、市場分析等。
能不能用該算法預(yù)測車庫的空位數(shù)?
我選擇位于溫州市區(qū)車流量較大地區(qū)一個車容量為210輛的停車場作為研究對象,選 取 了 從 2017 年 10 月 21 日 0∶00∶00 到2017年 10 月 26日 21∶15∶08的 1612條即時車庫空位數(shù)據(jù)按照以下步驟進行研究。
1.讀入車庫空位數(shù)據(jù)集。抽取成1612行、6列的數(shù)據(jù)格式,第 1到第5列為輸入層數(shù)據(jù),第6列為輸出層數(shù)據(jù)。
2.劃分數(shù)據(jù)集。前865條為訓(xùn)練數(shù)據(jù)集,后747條為測試數(shù)據(jù)集。
3.輸入數(shù)據(jù)歸一化處理。采用最大最小
4.初始化BP網(wǎng)絡(luò)訓(xùn)練結(jié)構(gòu)。設(shè)置輸入層節(jié)點數(shù)為 =5個,隱含層節(jié)點為 =50個,輸出層節(jié)點 =1個的三層結(jié)構(gòu)。初始化輸入層、隱含層和輸出層節(jié)點之間的連接權(quán)值ij,jk(隨機值),并給出隱含層節(jié)點和輸出層節(jié)點的閾值j和k(隨機值),這里迭代次數(shù)為5000次,學(xué)習(xí)率n =0.01,學(xué)習(xí)目標精度=0.0003,節(jié)點傳遞函數(shù) =‘logsig’。
5.隱含層輸出計算。根據(jù)輸入層5個時間節(jié)點的車庫空位i以及隱含層的連接權(quán)值ij、隱層閾值j,計算隱含層輸出j。
6.輸出層輸出計算。根據(jù)隱含層輸出j、連接權(quán)值jk和輸出層閾值k,計算輸出層輸出k(預(yù)測的車庫空位數(shù))。
7.誤差計算,根據(jù)誤差反向傳播,并更新權(quán)值和閾值。期望輸出k,輸出層誤差 rrk,隱含層誤差 rrj。
權(quán)值和閾值更新:
8.判斷模型迭代是否結(jié)束或是否達到目標精度 =0.0003,若沒有則按第5步驟繼續(xù)計算。
按照以上步驟,我用matlab分別對該停車場5min后、10min后、15min后的車輛數(shù)進行仿真預(yù)測,并和真實值進行對比。
由預(yù)測值與實際值的對比得出以下結(jié)論。
1.用BP神經(jīng)網(wǎng)絡(luò)算法基本能預(yù)測出未來 5min、10min、15min的停車場車輛數(shù),由此可得出空位數(shù)。
2.車輛數(shù)變化較小的時段,預(yù)測誤差也較小。
3.將預(yù)測數(shù)據(jù)和實際數(shù)據(jù)進行對比,計算出未來5min的停車場車輛預(yù)測平均誤差率為1.76%,未來10min預(yù)測平均誤差率為2.90%,未來15min預(yù)測平均誤差率為3.91%。由此可見,預(yù)測平均誤差率5min后的最小,10min后的次之,15min后的最大,也就是說,預(yù)測效果5min后的最佳,10min后的次之,15min后的最差。
4.將預(yù)測數(shù)據(jù)和實際數(shù)據(jù)進行對比,5min后、10min后、15min后的預(yù)測車輛數(shù)和實際數(shù)的最大差值分別為16輛、27輛、39輛。
5.將預(yù)測數(shù)據(jù)和實際數(shù)據(jù)進行對比,5min后、10min后、15min后的預(yù)測車輛數(shù)和實際數(shù)相差小于1輛的預(yù)測次數(shù)比例分別為46.72%、38.15%、34.94%。預(yù)測車輛數(shù)和實際數(shù)相差小于5輛的比例分別是93.19%、81.04%、71.03%,而預(yù)測車輛數(shù)和實際數(shù)相差小于10輛的比例分別是99.07%、95.06%、89.45%,滿足率較高。
6.將預(yù)測所得的數(shù)據(jù)按照車輛數(shù)100進行劃分,少于或等于100輛定義為閑時,大于100輛定義為忙時,分別計算閑時和忙時的預(yù)測誤差率可得,閑時未來 5min、10min、15min的停車場車輛預(yù)測平均誤差率分別為2.84%、4.43%、5.86%;忙時未來 5min、10min、15min的停車場車輛預(yù)測平均誤差率分別為1.10%、1.97%、2.73%。
1.BP神經(jīng)網(wǎng)絡(luò)算法可用來預(yù)測車庫未來5min、10min、15min的車輛數(shù)。其中預(yù)測效果5min后的最佳,10min后的次之,15min后的最差。
2.在預(yù)測空位超過10個的情況下,有空位的幾率非常高,用戶可優(yōu)先選擇附近空位超過10個的車庫。
3.此預(yù)測方法所得忙時的預(yù)測誤差率比閑時預(yù)測誤差率小,而人們更需要的是忙時的預(yù)測,所以忙時誤差率小對用戶更有利。
1.有些時段的誤差偏大,我認為主要原因可能是BP神經(jīng)網(wǎng)絡(luò)算法本身學(xué)習(xí)時間比較長、收斂比較慢,或是我的參數(shù)初始值選得不好、我選擇的用來學(xué)習(xí)的數(shù)據(jù)不具有代表性等等。今后我還會嘗試改善算法,進一步縮小誤差。
2.我研究的對象是有210個車位的停車場,在我調(diào)取數(shù)據(jù)的時間段內(nèi)均沒有車位停滿的情況,那么針對車位很緊張的車庫,BP神經(jīng)網(wǎng)絡(luò)算法能否準確預(yù)測呢?
3.人工神經(jīng)網(wǎng)絡(luò)是人們常用的預(yù)測方法之一,BP神經(jīng)網(wǎng)絡(luò)算法只是其中之一,還有其他很多的算法,比如支持向量機、極限學(xué)習(xí)機等先進方法,把這些算法運用到車庫空位預(yù)測中,效果如何?