鄧 歡,劉穎慧,曹 攀,董衛(wèi)國(guó)
武漢大學(xué)人民醫(yī)院消化內(nèi)科,湖北 武漢 430060
克羅恩病(Crohn’s disease, CD)是一種胃腸道慢性炎性肉芽腫性疾病,其病變多位于回腸末端和鄰近結(jié)腸,也可累及各段消化道,呈節(jié)段性分布。CD的發(fā)病率正在逐年上升,臨床治療主要是免疫治療,且治療可能帶來(lái)腫瘤風(fēng)險(xiǎn)[1],但其病因和發(fā)病機(jī)制仍然不明確,呈多因素的傾向,包括遺傳因素、免疫因素、微生物因素、環(huán)境因素等。近年來(lái),CD相關(guān)基因的研究不斷更新,主要包括NOD2/CARD15、ATG16L1、IRGM、IL-23信號(hào)通路、PTGER4、IBD5基因位點(diǎn)、PTPN2等[2],本文就CD相關(guān)的基因近年來(lái)的研究作一概述。
1.1NOD2/CARD15基因NOD2/CARD15(Nucleotide-binding oligomerization domain 2)蛋白是NOD樣受體家族得到成員。NOD2蛋白是一種細(xì)胞內(nèi)模式識(shí)別受體,在單核細(xì)胞中表達(dá),功能是對(duì)細(xì)菌的肽聚糖的胞內(nèi)傳感器,它能夠被一種肽聚糖微小的生物活性元件胞壁酰二肽(MDP)激活,從而激活NF-κB和絲裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信號(hào)通路從而在固有免疫中發(fā)揮作用。
NOD2是最早發(fā)現(xiàn)與CD相關(guān)的基因[3],后改名為CARD15。文獻(xiàn)[4]報(bào)道其中有3個(gè)NOD2的單核苷酸多態(tài)性(SNP)Arg702Trp、Gly908Arg、Leu1007fsinsC與CD的易感性相關(guān)。關(guān)于NOD2與CD的發(fā)病機(jī)制的研究,最近文獻(xiàn)[5]總結(jié)了兩種NOD2功能障礙導(dǎo)致CD易感性的理論:一種理論支持NOD2缺陷的小鼠的α-干擾素的表達(dá)減少,導(dǎo)致腸道抗菌能力缺陷,從而導(dǎo)致腸道炎癥;另一種理論則支持在正常的回腸末端MDP通過(guò)樹(shù)突細(xì)胞激活NOD2,而NOD2抑制toll樣受體(toll-like receptor, TLR)的天然過(guò)度反應(yīng)從而維持腸道穩(wěn)態(tài),存在于炎癥反應(yīng)末端回腸的NOD2失去這個(gè)抑制作用,導(dǎo)致促炎細(xì)胞因子IL-12的過(guò)度產(chǎn)生及腸道失穩(wěn)態(tài),從而導(dǎo)致腸道炎癥反應(yīng)。WEHKAMP等[5]發(fā)現(xiàn),存在NOD2突變的CD患者中α-防御素的表達(dá)顯著降低,這使得宿主對(duì)腸道細(xì)菌的防御能力減弱。而另一文獻(xiàn)[6]表明,α-防御素是獨(dú)立于NOD2基因突變,報(bào)道顯示,炎癥過(guò)程即表面上皮細(xì)胞丟失和潘式細(xì)胞減少是繼發(fā)事件而不是主要的致病事件,SHANAHAN等[7]也在文獻(xiàn)中報(bào)道這一結(jié)論。這表明,NOD2突變導(dǎo)致α-干擾素減少是CD的發(fā)病機(jī)制。另一部分研究支持NOD2突變導(dǎo)致CD的發(fā)病機(jī)制是由于NOD2失去對(duì)TLR的抑制從而導(dǎo)致腸道失穩(wěn)態(tài)。WATANABE等[8]在研究NOD2缺陷的小鼠中報(bào)道,NOD2缺陷導(dǎo)致的腸道炎癥反應(yīng)是由于TLR在對(duì)腸黏膜細(xì)菌表達(dá)抗原應(yīng)答的增加。NOD2導(dǎo)致CD發(fā)病機(jī)制至今仍無(wú)一個(gè)公認(rèn)的定論,需要更進(jìn)一步的研究進(jìn)行闡述。
1.2ATG16L1基因自噬相關(guān)基因16L(autophagy related gene 16 like 1,ATG16L1)可通過(guò)自身的多聚化,與ATG5和ATG12等蛋白相互作用,在誘導(dǎo)自噬過(guò)程中能招募LC3蛋白。研究[9]顯示,自噬在免疫中有廣泛的功能,從細(xì)胞自主防御到復(fù)雜多細(xì)胞免疫反應(yīng)的協(xié)調(diào)等。
GLAS等[10]在研究中發(fā)現(xiàn),ATG16L1的9個(gè)遺傳變異體rs13412102、rs12471449、rs6431660、rs1441090、rs2289472、rs2241880、rs2241879、rs3792106、rs4663396與CD密切相關(guān)。HAMPE等[11]發(fā)現(xiàn),ATG16L1基因的其中一種單核苷酸多態(tài)性(SNP)突變位點(diǎn)rs2241880 (T300A)與CD高度相關(guān),該突變使ATG16L1基因N端第300位上的蘇氨酸(Thr)變?yōu)楸彼?Ala),且其發(fā)生在進(jìn)化高度保守的WD重復(fù)區(qū),這提示其可能有重要的功能。ATGL161突變體能影響CD患者腸道菌群的數(shù)目、潘式細(xì)胞功能、細(xì)菌清除等。SADAGHIAN等[12]通過(guò)炎癥和非炎癥活組織的配對(duì)研究發(fā)現(xiàn),ATG16L1的突變體影響CD患者腸道菌群的數(shù)量,如存在ATG16L1保護(hù)等位基因純合子的CD患者的炎癥腸道組織中發(fā)現(xiàn)擬桿菌科、腸桿菌科和梭桿菌科的數(shù)量減少,而ATG16L1危險(xiǎn)等位基因的炎癥腸道組織中這些細(xì)菌的數(shù)目保持大致相同。報(bào)道[13]顯示,ATG16L1的T300A純合子的患者使得潘式細(xì)胞和杯狀細(xì)胞分泌防御素減少導(dǎo)致CD患者腸道失穩(wěn)態(tài)。MURTHY等[14]研究表明,T300A突變體在CD發(fā)病機(jī)理可能是腸道的炎癥環(huán)境引起細(xì)胞凋亡蛋白酶活化,增加細(xì)胞凋亡蛋白酶3介導(dǎo)的ATG16L1突變體T300A裂解,誘導(dǎo)自噬和通過(guò)異體吞噬的細(xì)菌清除的缺陷,從而導(dǎo)致疾病進(jìn)展。這些文獻(xiàn)均表明,ATG16L1基因與CD的遺傳易感性相關(guān),這為CD患者的治療提供了一個(gè)基因靶點(diǎn)。
1.3IRGM基因IRGM(immunity-related GTPase family M protein)基因是干擾素誘導(dǎo)的GTPase家族成員之一,其編碼的蛋白質(zhì)稱免疫相關(guān)鳥(niǎo)苷三磷酸酶。免疫相關(guān)鳥(niǎo)苷三磷酸酶通過(guò)調(diào)節(jié)對(duì)胞內(nèi)抗原的自噬從而在天然免疫中發(fā)揮重要作用。
PARKES等[15]通過(guò)全基因組分析首次發(fā)現(xiàn),IRGM的單核苷酸多態(tài)性rs13361189和rs4958847與CD易感性相關(guān)。RUFINI等[16]通過(guò)病例對(duì)照關(guān)聯(lián)研究、亞型相關(guān)性和單倍體型分析,共分析了263例CD患者,206例UC患者及245名健康對(duì)照者,也顯示了這一相關(guān)性,與另一文獻(xiàn)[17]結(jié)論一致。IRGM能夠影響CD患者的臨床特點(diǎn),SEHGAL等[18]在研究表明,IRGM基因的單核苷酸多態(tài)性rs4958847與回腸結(jié)腸的CD的患者接受手術(shù)頻率密切相關(guān),這表示IRGM可能作為一個(gè)CD的嚴(yán)重程度和手術(shù)切除后復(fù)發(fā)的標(biāo)志,并可能協(xié)助外科手術(shù)和醫(yī)療決策。文獻(xiàn)報(bào)道[16]IRGM能夠影響CD的臨床特點(diǎn),包括腸道狹窄、回盲瓣炎癥局部化、肛周疾病、腸段切除等。這些文獻(xiàn)表明,IRGM基因與CD的遺傳易感性相關(guān)并能影響CD的手術(shù)特點(diǎn),這提示IRGM可以作為CD早期診斷的分子標(biāo)志物。但I(xiàn)RGM與CD發(fā)病機(jī)制并不清楚,仍需進(jìn)一步的研究。
1.4IL-23/TH17信號(hào)通路相關(guān)基因IL-23R/TH17信號(hào)通路是通過(guò)全基因關(guān)聯(lián)研究進(jìn)行薈萃分析發(fā)現(xiàn)的與CD相關(guān)的信號(hào)通路[19],其中IL-23R/TH17信號(hào)通路中多個(gè)基因的變異均與CD相關(guān),如IL-23、IL-23R、IL-12B、STAT3和JAK2等。IL-23R的信號(hào)通路指IL-23與表達(dá)IL-23R細(xì)胞表面的IL-23R結(jié)合后,使得JAK2激活,從而導(dǎo)致JAK2自身磷酸化及IL-23R的磷酸化,通過(guò)STAT3的募集、磷酸化、同源二聚化及核轉(zhuǎn)移使得STAT3活化,與此同時(shí)STAT1、STAT4和STAT5也被活化,而其中STAT3和STAT4在TH17細(xì)胞和TH1細(xì)胞的分化中起關(guān)鍵作用[20]。
在CD發(fā)病機(jī)制研究中發(fā)現(xiàn),IL-23/TH17信號(hào)通路能夠使腸道細(xì)胞因子分泌改變、巨噬細(xì)胞功能異常、固有淋巴細(xì)胞不同表型累積等導(dǎo)致CD的遺傳易感性。研究表明,CD的發(fā)病中TH17細(xì)胞和TH1細(xì)胞起了重要作用[21],TH17在產(chǎn)生IL-22等細(xì)胞因子的腸上皮屏障中有重要的抗菌免疫功能,且IL-22的分泌水平被IL-23R基因多態(tài)性調(diào)節(jié)[22],因此臨床醫(yī)師可以通過(guò)檢測(cè)腸道內(nèi)的IL-22等TH17細(xì)胞等產(chǎn)生的細(xì)胞因子的表達(dá)水平來(lái)判斷CD的活動(dòng)性。腸道巨噬細(xì)胞在調(diào)節(jié)對(duì)共生菌的免疫中起核心作用,正常情況下腸道巨噬細(xì)胞缺乏CD14免疫受體的表達(dá)而不會(huì)產(chǎn)生促炎細(xì)胞因子來(lái)對(duì)抗共生菌,文獻(xiàn)[23]顯示,CD患者腸道巨噬細(xì)胞異常分化使得CD14+的巨噬細(xì)胞數(shù)量增加,且這些細(xì)胞產(chǎn)生大量的IL-23和TNF-α對(duì)抗共生細(xì)菌,從而導(dǎo)致CD患者的腸道慢性炎癥。GEREMIA等[24]研究表明,CD患者的腸道炎癥與選擇性累積不同表型即表達(dá)不同炎癥細(xì)胞因子的固有免疫細(xì)胞相關(guān),而固有淋巴細(xì)胞可能通過(guò)細(xì)胞因子的表達(dá)、淋巴細(xì)胞的募集及炎癥組織的組織來(lái)促進(jìn)腸道炎癥,這提示IL-23應(yīng)答的固有淋巴細(xì)胞可以作為一個(gè)新的組織靶標(biāo)。在CD治療的研究中,F(xiàn)EAGAN等[25-26]使用對(duì)IL-12的P40亞基和IL-23的一種單克隆抗體(優(yōu)特克單抗)以及安慰劑對(duì)照治療活動(dòng)性CD,結(jié)果顯示優(yōu)特克單抗對(duì)疾病有更高的反應(yīng)速率;同樣選擇性IL-23抑制劑在不同嚴(yán)重程度的CD患者的誘導(dǎo)臨床緩解期中比安慰劑更有效,這提示IL-23R可能作為CD患者的臨床治療靶點(diǎn)??傊琁L-23/TH17信號(hào)通路相關(guān)基因多態(tài)性能增加CD的遺傳易感性,且基因相關(guān)抗體為臨床治療CD提供靶點(diǎn)。因此,CD的發(fā)病機(jī)制及臨床治療的研究,仍需要進(jìn)行IL-23/TH17信號(hào)通路相關(guān)基因的進(jìn)一步研究。
1.5PTGER4基因前列腺素E受體4(prostaglandin E receptor 4,PTGER4)基因被定位在5p13.1,PTGER4在血壓的調(diào)節(jié)、急性炎癥、腫瘤的發(fā)生中起重要作用。
LIBIOULLE等[27]首次發(fā)現(xiàn),PTGER4 基因是CD的易感基因。在一項(xiàng)德國(guó)的研究中,GLAS等[28]發(fā)現(xiàn),PTGER4基因單核苷酸多態(tài)性包括rs4495224和rs7720838均影響CD的易感性,且這兩個(gè)單核苷酸多態(tài)性作為NF-κB和XBP1結(jié)合位點(diǎn)的一部分起作用。該報(bào)道顯示,具有PTGER4危險(xiǎn)等位基因的CD中結(jié)合率更高,這可能是PTGER4表達(dá)增加的原因,而是否由于PTGER4的表達(dá)改變導(dǎo)致的CD易感性仍需進(jìn)一步研究。PTGER4基因?qū)Y(jié)腸炎有保護(hù)作用:在基因敲除的小鼠中的研究中,報(bào)道[29]顯示,PTGER4基因缺陷小鼠對(duì)葡聚糖硫酸鈉(dextran sodium sulphate,DSS)誘導(dǎo)的結(jié)腸炎易感性增加;在治療結(jié)腸炎的研究中,報(bào)道[30]了選擇性EP4受體激活劑的治療能通過(guò)增加上皮細(xì)胞的生存和再生改善結(jié)腸炎。PTGER4基因能影響CD的臨床特點(diǎn),PRAGER等[31]報(bào)道顯示,PTGER4的單核苷酸多態(tài)性rs7720838與CD的遺傳易感性相關(guān),有增加疾病中腸道狹窄的風(fēng)險(xiǎn)。目前,關(guān)于PTGER4與CD遺傳易感性的相關(guān)性研究并不深入,仍需進(jìn)一步的實(shí)驗(yàn)證據(jù)支持,但PTGER4是潛在的CD的分子生物標(biāo)記及治療靶點(diǎn)。
1.6IBD5位點(diǎn)相關(guān)基因CHUA等[32]報(bào)道位于5q31的位點(diǎn)IBD5與CD相連鎖。據(jù)報(bào)道[33],IBD5這一位點(diǎn)的SLC22A4和SLC22A5基因內(nèi)有兩個(gè)新的多態(tài)性,其中SLC22A4和SLC22A5基因分別編碼有機(jī)陽(yáng)離子轉(zhuǎn)運(yùn)體OCTN1(organic cation/carnitine transporter 1)和OCTN2(organic cation/carnitine transporter 2),在西班牙人群中的研究表明,這兩個(gè)多態(tài)性與CD的遺傳易感性相關(guān)。報(bào)道均支持OCTN1/OCTN2等基因與CD遺傳相關(guān)性:HUFF等[34]在報(bào)道中闡述了OCTN1和IRF1作為IBD5位點(diǎn)其中的單核苷酸多態(tài)性與CD的相關(guān)性;RUSSELL等[35]也在研究中證明了CD的易感性與IBD5位點(diǎn)內(nèi)OCTN2的相關(guān)性。然而,最近JUNG等[36]報(bào)道在朝鮮族人的研究中OCTN1的功能啟動(dòng)子與CD并無(wú)遺傳易感相關(guān)性,而是能影響CD患者的表型。這一結(jié)果的差異可能與研究的人群不同相關(guān),需要進(jìn)一步的研究進(jìn)行闡述。
1.7PTPN2基因PTPN2是編碼蛋白酪氨酸磷酸酶非2型受體的基因,這個(gè)蛋白是酪氨酸激酶信號(hào)分子,這些信號(hào)分子參與和調(diào)節(jié)各種細(xì)胞過(guò)程如:生長(zhǎng)、分化、有絲分裂周期、致癌轉(zhuǎn)化等[37]。
CD的發(fā)生、發(fā)展是由多個(gè)相關(guān)基因參與,這些基因的單核苷酸多態(tài)性與CD的遺傳易感性相關(guān)。目前除了本文綜述的基因還有很多已經(jīng)通過(guò)全基因組相關(guān)性分析篩選出來(lái)的可能與CD的遺傳易感性相關(guān)的基因。今后研究也可以通過(guò)分子生物技術(shù)從CD患者的腸道組織與正常腸道組織篩選出差異的DNA片段,從而發(fā)現(xiàn)與CD相關(guān)的新基因。本文綜述了近年來(lái)文獻(xiàn)報(bào)道的CD相關(guān)基因的研究進(jìn)展,有助于CD今后發(fā)病機(jī)制的研究,及為相關(guān)基因的靶向治療奠定了理論基礎(chǔ)。相信隨著今后CD發(fā)病機(jī)制研究的逐漸深入,基因治療技術(shù)的不斷提高,將會(huì)更加清楚地了解這些基因與CD的關(guān)系。
[1] 張慧敏, 金夢(mèng), 楊紅. 炎癥性腸病藥物治療的腫瘤風(fēng)險(xiǎn)[J]. 胃腸病學(xué)和肝病學(xué)雜志, 2017, 26(3): 341-343. DOI: 10.3969/j.issn.1006-5709.2017.03.026.
ZHANG H M, JIN M, YANG H. Risk of malignancy in the drug therapy for inflammatory bowel disease [J]. Chin J Gastroenterol Hepatol, 2017, 26(3): 341-343. DOI: 10.3969/j.issn.1006-5709.2017.03.026.
[2] STAPPENBECK T S, RIOUX J D, MIZOGUCHI A, et al. Crohn disease: a current perspective on genetics, autophagy and immunity [J]. Autophagy, 2014, 7(4): 355-374. DOI: 10.4161/auto.7.2.13074.
[3] GLAS J, SEIDERER J, TILLACK C, et al. The NOD2 single nucleotide polymorphisms rs2066843 and rs2076756 are novel and common Crohn’s disease susceptibility gene variants [J]. PLoS One, 2010, 5(12): e14466. DOI: 10.1371/journal.pone.0014466.
[4] STROBER W, ASANO N, FUSS I, et al. Cellular and molecular mechanisms underlying NOD2 risk-associated polymorphisms in Crohn’s disease [J]. Immunol Rev, 2014, 260(1): 249-260. DOI: 10.1111/imr.12193.
[5] WEHKAMP J, SALZMAN N H, PORTER E, et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease [J]. Proc Natl Acad Sci U S A, 2005, 102(50): 18129-18134. DOI: 10.1073/pnas.0505256102.
[6] SIMMS L A, DOECKE J D, WALSH M D, et al. Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease [J]. Gut, 2008, 57(7): 903-910. DOI: 10.1136/gut.2007.142588.
[7] SHANAHAN M T, CARROLL I M, GROSSNIKLAUS E, et al. Mouse Paneth cell antimicrobial function is independent of Nod2 [J]. Gut, 2014, 63(6): 903-910. DOI: 10.1136/gutjnl-2012-304190.
[8] WATANABE T, KITANI A, MURRAY P J, et al. Nucleotide binding oligomerization domain 2 deficiency leads to dysregulated TLR2 signaling and induction of antigen-specific colitis [J]. Immunity, 2006, 25(3): 473-485. DOI: 10.1016/j.immuni.2006.06.018.
[9] CADWELL K. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis [J]. Nat Rev Immunol, 2016, 16(11): 661-675. DOI: 10.1038/nri.2016.100.
[10] GLAS J, KONRAD A, SCHMECHEL S, et al. The ATG16L1 gene variants rs2241879 and rs2241880 (T300A) are strongly associated with susceptibility to Crohn’s disease in the German population [J]. Am J Gastroenterol, 2008, 103(3): 682-691. DOI: 10.1111/j.1572-0241.2007.01694.x.
[11] HAMPE J, FRANKE A, ROSENSTIEL P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1 [J]. Nat Genet, 2007, 39(2): 207-211. DOI: 10.1038/ng1954.
[12] SADAGHIAN SADABAD M, REGELING A, DE GOFFAU M C, et al. The ATG16L1-T300A allele impairs clearance of pathosymbionts in the inflamed ileal mucosa of Crohn’s disease patients [J]. Gut, 2015, 64(10): 1546-1552. DOI: 10.1136/gutjnl-2014-307289.
[13] LASSEN K G, XAVIER R J. An alteration in ATG16L1 stability in Crohn disease [J]. Autophagy, 2014, 10(10): 1858-1860. DOI: 10.4161/auto.29963.
[14] MURTHY A, LI Y, PENG I, et al. A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3 [J]. Nature, 2014, 506(7489): 456-462. DOI: 10.1038/nature13044.
[15] PARKES M, BARRETT J C, PRESCOTT N J, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility [J]. Nat Genet, 2007, 39(7): 830-832. DOI: 10.1038/ng2061.
[16] RUFINI S, CICCACCI C, DI FUSCO D, et al. Autophagy and inflammatory bowel disease: Association between variants of the autophagy-related IRGM gene and susceptibility to Crohn’s disease [J]. Dig Liver Dis, 2015, 47(9): 744-750. DOI: 10.1016/j.dld.2015.05.012.
[17] LI Y, FENG S T, YAO Y, et al. Correlation between IRGM genetic polymorphisms and Crohn’s disease risk: a meta-analysis of case-control studies [J]. Genet Mol Res, 2014, 13(4): 10741-10753. DOI: 10.4238/2014.December.18.15.
[18] SEHGAL R, BERG A, POLINSKI J I, et al. Mutations in IRGM are associated with more frequent need for surgery in patients with ileocolonic Crohn’s disease [J]. Dis Colon Rectum, 2012, 55(2): 115-121. DOI: 10.1097/DCR.0b013e31823ccea8.
[19] XU W D, XIE Q B, ZHAO Y, et al. Association of Interleukin-23 receptor gene polymorphisms with susceptibility to Crohn’s disease: A meta-analysis [J]. Sci Rep, 2015, 5: 18584. DOI: 10.1038/srep18584.
[20] LIU Q F, LI Y, ZHAO Q H, et al. Association of STAT4 rs7574865 polymorphism with susceptibility to inflammatory bowel disease: A systematic review and meta-analysis [J]. Clin Res Hepatol Gastroenterol, 2015, 39(5): 627-636. DOI: 10.1016/j.clinre.2015.04.002
[21] BRAND S. Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease [J]. Gut, 2009, 58(8): 1152-1167. DOI: 10.1136/gut.2008.163667.
[22] SCHMECHEL S, KONRAD A, DIEGELMANN J, et al. Linking genetic susceptibility to Crohn’s disease with Th17 cell function: IL-22 serum levels are increased in Crohn’s disease and correlate with disease activity and IL23R genotype status [J]. Inflamm Bowel Dis, 2008, 14(2): 204-212. DOI: 10.1002/ibd.20315.
[23] KAMADA N, HISAMATSU T, OKAMOTO S, et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis [J]. J Clin Invest, 2008, 118(6): 2269-2280. DOI: 10.1172/JCI34610.
[24] GEREMIA A, ARANCIBIA-CARCAMO C V, FLEMING M P, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease [J]. J Exp Med, 2011, 208(6): 1127-1133. DOI: 10.1084/jem.20101712.
[25] FEAGAN B G, SANDBORN W J, GASINK C, et al. Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease [J]. N Engl J Med, 2016, 375(20): 1946-1960. DOI: 10.1056/NEJMoa1602773.
[26] FEAGAN B G, SANDBORN W J, D'HAENS G, et al. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn’s disease: a randomised, double-blind, placebo-controlled phase 2 study [J]. Lancet, 2017, 389(10080): 1699-1709. DOI: 10.1016/S0140-6736(17)30570-6.
[27] LIBIOULLE C, LOUIS E, HANSOUL S, et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4 [J]. PLoS Genet, 2007, 3(4): e58. DOI: 10.1371/journal.pgen.0030058.
[28] GLAS J, SEIDERER J, CZAMARA D, et al. PTGER4 expression-modulating polymorphisms in the 5p13.1 region predispose to Crohn’s disease and affect NF-κB and XBP1 binding sites [J]. PLoS One, 2012, 7(12): e52873. DOI: 10.1371/journal.pone.0052873.
[29] KABASHIMA K, SAJI T, MURATA T, et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut [J]. J Clin Invest, 2002, 109(7): 883-893. DOI: 10.1172/JCI14459.
[30] JIANG G L, NIEVES A, IM W B, et al. The prevention of colitis by E Prostanoid receptor 4 agonist through enhancement of epithelium survival and regeneration [J]. J Pharmacol Exp Ther, 2007, 320(1): 22-28. DOI: 10.1124/jpet.106.111146.
[31] PRAGER M, BüTTNER J, BüNING C. PTGER4 modulating variants in Crohn’s disease [J]. Int J Colorectal Dis, 2014, 29(8): 909-915. DOI: 10.1007/s00384-014-1881-3.
[32] CHUA K H, HILMI I, LIAN L H, et al. Association between inflammatory bowel disease gene 5 (IBD5) and interleukin-23 receptor (IL23R) genetic polymorphisms in Malaysian patients with Crohn’s disease [J]. J Dig Dis, 2012, 13(9): 459-465. DOI: 10.1111/j.1751-2980.2012.00617.x.
[33] GIRARDIN M, DIONNE S, GOYETTE P, et al. Expression and functional analysis of intestinal organic cation/L-carnitine transporter (OCTN) in Crohn’s disease [J]. J Crohns Colitis , 2012, 6(2): 189-197. DOI: 10.1016/j.crohns.2011.08.003.
[34] HUFF C D, WITHERSPOON D J, ZHANG Y, et al. Crohn’s disease and genetic hitchhiking at IBD5 [J]. Mol Biol Evol, 2012, 29(1): 101-111. DOI: 10.1093/molbev/msr151.
[35] RUSSELL R K, DRUMMOND H E, NIMMO E R, et al. Analysis of the influence of OCTN1/2 variants within the IBD5 locus on disease susceptibility and growth indices in early onset inflammatory bowel disease [J]. Gut, 2006, 55(8): 1114-1123. DOI: 10.1136/gut.2005.082107.
[36] JUNG E S, PARK H J, KONG K A, et al. Association study between OCTN1 functional haplotypes and Crohn’s disease in a Korean population [J]. Korean J Physiol Pharmacol, 2017, 21(1): 11-17. DOI: 10.4196/kjpp.2017.21.1.11.
[37] ESTUS J L, Family Investigation of Nephropathy and Diabetes Research Group, FARDO D W. Combining genetic association study designs: a GWAS case study [J]. Front Genet, 2013, 4: 186. DOI: 10.3389/fgene.2013.00186.
[38] SHARP R C, ABDULRAHIM M, NASER E S, et al. Genetic variations of PTPN2 and PTPN22: role in the pathogenesis of type 1 diabetes and Crohn’s disease [J]. Front Cell Infect Microbiol, 2015, 5: 95. DOI: 10.3389/fcimb.2015.00095.
[39] ANDERSON C A, BOUCHER G, LEES C W, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47 [J]. Nat Genet, 2011, 43(3): 246-252. DOI: 10.1038/ng.764.
[40] VAN DER HEIDE F, NOLTE I M, KLEIBEUKER J H, et al. Differences in genetic background between active smokers, passive smokers, and non-smokers with Crohn’s disease [J]. Am J Gastroenterol, 2010, 105(5): 1165-1172. DOI: 10.1038/ajg.2009.659.
[41] MARCIL V, MACK D R, KUMAR V, et al. Association between the PTPN2 gene and Crohn’s disease: dissection of potential causal variants [J]. Inflamm Bowel Dis, 2013, 19(6): 1149-1155. DOI: 10.1097/MIB.0b013e318280b181.
[42] SCHARL M, PAUL G, WEBER A, et al. Protection of epithelial barrier function by the Crohn’s disease associated gene protein tyrosine phosphatase n2 [J]. Gastroenterology, 2009, 137(6): 2030-2040. DOI: 10.1053/j.gastro.2009.07.078.
[43] SCHARL M, MCCOLE D F, WEBER A, et al. Protein tyrosine phosphatase N2 regulates TNFα-induced signalling and cytokine secretion in human intestinal epithelial cells [J]. Gut, 2011, 60(2): 189-197. DOI: 10.1136/gut.2010.216606.