荊 煒,程于夢,單新新,李德喜,姚 紅,杜向黨
(河南農(nóng)業(yè)大學(xué) 牧醫(yī)工程學(xué)院,河南 鄭州 450046)
肺炎克雷伯氏菌(Klebsiellapneumoniae)是重要的條件致病菌,常引起肺炎、呼吸道感染、泌尿道感染、腹膜炎等嚴(yán)重醫(yī)院內(nèi)感染,與屎腸球菌(Enterococcusfaecium)、金黃色葡萄球菌(Staphylococcusaureus)、鮑氏不動桿菌(Acinetobacterbaumannii)、銅綠假單胞菌(Pseudomonasaeruginosa)、腸桿菌屬(Enterobacter)細(xì)菌共同被美國傳染病學(xué)會評定為耐藥情況最嚴(yán)峻的6類細(xì)菌,簡稱ESKAPE[1]。由于抗生素的不合理使用,多重耐藥肺炎克雷伯氏菌在全球范圍內(nèi)迅速散播,臨床調(diào)查顯示,它對氨基糖苷類、青霉素類、頭孢菌素類、碳青霉烯類藥物等呈現(xiàn)不同程度的耐藥[2]。替加環(huán)素是繼米諾環(huán)素后開發(fā)的新一代四環(huán)素類抗生素,通過可逆結(jié)合細(xì)菌核糖體30S亞基,阻斷tRNA進(jìn)入核糖體A位點來抑制蛋白質(zhì)合成,達(dá)到抗菌目的[3]。其與核糖體的親和力比四環(huán)素高十幾倍,具有更高的抗菌活性。作為治療多重耐藥肺炎克雷伯氏菌感染的重要敏感儲備藥物,其耐藥機制備受國內(nèi)外關(guān)注。
本實驗從臨床分離到一株替加環(huán)素耐藥的肺炎克雷伯氏菌,利用電轉(zhuǎn)化、酶切、克隆、測序分析、藥敏實驗等方法,對其耐藥機制進(jìn)行研究。結(jié)果證實,tet(A)突變是導(dǎo)致肺炎克雷伯氏菌對替加環(huán)素耐藥的重要機制,且該tet(A)突變體位于一個接合性質(zhì)粒上,可加速該基因突變體的流行及傳播。這一發(fā)現(xiàn)擴展了人們對肺炎克雷伯氏菌抗替加環(huán)素的耐藥機制認(rèn)識,并為該類型耐藥基因的擴散控制提供了新依據(jù)。
大腸埃希菌DH5α,載體PBSK由本實驗室保存。替加環(huán)素購自成都思天德生物科技有限公司,米諾環(huán)素購自蘭旭生物有限公司,四環(huán)素、環(huán)丙沙星、慶大霉素、頭孢噻圬、氨芐西林、PremixTaq酶均購自寶生生物有限公司。DL2000 DNA Marker、DL10000 DNA Marker、λ/HindⅢ DNA Marker購自北京百泰克生物技術(shù)有限公司。細(xì)菌基因組DNA提取試劑盒購自天根生化科技有限公司。
根據(jù)歐盟藥敏實驗標(biāo)準(zhǔn)(EUCAST)推薦的替加環(huán)素最低抑菌濃度(minimal inhibition concentrations, MIC): 1 mg·L-1判定為中介,≥2 mg·L-1判定為耐藥,配制含有替加環(huán)素終濃度2 mg·L-1的LB瓊脂板(新鮮配制,避光)[4]。將分離得到的菌株三區(qū)劃線于替加環(huán)素藥板,37 ℃恒溫培養(yǎng)12~24 h,觀察菌落生長情況。
將以上分離純化得到的細(xì)菌接種于普通培養(yǎng)基中培養(yǎng)24 h,再接種菌液于葡萄糖、乳糖、麥芽糖、甘露醇、蔗糖、枸櫞酸鹽、硫化氫、吲哚、尿素、硝酸鹽、明膠、鳥氨酸脫羧酶、M.R、V-P等微量生化管進(jìn)行生化實驗。同時制備模板DNA:挑取單個菌落于LB肉湯中,37 ℃搖床培養(yǎng)至對數(shù)期,使用細(xì)菌基因組DNA提取試劑盒提取DNA。根據(jù)文獻(xiàn)[5],合成16S rRNA細(xì)菌種屬鑒定引物,擴增PCR,測序。
接200 μL菌液于300 mL LB 肉湯中,37 ℃搖床培養(yǎng)14 h,使用美國QIAGEN公司中提試劑盒(QIAGEN?Plasmid Midi Kit)提取野生株細(xì)菌質(zhì)粒。根據(jù)文獻(xiàn)[6]提供的方法,制備感受態(tài)細(xì)胞,將細(xì)胞按80 μL等份裝入微量離心管,保存于-80 ℃?zhèn)溆?。根?jù)文獻(xiàn)[7]進(jìn)行電轉(zhuǎn)化實驗,轉(zhuǎn)移轉(zhuǎn)化后的細(xì)胞至替加環(huán)素(終濃度為2 mg·L-1)加藥培養(yǎng)基中,37 ℃培養(yǎng)24~48 h,觀察電轉(zhuǎn)子。
提取電轉(zhuǎn)子質(zhì)粒:細(xì)菌電轉(zhuǎn)子質(zhì)粒的提取方法同1.3節(jié),保存于-80 ℃?zhèn)溆谩?/p>
質(zhì)粒的酶切、連接與轉(zhuǎn)化(克隆):用5 μLEcoRⅠ酶、5 μL 10×H Buffer與5 μL電轉(zhuǎn)子質(zhì)?;? μL PBSK載體混合,加純水補齊至50 μL,37 ℃酶切3 h;65 ℃ 20 min 終止酶切反應(yīng);將上述酶切產(chǎn)物分別與2 μL SAP酶和5 μL 10×SAP Buffer混合,純水補齊至50 μL,37 ℃ 15 min 去磷酸化;65 ℃ 15 min 終止酶切反應(yīng);將上述去過磷酸化的質(zhì)粒DNA酶切產(chǎn)物和PBSK酶切產(chǎn)物一同與0.3 μL T4 連接酶、1 μL 10×T4 Buffer混合,純水補齊至10 μL,16 ℃ 過夜連接。
連接子的電轉(zhuǎn)化:方法同1.3節(jié),轉(zhuǎn)移細(xì)胞至替加環(huán)素(終濃度為2 mg·L-1)和氨芐青霉素(終濃度為128 mg·L-1)的雙抗板上,37 ℃培養(yǎng)24~48 h,觀察電轉(zhuǎn)子。
細(xì)菌連接電轉(zhuǎn)子質(zhì)粒的提取方法同1.3節(jié)。根據(jù)PBSK載體通用引物M13-F/M13-R,送至北京華大基因公司進(jìn)行測序。
對野生菌、電轉(zhuǎn)子、連接電轉(zhuǎn)子、空載體、DH5α進(jìn)行藥敏實驗,藥物有環(huán)丙沙星、慶大霉素、頭孢噻圬、四環(huán)素、米諾環(huán)素和替加環(huán)素,通過微量肉湯稀釋法測定MICs[8]。當(dāng)?shù)?2孔陰性對照無菌落生長、而第11孔陽性對照有明顯生長時,讀取該次實驗結(jié)果。
分離得到一株在替加環(huán)素(2 mg·L-1)瓊脂板上生長的野生菌株。生化鑒定實驗顯示,該菌發(fā)酵葡萄糖、乳糖、麥芽糖、甘露醇、蔗糖,不產(chǎn)生硫化氫,不利用枸櫞酸鹽,不還原硝酸鹽,產(chǎn)生吲哚,液化明膠,鳥氨酸脫羧酶、M.R、V-P均呈陽性,與肺炎克雷伯氏菌的生化特性一致。16S PCR擴增結(jié)果如圖1,測序為肺炎克雷伯氏菌,命名為kp-15-72。
從圖2可以看出,對分離的替加環(huán)素耐藥的肺炎克雷伯菌kp-15-72進(jìn)行質(zhì)粒抽提可獲得多個質(zhì)粒,而電轉(zhuǎn)化僅得到含單一替加環(huán)素耐藥質(zhì)粒的電轉(zhuǎn)子,該電轉(zhuǎn)子命名為Tkp-1,表明引起該株肺炎克雷伯菌替加環(huán)素耐藥的基因位于質(zhì)粒上。
提取電轉(zhuǎn)子Tkp-1質(zhì)粒進(jìn)行EcoRⅠ酶切、連接、克隆、電轉(zhuǎn)化等實驗,得到一個含有約5 kb的克隆片段的陽性菌株,命名為DH5α[PBSK+tet(A) variant],說明肺炎克雷伯菌替加環(huán)素耐藥的產(chǎn)生是由該5 kb的片段引起,見圖3。
M,Marker;1,kp-15-72.圖1 菌株16S PCR擴增結(jié)果Fig.1 16S PCR amplification results
M,Marker;1,kp-15-72;2,TKP-1(電轉(zhuǎn)子)。圖2 野生菌及其電轉(zhuǎn)子的質(zhì)粒圖譜Fig.2 Plasmid profiles of wild-type strains and their transformants
根據(jù)PBSK載體通用引物M13-F/M13-R,對連接電轉(zhuǎn)子再酶切片段進(jìn)行測序,經(jīng)NCBI Blast比對分析,該質(zhì)粒中tet(A)基因發(fā)生了雙移碼突變,從野生型AGCTTCGTTC突變?yōu)镚CTTCGTTCC。
按EUCAST標(biāo)準(zhǔn)測定野生株kp-15-72,電轉(zhuǎn)子Tkp-1,DH5α[PBSK+tet(A) variant],DH5α[empty PBSK vector],DH5α對幾個常用藥物的藥敏實驗,結(jié)果如表1,說明tet(A)突變體同時貢獻(xiàn)了對替加環(huán)素、四環(huán)素和米諾環(huán)素不同程度的耐藥性。
表1 野生株kp-15-72、電轉(zhuǎn)子Tkp-1、DH5α[PBSK+tet(A) variant]、DH5α[empty PBSK vector]和DH5α的藥物敏感性檢測Table 1 Antimicrobial susceptibility tests of wild-type strain kp-15-72,transformant Tkp-1,DH5α[PBSK+tet(A) variant],DH5α[empty PBSK vector] and DH5α
近幾年來,肺炎克雷伯氏菌的耐藥性已經(jīng)超過同屬腸桿菌科的大腸埃希菌,特別是自2001年美國出現(xiàn)第一株碳青霉烯類耐藥肺炎克雷伯桿菌后,多重耐藥的肺炎克雷伯氏菌很快在全世界多國家、多地區(qū)播散和流行[9]。替加環(huán)素成為僅剩的有效抗生素,且被目標(biāo)性應(yīng)用于治療多重耐藥肺炎克雷伯桿菌及其他碳青霉烯類耐藥腸桿菌的感染病例[10]。然而隨著替加環(huán)素使用的增加,世界多地出現(xiàn)了替加環(huán)素耐藥肺炎克雷伯桿菌,使肺炎克雷伯氏菌感染陷入無藥可治的困境,嚴(yán)重威脅人畜健康[11]。
整理與肺炎克雷伯氏菌對替加環(huán)素耐藥的所有研究,主動外排系統(tǒng)是導(dǎo)致K.pneumoniae對替加環(huán)素耐藥的主要機制,其中AcrAB-TolC外排泵和OqxAB外排泵上調(diào)引起的耐藥最為廣泛[12-16]。除此之外,Nielse等[17]和Hawser等[18]在肺炎克雷伯菌的外排泵操縱子上游發(fā)現(xiàn)了一個IS5插入序列,將其導(dǎo)入缺失kpgABC基因的菌株中,發(fā)現(xiàn)外排泵KpgABC表達(dá)上調(diào)使替加環(huán)素MIC值上升4倍,說明單獨的KpgABC外排系統(tǒng)可導(dǎo)致肺炎克雷伯菌對替加環(huán)素的耐藥水平大幅度升高。Villa等[19]和Beabout等[20]得到一株對替加環(huán)素耐藥的肺炎克雷伯菌,測序顯示位于核糖體30S亞基中與替加環(huán)素作用靶點相鄰的S10核糖體蛋白的編碼基因rpsJ發(fā)生了點突變,功能驗證發(fā)現(xiàn),rpsJ突變可改變替加環(huán)素結(jié)合位點附近的核糖體結(jié)構(gòu),擾亂Mg2+離子配位,導(dǎo)致替加環(huán)素與16S rRNA的結(jié)合減弱,敏感性下降。本研究得到一個攜帶tet(A)突變的質(zhì)粒,藥敏實驗和功能實驗證實tet(A)突變可導(dǎo)致肺炎克雷伯氏菌對替加環(huán)素低濃度耐藥,且質(zhì)粒有加速這種耐藥傳播的可能,為抗菌藥耐藥性風(fēng)險評估和控制提供了依據(jù)。
綜上所述,如何減少替加環(huán)素耐藥肺炎克雷伯菌的出現(xiàn),延長替加環(huán)素的使用壽命成為一個全世界關(guān)注的熱點問題。對耐藥機制進(jìn)行深入研究,可為改進(jìn)現(xiàn)有抗生素、開發(fā)新型抗菌藥物提供新思路。鑒于替加環(huán)素在治療多重耐藥菌株肺炎克雷伯菌的重要性,迫切需要加強對替加環(huán)素耐藥肺炎克雷伯菌的監(jiān)測和隔離控制。
參考文獻(xiàn)(References):
[1] PENDLETON J N,GORMAN S P,GILMORE B F. Clinical relevance of the ESKAPE pathogens[J].ExpertReviewofAnti-infectiveTherapy,2013,11(3):297-308.
[2] 康燕菲,田平芳,譚天偉. 肺炎克雷伯氏菌毒力因子的研究進(jìn)展[J]. 微生物學(xué)報,2015,55(10):1245-1252.
KANG Y F,TIAN P F,TAN T W. Research progress on virulence factor ofKlebsiellapneumonia[J].JournalofMicrobiology,2015,55(10):1245-1252. (in Chinese with English abstract)
[3] 孫桂鳳,陳頔,孫釗. 新一代抗菌藥物替加環(huán)素的研究進(jìn)展[J]. 藥品評價,2014(12):21-23.
SUN G F,CHEN Y,SUN Z. Progress in the research of tigecycline,a new generation of antibacterials[J].DrugEvaluation,2014(12):21-23. (in Chinese with English abstract)
[4] European Committee on Antimicrobial Susceptibility Testing (EUCAST) Steering Committee. EUCAST technical note on tigecycline[J].ClinicalMicrobiology&Infection,2017,12(11):1147-1149.
[5] 雷正瑜. 16S rDNA序列分析技術(shù)在微生物分類鑒定中的應(yīng)用[J]. 湖北生態(tài)工程職業(yè)技術(shù)學(xué)院學(xué)報,2006,4(1):4-7.
LEI Z Y. Application of 16S rDNA-sequential analysis in classification and determination of micro-organism[J].JournalofHubeiEcologyEngineeringCollege,2006,4(1):4-7. (in Chinese with English abstract)
[6] DOWER W J,MILLER J F,RAGSDALE C W. High efficiency transformation ofE.coliby high voltage electroporation[J].NucleicAcidsResearch,1988,16(13):6127-6145.
[7] 朱森康,黃磊,李燕飛,等. 制備高效大腸桿菌電轉(zhuǎn)化感受態(tài)細(xì)胞和電轉(zhuǎn)化條件的研究[J]. 生物技術(shù)通報,2011(10):206-209.
ZHU S K,HUANG L,LI Y F,et al. Preparation of efficient electrotransformation comptent cell ofEscherichiacoliand condition of electrotransformation[J].BiotechnologyBulletin,2011(10):206-209. (in Chinese with English abstract)
[8] European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Dieases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution[J].ClinicalMicrobiology&Infection,2000,6:509-515.
[9] 何建新,吳榮輝,金小珍,等. 替加環(huán)素、米諾環(huán)素、多黏菌素B對碳青霉烯類敏感性降低和不敏感肺炎克雷伯菌的體外抗菌活性[J]. 浙江醫(yī)學(xué),2015,37(21):1761-1763.
HE J X,WU R H,JIN X Z,et al. Effects of tigecycline minocycline and polymyxin B againstKlebsiellapneumoniawith decreased or no susceptibility to carbapenemsinvitro[J].ZhejiangMedical,2015,37(21):1761-1763. (in Chinese with English abstract)
[10] LIVERMORE D M. Tigecycline: what is it,and where should it be used?[J].JournalofAntimicrobialChemotherapy,2005,56(4):611-614.
[11] OLSON M W,RUZIN A,F(xiàn)EYFANT E,et al. Functional,biophysical,and structural bases for antibacterial activity of tigecycline[J].AntimicrobialAgents&Chemotherapy,2006,50(6):2156-2166.
[12] VELEBA M,SCHNEIDERS T. Tigecycline resistance can occur independently of theramAgene inKlebsiellapneumoniae[J].AntimicrobAgentsChemother,2012,56(8):4466-4467.
[13] ZHONG X,XU H,CHEN D,et al. First emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates ofKlebsiellapneumoniaepre-dating the use of tigecycline in a Chinese hospital[J].PLoSOne,2014,9(12):e115185.
[14] He F,F(xiàn)u Y,Chen Q,et al. Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producingKlebsiellapneumoniae[J].PLoSOne,2015,10(3):e0119064.
[15] WANG X,CHEN H,ZHANG Y,et al. Genetic characterisation of clinicalKlebsiellapneumoniaeisolates with reduced susceptibility to tigecycline: role of the global regulator RamA and its local repressor RamR[J].InternationalJournalofAntimicrobialAgents,2015,45(6):635-640.
[16] LIN Y T,HUANG Y W,HUANG H H,et al.Invivoevolution of tigecycline-non-susceptibleKlebsiellapneumoniaestrains in patients: relationship between virulence and resistance[J].InternationalJournalofAntimicrobialAgents,2016,48(5):485-491.
[17] NIELSEN L E,SNESRUD E C,ONMUSLEONE F,et al. IS5 element integration,a novel mechanism for rapid in vivo emergence of tigecycline nonsusceptibility inKlebsiellapneumoniae[J].AntimicrobialAgents&Chemotherapy,2014,58(10):6151-6156.
[18] HAWSER S P,BOUCHILLON S K,HACKEL M,et al. Trending 7 years of in vitro activity of tigecycline and comparators against Gram-positive and Gram-negative pathogens from the Asia-Pacific region: Tigecycline evaluation surveillance trial (TEST) 2004-2010[J].InternationalJournalofAntimicrobialAgents,2012,39(6):490-495.
[19] VILLA L,F(xiàn)EUDI C,F(xiàn)ORTINI D,et al. Genomics of KPC-producingKlebsiellapneumoniaesequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance[J].AntimicrobialAgents&Chemotherapy,2014,58(3):1707-1712.
[20] BEABOUT K,HAMMERSTROM T G,PEREZ A M,et al. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility[J].AntimicrobialAgents&Chemotherapy,2015,59(9):5561-5566.