王志冉 王紅艷 鄧海峰 許傳強(qiáng)
(沈陽農(nóng)業(yè)大學(xué)園藝學(xué)院,設(shè)施園藝省部共建教育部重點(diǎn)實(shí)驗(yàn)室,環(huán)渤海灣地區(qū)設(shè)施園藝蔬菜優(yōu)質(zhì)高效生產(chǎn)協(xié)同創(chuàng)新中心,遼寧沈陽110866)
轉(zhuǎn)錄因子HY5(ELONGATED HYPOCOTYL5)是亮氨酸拉鏈(bZIP)類的轉(zhuǎn)錄因子,它能通過不同的感受光信號(hào)接收光信號(hào),并將光信號(hào)傳遞給下游作用元件,進(jìn)而調(diào)控植物的生長發(fā)育。研究發(fā)現(xiàn),植物的光形態(tài)建成(photomorphogenesis)和氮素的吸收同化都會(huì)受到HY5轉(zhuǎn)錄因子的調(diào)控,而且這些調(diào)控方式都會(huì)受光照的誘導(dǎo)(Chen et al.,2016;Li & He,2016)。HY5是調(diào)控光形態(tài)建成的重要因子。植物光形態(tài)建成的表型,如幼苗下胚軸的伸長、植株的黃化與去黃化等與HY5的表達(dá)具有密切關(guān)系。此外,HY5也會(huì)啟動(dòng)光形態(tài)建成下游的光敏色素、隱花色素、UV-B光感受器(Casal,2013),進(jìn)而調(diào)控植物基本的發(fā)育進(jìn)程,例如細(xì)胞的分裂與伸長,葉綠體的發(fā)育和營養(yǎng)元素的吸收同化等(Oyama et al.,1997)。近期的一項(xiàng)研究證明HY5也是調(diào)控植物氮碳平衡的重要因子。HY5在光照條件下積累,促進(jìn)光合產(chǎn)物從地上部移動(dòng)到根,同時(shí)HY5也是長距離運(yùn)輸?shù)男盘?hào)分子,它能夠促進(jìn)主根的生長,同時(shí)誘導(dǎo)硝酸鹽從根系向地上部運(yùn)輸,從而調(diào)節(jié)了植物的碳氮平衡(Chen et al.,2016)??梢?,轉(zhuǎn)錄因子HY5在植物光形態(tài)建成、內(nèi)源激素信號(hào)轉(zhuǎn)導(dǎo)、氮代謝及碳氮平衡方面具有重要調(diào)控作用。
HY5是定位到細(xì)胞核內(nèi)的組成型蛋白質(zhì),由168個(gè)氨基酸組成,分子量為18.5 kDa(Oyama et al.,1997),是第1個(gè)被發(fā)現(xiàn)參與光形態(tài)建成并進(jìn)行深入研究的轉(zhuǎn)錄因子(Ang et al.,1998;Li et al.,2010)。光是植物生長發(fā)育所必需的,能夠調(diào)節(jié)幼苗光形態(tài)建成和種子萌發(fā)等過程(Jiao et al.,2007)。光照條件下生長的擬南芥,在種子破土到幼苗生長的過程中,植株主要表現(xiàn)出下胚軸縮短、子葉展開、根和莖的頂端分生組織細(xì)胞的數(shù)量調(diào)控,同時(shí)葉綠體迅速積累,植株呈現(xiàn)出去黃化(de-etioletion)的現(xiàn)象,這些都是光形態(tài)建成的具體表現(xiàn);相反,在黑暗中生長的幼苗呈現(xiàn)的表型叫做暗形態(tài)建成(skotomorphogenesis),其代表性的特征主要是:細(xì)長的下胚軸,兩片子葉未展開,頂端形成彎彎的勾狀結(jié)構(gòu),葉綠體發(fā)育不完全并呈現(xiàn)出黃化的表型等(Srivastava et al.,2015;Gangappa &Botto,2016;Li & He,2016)。光照是調(diào)控植物光形態(tài)建成最重要的環(huán)境因子之一,決定了植物種子的萌發(fā)、幼苗的去黃化、器官發(fā)育、開花和種子發(fā)育等生長發(fā)育進(jìn)程(Kircher & Schopfer,2012)。不同的光感受器吸收光并將光信號(hào)傳遞給HY5轉(zhuǎn)錄因子,進(jìn)一步響應(yīng)特異性的激素、養(yǎng)分吸收、非生物脅迫(冷害、高鹽)和新陳代謝等生命活動(dòng)涉及的信號(hào)通路以適應(yīng)植物的生長與發(fā)育(Kircher &Schopfer,2012)。
在可見光和UV-B的光照條件下,HY5能夠激活自身基因的轉(zhuǎn)錄,促進(jìn)基因的表達(dá)(Abbas et al.,2014;Binkert et al.,2014)。COP1(constitutive photomorphogeneic 1)是光信號(hào)轉(zhuǎn)導(dǎo)因子中非常重要的一個(gè)蛋白,稱為光形態(tài)建成調(diào)控因子。它對(duì)紅光、遠(yuǎn)紅光和藍(lán)光信號(hào)都能做出反應(yīng),對(duì)光信號(hào)的轉(zhuǎn)導(dǎo)起限速作用,是光受體信號(hào)轉(zhuǎn)導(dǎo)中的關(guān)鍵因子(Hardtke et al.,2000)。研究發(fā)現(xiàn)HY5能夠與COP1相互作用,黑暗條件下COP1在細(xì)胞核內(nèi)積累,HY5與COP1的N末端結(jié)合,使HY5泛素化并降解,負(fù)調(diào)控HY5下游光形態(tài)建成下游基因的表達(dá)(Holm et al.,2002;Yoon et al.,2006;Cloix et al.,2012);在光照條件下,COP1移動(dòng)到細(xì)胞核外,不能與HY5相互作用,HY5大量積累,促進(jìn)了HY5轉(zhuǎn)錄因子下游信號(hào)的傳遞,加快反應(yīng)進(jìn)程(Osterlund et al.,2000;Huang et al.,2012)。這一原理可以解釋光照條件下幼苗的去黃化現(xiàn)象。
在可見光或UV-B的光照條件下,HY5能夠通過誘導(dǎo)色素生物合成關(guān)鍵基因的表達(dá)來調(diào)控色素的合成與積累(Holm et al.,2002;Shin et al.,2007;Stracke et al.,2010)。花青素是黃酮類化合物,可以保護(hù)植物組織免受許多環(huán)境脅迫,花青素的生物合成與溫度的變化密切相關(guān),能夠增強(qiáng)脅迫條件下植物的生存能力(Pastore et al.,2017)?;ㄇ嗨厣锖铣稍缙诨虬ú闋柾铣擅富駽HS(chalcone synthase)、查爾酮異構(gòu)酶基因CHI(chalcone isomerase)等,轉(zhuǎn)錄因子HY5與光誘導(dǎo)型基因CHS的啟動(dòng)子直接結(jié)合,進(jìn)行轉(zhuǎn)錄水平的調(diào)控(Ang et al.,1998;Shin et al.,2007),HY5 還能夠與CHI基因的啟動(dòng)子結(jié)合,也能夠促進(jìn)花青素的生物合成。HY5和它的同源基因HYH在低溫條件下誘導(dǎo)CHS和CHI基因的表達(dá),誘導(dǎo)花青素的積累主要依賴于光信號(hào)的轉(zhuǎn)導(dǎo)增加HY5的蛋白水平來實(shí)現(xiàn)的(Zhang et al.,2011)。研究表明,高溫能夠抑制植物花青素的生物合成,甚至在一些成熟果實(shí)(如蘋果和葡萄)的果皮中,花青素的含量也會(huì)減少(Mori et al.,2007;Lin-Wang et al.,2011;Movahed et al.,2016)。高溫抑制花青素的生物合成是通過E3泛素連接酶COP1與花色素苷的正調(diào)控因子HY5共同調(diào)控的。與低溫(17 ℃)條件相比,高溫(28 ℃)條件下擬南芥花色素苷的含量顯著升高,原因是環(huán)境溫度的升高會(huì)降低花青素生物合成基因的表達(dá)量,然而在cop1與hy5突變體中花青素的合成與積累不受溫度變化的影響(Kim et al.,2017)??傊?,高溫條件下抑制花青素的生物合成是通過COP1-HY5信號(hào)途徑完成的。研究表明,PSY(phytoene synthase)是八氫番茄紅素合成酶基因,是調(diào)控類胡蘿卜素生物合成的關(guān)鍵基因,HY5能誘導(dǎo)PSY基因的表達(dá)(Toledo-Ortiz et al.,2014)。HY5參與光信號(hào)轉(zhuǎn)導(dǎo)在調(diào)控植物體內(nèi)色素合成過程中發(fā)揮著重要的作用。
HY5轉(zhuǎn)錄因子是光照在晝夜交替過程中一個(gè)重要的信號(hào)轉(zhuǎn)換集成點(diǎn)(Zhang et al.,2011),植株地上部接收的光信號(hào)能夠經(jīng)過莖并傳遞到根系,激活根系中的光敏色素(Lee et al.,2016)。HY5能夠在擬南芥根細(xì)胞的所有組織中表達(dá),而HYH在根系的木質(zhì)部細(xì)胞中表達(dá)。將在黑暗條件下生長的hy5突變體、hyh突變體與hy5 hyh雙突變體給予一定的光照干擾,hy5突變體的根系生長就會(huì)受到阻礙,而hyh突變體與hy5 hyh雙突變體的根系生長不會(huì)受到光照的干擾,這說明了HY5在光控制的根系的光形態(tài)建成中起著重要的作用(Zhang et al.,2017)。
植物激素作為植物體內(nèi)的痕量信號(hào)分子,對(duì)于調(diào)節(jié)植物的生長發(fā)育過程和對(duì)環(huán)境的應(yīng)答具有十分重要的意義(康云艷 等,2007)。赤霉素(GA)、脫 落 酸(ABA)、 生 長 素(auxin,IAA)、 乙 烯(ethylene)、細(xì)胞分裂素(cytokinin)等激素的生物合成信號(hào)轉(zhuǎn)導(dǎo)都會(huì)受到HY5的調(diào)控,HY5位于調(diào)控網(wǎng)絡(luò)的中心位置(Gangappa & Botto,2016),與多種激素信號(hào)通路相偶聯(lián)共同調(diào)控植物的光形態(tài)建成(圖1)。
圖1 HY5通過不同激素信號(hào)轉(zhuǎn)導(dǎo)途徑調(diào)控植物光形態(tài)建成(Gangappa & Botto,2016)
hy5突變體在幼苗生長過程中表現(xiàn)出下胚軸細(xì)長的表型,產(chǎn)生這一現(xiàn)象的部分原因是由于HY5通過改變植物體內(nèi)生長素和細(xì)胞分裂素之間的平衡,影響了信號(hào)轉(zhuǎn)導(dǎo)。通過基因芯片技術(shù)和半定量RT-PCR技術(shù)篩選出2個(gè)生長素信號(hào)的負(fù)調(diào)控因子AXR2(IAA7)和SLR(IAA14),這2個(gè)基因在hy5突變體中都上調(diào)表達(dá)(Cluis et al.,2004)。Sibout等(2006)同樣發(fā)現(xiàn)HY5通過抑制生長素信號(hào)的傳遞抑制下胚軸的伸長。HY5調(diào)控植物根系的表型還會(huì)受到氮素供應(yīng)水平和供應(yīng)形式的影響,這也是由HY5與生長素之間的信號(hào)交流進(jìn)行調(diào)控的(Huang et al.,2015)。研究發(fā)現(xiàn),植物能夠感知來自周圍環(huán)境中的遠(yuǎn)紅光信號(hào),遠(yuǎn)紅光信號(hào)的改變使紅光與遠(yuǎn)紅光的比例(R∶FR)發(fā)生改變,光敏色素接收信號(hào),同時(shí)傳遞給光敏色素依賴型轉(zhuǎn)錄因子HY5,HY5通過減少根系表皮細(xì)胞質(zhì)膜上的PIN3與LAX3生長素運(yùn)輸?shù)鞍椎呢S度調(diào)控根系的生長。環(huán)境中遠(yuǎn)紅光的增加,降低了根系表皮細(xì)胞生長素的信號(hào)強(qiáng)度,從而使側(cè)根原基發(fā)生減少,根系密度降低(van Gelderen et al.,2018)。HY5作為長距離運(yùn)輸?shù)男盘?hào)分子,與生長素之間的信號(hào)交流主要是將地上部接收的光照信號(hào)傳遞到根系,在植物幼苗根系的生長發(fā)育和根系系統(tǒng)結(jié)構(gòu)表型方面發(fā)揮重要的作用。
油菜素內(nèi)酯(BR)是植物體內(nèi)必不可少的激素,在植物生長發(fā)育過程中發(fā)揮著重要的作用,BR能夠促進(jìn)植物細(xì)胞的伸長,提高抗逆性與抗病能力(Oyama et al.,1997)。研究表明,在黑暗中生長的雙子葉植物幼苗會(huì)在下胚軸的頂端形成一個(gè)鉤狀結(jié)構(gòu),鉤狀結(jié)構(gòu)的形成依賴于生長素濃度梯度,其他激素與光照條件也參與了鉤狀結(jié)構(gòu)的形成(Sun et al.,2010)。光照與BR參與調(diào)控子葉的開放以及頂端鉤狀結(jié)構(gòu)的形成,在種子從土壤中萌發(fā)沖破土壤的過程中,有利于植物保護(hù)莖尖分生組織不被破壞(Li & He,2016)。無鉤突變體在種子埋入土壤時(shí)不能順利萌發(fā)(Oyama et al.,1997)。光照能夠調(diào)控HY5轉(zhuǎn)錄因子,BR能夠調(diào)控BR合成抑制劑因子BZR1(brassinazole 1)轉(zhuǎn)錄因子,HY5能夠和BZR1相互作用調(diào)控?cái)M南芥幼苗的光形態(tài)建成。HY5與BZR1蛋白互作,使BZR1發(fā)生磷酸化導(dǎo)致活性降解,從而在擬南芥種子破土后,促進(jìn)兩片子葉展開,而頂端勾狀結(jié)構(gòu)也隨之消失,調(diào)控了植物的光形態(tài)建成(Li & He,2016)。膜類固醇結(jié)合蛋白MSBP1(membrane steroid binding protein 1)可與類固醇激素在體外結(jié)合,負(fù)調(diào)控BR信號(hào),調(diào)控細(xì)胞的分裂和伸長(Yang et al.,2005;Song et al.,2009)。在油菜素內(nèi)酯信號(hào)轉(zhuǎn)導(dǎo)途徑中,HY5還能夠直接誘導(dǎo)BR信號(hào)轉(zhuǎn)導(dǎo)途徑中的負(fù)調(diào)控因子MSBP1基因的表達(dá)(Shi et al.,2011)。總之,HY5抑制油菜素內(nèi)酯信號(hào)途徑的傳導(dǎo),在BR信號(hào)轉(zhuǎn)導(dǎo)途徑中起負(fù)調(diào)控作用,促進(jìn)植物光形態(tài)建成表型的產(chǎn)生。
GA是光形態(tài)建成中的負(fù)調(diào)控因子,其中一個(gè)作用是能夠抑制HY5蛋白的積累(Gar cí a-Martinez &Gil,2001;Alabad?′ et al.,2004), 還 有 研 究 表明GA主要通過COP1對(duì)HY5蛋白進(jìn)行調(diào)控(Yu et al.,2013)。GA能夠抑制HY5的積累,HY5也能夠調(diào)控GA的含量。DELLA蛋白是GA信號(hào)通路中的一個(gè)重要的蛋白結(jié)構(gòu)域,光照通過抑制GA的生物合成同時(shí)增強(qiáng)DELLA的活性來抑制GA的信號(hào)轉(zhuǎn)導(dǎo)(Achard et al.,2007),通過 ChIP-Seq分析,HY5能夠作用于許多GA代謝過程中的相關(guān)基因(Lee et al.,2016)。HY5能夠調(diào)控GA降解水平基因GA2ox2的表達(dá)(Weller et al.,2009),同時(shí)GA2ox2酶活性的增加能夠提高DELLA的活性,使GA大量降解(Achard et al.,2007)。以目前的結(jié)論推測(cè)HY5與GA信號(hào)之間可能存在著反饋調(diào)節(jié)機(jī)制,GA負(fù)調(diào)控HY5的積累,同時(shí)HY5也促進(jìn)GA的降解,它們之間的相互作用也是調(diào)控植物光形態(tài)建成進(jìn)程的一條信號(hào)通路。
內(nèi)源激素乙烯能夠使植物發(fā)生典型的“三重反應(yīng)”,使幼苗的根系縮短變粗,對(duì)乙烯信號(hào)相關(guān)基因突變體和hy5突變體進(jìn)行表型分析,發(fā)現(xiàn)乙烯對(duì)于幼苗下胚軸生長的促進(jìn)作用在突變體中被抑制了,確定了HY5是乙烯調(diào)控?cái)M南芥幼苗下胚軸生長的關(guān)鍵因子(于延文,2013)。同時(shí)光照也是調(diào)控?cái)M南芥下胚軸生長的關(guān)鍵因素,光照促進(jìn)下胚軸生長,黑暗抑制下胚軸生長。在光照條件下,乙烯能夠促進(jìn)光敏色素互作因子PIF3的表達(dá),同時(shí)抑制HY5蛋白的降解,從而促進(jìn)下胚軸生長,然而在黑暗條件下,ERF1與WDL5能夠被乙烯誘導(dǎo),抑制下胚軸的生長(Yu & Huang,2017)。ERF11(ethylene response factor 11)是乙烯的生物合成抑制子,通過抑制乙烯合成基因ACS2/5的表達(dá)調(diào)控乙烯的生物合成。HY5也能夠啟動(dòng)ERF11基因的表達(dá),抑制乙烯的信號(hào)轉(zhuǎn)導(dǎo)(Li et al.,2011)。在擬南芥幼苗的去黃化過程中,HY5能夠與ERF4(ethylene responsive element binding protein 4)基因的啟動(dòng)子結(jié)合。ERF4也是活性氧響應(yīng)的基因,它能夠抑制活性氧的積累,在低溫條件下保護(hù)光系統(tǒng)減少光抑制(Chen et al.,2013)。HY5在乙烯信號(hào)轉(zhuǎn)導(dǎo)途徑中不僅調(diào)控了植物光形態(tài)建成的表型,而且也參與了植物對(duì)逆境的響應(yīng)。植物在抵抗強(qiáng)光等逆境時(shí),HY5與乙烯信號(hào)通路集成起到了重要的調(diào)控作用。
光照是調(diào)控植物生長的重要環(huán)境因子,植物激素脫落酸調(diào)節(jié)植物生長發(fā)育的各個(gè)方面,在植物對(duì)環(huán)境脅迫的適應(yīng)性反應(yīng)中起著至關(guān)重要的作用,也是調(diào)節(jié)氣孔開度的關(guān)鍵(Cutler et al.,2010;Nakashima & Yamaguchi-Shinozaki,2013)。植物能夠?qū)⑼饨绲墓庹招盘?hào)與內(nèi)源的ABA通路結(jié)合起來,以便更好地適應(yīng)和生存。BBX21是一類B-box蛋白,能夠正調(diào)控植物的光形態(tài)建成,也參與ABA信號(hào)轉(zhuǎn)導(dǎo)。BBX21通過干擾HY5轉(zhuǎn)錄因子與ABA上游不敏感基因ABI5的啟動(dòng)子結(jié)合負(fù)調(diào)控ABI5基因的表達(dá),這一過程將光照與ABA信號(hào)相偶聯(lián),調(diào)節(jié)整個(gè)轉(zhuǎn)錄協(xié)調(diào)工作(Chen et al.,2008)。HY5將光信號(hào)與ABA信號(hào)相偶聯(lián),調(diào)控種子的萌發(fā),HY5能夠與ABA信號(hào)的正向調(diào)控的轉(zhuǎn)錄因子ABI5基因的啟動(dòng)子結(jié)合,進(jìn)行轉(zhuǎn)錄水平的調(diào)控,抑制種子的萌發(fā)(Chen et al.,2008)。HY5調(diào)控ABI5基因的表達(dá)影響植物的耐鹽性,ABA也能通過其信號(hào)轉(zhuǎn)導(dǎo)途徑影響HY5,從而抑制ABI5基因的表達(dá),提高高鹽條件下種子的萌發(fā)率(李卓夫,2011)??梢奌Y5與ABA信號(hào)轉(zhuǎn)導(dǎo)途徑偶聯(lián),并有可能存在著反饋調(diào)節(jié)機(jī)制。HY5與ABA相偶聯(lián)與乙烯相似,也在植物光形態(tài)建成和抗逆方面發(fā)揮重要作用。
植物對(duì)氮素的吸收、轉(zhuǎn)運(yùn)、同化受光照和養(yǎng)分有效性的影響。植物根系吸收硝酸鹽后運(yùn)輸?shù)降厣喜康娜~片、種子等器官中主要是通過硝酸轉(zhuǎn)運(yùn)蛋白(nitrate transporter,NRT)實(shí)現(xiàn)的。依據(jù)吸收硝酸鹽濃度的不同可以分為高親和轉(zhuǎn)運(yùn)蛋白和低親和轉(zhuǎn)運(yùn)蛋白,它們是吸收硝酸鹽的主要載體(Dechorgnat et al.,2010)。兩個(gè)bZIP類型的轉(zhuǎn)錄因子HY5和HYH都可能是光誘導(dǎo)的硝酸還原酶基因NIA2(nitrate reductase 2)表達(dá)的直接誘導(dǎo)因子,無論是在擬南芥幼苗中還是蓮座時(shí)期,HY5和HYH對(duì)氮代謝關(guān)鍵酶硝酸還原酶基因NR的高表達(dá)具有關(guān)鍵作用(Jonassen et al.,2008;Lillo,2008)。在擬南芥hy5 hyh雙突變體中,光依賴型NIA2的轉(zhuǎn)錄水平受到抑制,表明HY5和HYH調(diào)節(jié)光誘導(dǎo)的NIA2基因的表達(dá)(Jonassen et al.,2009a)。但是HY5與HYH具有功能冗余現(xiàn)象,這2個(gè)蛋白共同發(fā)揮作用還是每個(gè)蛋白發(fā)揮了不同的作用尚不明確。
無論在不同的硝酸鹽供應(yīng)水平下還是在不同的光照條件下,HY5都正調(diào)控亞硝酸還原酶基因NIR1的表達(dá),負(fù)調(diào)控銨鹽轉(zhuǎn)運(yùn)基因AMT1;2(ammonium transporter1;2)的表達(dá),同時(shí)在不同氮素形式(硝態(tài)氮、銨態(tài)氮和硝酸銨3種形式的氮)和不同氮素濃度供應(yīng)的條件下也會(huì)影響其他氮代謝相關(guān)基因的表達(dá)(Jonassen et al.,2009b)。HY5需要光照誘導(dǎo)NIR1、AMT1;2和亞硝酸還原酶(nitrite reductase)基因NIA的表達(dá),而且在氮素和光照適宜的條件下,NIR1、AMT1;2和NIA基因的表達(dá)量也明顯提高。在持續(xù)的低氮濃度條件下,HY5缺失突變體的根系系統(tǒng)結(jié)構(gòu)發(fā)生變化,硝酸還原酶活性顯著降低,銨鹽含量顯著增加(Huang et al.,2015)??梢奌Y5參與擬南芥氮素同化吸收的過程十分復(fù)雜。光感受器感應(yīng)到光會(huì)誘導(dǎo)氮同化基因的表達(dá),然而在信號(hào)級(jí)聯(lián)放大中的轉(zhuǎn)換元件中這些基因的功能還不清楚。
HY5不僅能夠誘導(dǎo)氮代謝相關(guān)基因的表達(dá),促進(jìn)植物對(duì)氮素的吸收運(yùn)轉(zhuǎn),還促進(jìn)了地上部光合產(chǎn)物的形成以及向地下部的運(yùn)輸。在擬南芥中碳素的固定主要是光合產(chǎn)物以蔗糖的形式從韌皮部轉(zhuǎn)移到植物的庫組織中(Chen et al.,2012)。研究發(fā)現(xiàn)HY5能夠調(diào)控蔗糖的代謝途徑,能與編碼海藻糖-6-磷酸合酶基因TPS1結(jié)合控制其轉(zhuǎn)錄水平,同時(shí)還能夠誘導(dǎo)蔗糖轉(zhuǎn)運(yùn)蛋白(sugar transporter,SWEET11、SWEET12) 轉(zhuǎn) 錄 促 進(jìn) 蔗糖從葉片中輸出,運(yùn)輸?shù)降叵虏浚–hen et al.,2016)。同時(shí),HY5也能夠從地上部運(yùn)輸?shù)礁怠5厣喜康腍Y5與根系中的基因結(jié)合,將地上部接收的光信號(hào)傳遞至根系,實(shí)現(xiàn)光信號(hào)的放大。運(yùn)輸?shù)礁档恼崽且部梢宰鳛樾盘?hào)分子,誘導(dǎo)HY5轉(zhuǎn)錄因子與根系中的硝酸轉(zhuǎn)運(yùn)蛋白基因NRT2.1結(jié)合,促進(jìn)NRT2.1的表達(dá)。HY5將地上部碳素的同化與根系中氮素的吸收連接,實(shí)現(xiàn)了地上部與地下部之間的信息交流,促進(jìn)了植物碳氮原狀平衡(圖 2)。
圖2 HY5調(diào)控碳氮平衡模式圖(Chen et al.,2016)
綜上所述,轉(zhuǎn)錄因子HY5不僅促進(jìn)植物光形態(tài)建成和幼苗生長,在激素和代謝途徑中的響應(yīng)作用表明HY5具有多種功能。越來越多的研究結(jié)果表明,HY5與其他的激素信號(hào)通路集成啟動(dòng)植物光形態(tài)建成。并且,HY5也是從莖運(yùn)輸?shù)礁男盘?hào)分子,調(diào)控地上部碳素同化和蔗糖積累,增強(qiáng)了根系對(duì)HY5依賴型氮素的吸收,不僅促進(jìn)了根系對(duì)的吸收與轉(zhuǎn)運(yùn),而且促進(jìn)了碳氮平衡。我國在蕪菁(周波 等,2008)、油菜(郭繼平,2013)、番茄(張?zhí)锾铮?016)中也開展了有關(guān)轉(zhuǎn)錄因子HY5在光形態(tài)建成、逆境等方面的調(diào)控作用研究。沈陽農(nóng)業(yè)大學(xué)設(shè)施蔬菜栽培與生理課題組目前也正在從事轉(zhuǎn)錄因子HY5調(diào)控嫁接甜瓜氮代謝和碳氮平衡方面的研究工作,結(jié)果發(fā)現(xiàn)嫁接能夠極顯著地提高甜瓜幼苗葉片中HY5基因表達(dá)。這些研究對(duì)進(jìn)一步探析不同物種中轉(zhuǎn)錄因子HY5功能具有十分重要的意義和作用。近年來,伴隨著分子生物學(xué)技術(shù)的成熟發(fā)展,利用高通量測(cè)序技術(shù)、代謝組學(xué)和蛋白質(zhì)組學(xué)等技術(shù),可為進(jìn)一步探究轉(zhuǎn)錄因子HY5在植物生長發(fā)育過程中的功能及其調(diào)控網(wǎng)絡(luò)提供技術(shù)保障。同時(shí),轉(zhuǎn)錄因子HY5功能的解析對(duì)進(jìn)一步調(diào)控植物生長發(fā)育也提供了新的思路和方向。
郭繼平.2013.油菜HY5基因的電子克隆及生物信息學(xué)分析.北方園藝,(23):116-118.
康云艷,郭世榮,段九菊.2007.新型植物激素與蔬菜作物抗逆性關(guān)系研究進(jìn)展.中國蔬菜,(5):39-42.
李卓夫.2011.轉(zhuǎn)錄因子HY5在擬南芥乙烯生物合成及信號(hào)轉(zhuǎn)導(dǎo)中的功能分析〔博士論文〕.北京:中國農(nóng)業(yè)科學(xué)院.
于延文.2013.乙烯調(diào)控?cái)M南芥HY5蛋白穩(wěn)定性和幼苗下胚軸生長〔碩士論文〕.北京:中國農(nóng)業(yè)科學(xué)院.
張?zhí)锾铮?016.番茄SlHY5基因在低溫脅迫中的作用〔碩士論文〕.楊凌:西北農(nóng)林科技大學(xué).
周波,王宇,孫梅,李玉花.2008.津田蕪菁bZIP蛋白HY5 cDNA的克隆及表達(dá)特性.分子植物育種,6(1):59-64.
Abbas N,Maurya J P,Senapati D,Gangappa S N,Chattopadhyay S.2014.ArabidopsisCAM7 and HY5 physically interact and directly bind to theHY5promoter to regulate its expression and thereby promote photomorphogenesis.The Plant Cell,26:1036-1052.
Achard P,Liao L,Jiang C,Desnos T,Bartlett J,F(xiàn)u X,Harberd N P.2007.DELLAs contribute to plant photomorphogenesis.Plant Physiology,143:1163-1172.
Alabad í D,Gil J,B lá zquez M A,Gar cí a-Mar tí nez J L.2004.Gibberellins repress photomorphogenesis in darkness.Plant Physiology,134:1050-1057.
Ang L H,Chattopadhyay S,Wei N,Oyama T,Okada K,Batschauer A,Deng X W.1998.Molecular interaction between COP1 and HY5 defines a regulatory switch for light control ofArabidopsisdevelopment.Molecular Cell,1(2):213-222.
Binkert M,Kozma-Bogn á r L,Terecskei K,de Veylder L,Nagy F,Ulm R.2014.UV-B-responsive association of theArabidopsisbZIP transcription factor ELONGATED HYPOCOTYL5 with target genes,including its own promoter.The Plant Cell,26:4200-4213.
Casal J J.2013.Photoreceptor signaling networks in plant responses to shade.Annual Review of Plant Biology,64:403-427.
Chen H,Zhang J,Neff M M,Hong S W,Zhang H,Deng X W,Xiong L.2008.Integration of light and abscisic acid signaling during seed germination and early seedling development.Proceedings of the National Academy of Sciences,105:4495-4500.
Chen L Q,Qu X Q,Hou B H,Sosso D,Osorio S,F(xiàn)ernie A R,F(xiàn)rommer W B.2012.Sucrose efflux mediated by SWEET proteins as a key step for phloem transport.Science,335:207-211.
Chen D,Xu G,Tang W,Jing Y,Ji Q,F(xiàn)ei Z,Lin R.2013.Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling inArabidopsis.The Plant Cell,25:1657-1673.
Chen X,Yao Q,Gao X,Jiang C,Harberd N P,F(xiàn)u X.2016.Shootto-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition.Current Biology,26:640-646.
Cloix C,Kaiserli E,Heilmann M,Baxter K J,Brown B A,O’Hara A,Jenkins G I.2012.C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein.Proceedings of the National Academy of Sciences,109:16366-16370.
Cluis C P,Mouchel C F,Hardtke C S.2004.TheArabidopsistranscription factor HY5 integrates light and hormone signaling pathways.The Plant Journal,38:332-347.
Cutler S R,Rodriguez P L,F(xiàn)inkelstein R R,Abrams S R.2010.Abscisic acid:emergence of a core signaling network.Annual Review of Plant Biology,61:651-679.
Dechorgnat J,Nguyen C T,Armengaud P,Jossier M,Diatloff E,F(xiàn)illeur S,Daniel-Vedele F.2010.From the soil to the seeds:the long journey of nitrate in plants.Journal of Experimental Botany,62:1349-1359.
Gangappa S N,Botto J F.2016.The multifaceted roles of HY5 in plant growth and development.Molecular Plant,9:1353-1365.
Gar cí a-Martinez J L,Gil J.2001.Light regulation of gibberellin biosynthesis and mode of action.Journal of Plant Growth Regulation,20:354-368.
Hardtke C S,Gohda K,Osterlund M T,Oyama T,Okada K,Deng X W.2000.HY5 stability and activity inArabidopsisis regulated by phosphorylation in its COP1 binding domain. The EMBO Journal,19:4997-5006.
Holm M,Ma L G,Qu L J,Deng X W.2002.Two interacting bZIP proteins are direct targets of COP1-mediated control of lightdependent gene expression inArabidopsis.Genes & Development,16:1247-1259.
Huang X,Ouyang X,Yang P,Lau O S,Li G,Li J,Deng X W.2012.ArabidopsisFHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light.The Plant Cell,24:4590-4606.
Huang L,Zhang H,Zhang H,Deng X W,Wei N.2015.HY5 regulates nitrite reductase 1(NIR1)and ammonium transporter1;2(AMT1;2)inArabidopsisseedlings.Plant Science,238:330-339.
Jiao Y,Lau O S,Deng X W.2007.Light-regulated transcriptional networks in higher plants.Nature Reviews Genetics,8:217-230.
Jonassen E M,Lea U S,Lillo C.2008.HY5andHYHare positive regulators of nitrate reductase in seedlings and rosette stage plants.Planta,227:559-564.
Jonassen E M,Sandsmark B A,Lillo C.2009a.Unique status ofNIA2in nitrate assimilation:NIA2expression is promoted by HY5/HYH and inhibited by PIF4.Plant Signaling & Behavior,4(11):1084-1086.
Jonassen E,S é vin D C,Lillo C.2009b.The bZIP transcription factors HY5 and HYH are positive regulators of the main nitrate reductase gene inArabidopsisleaves,NIA2,but negative regulators of the nitrate uptake geneNRT1.1.Journal of Plant Physiology,166:2071-2076.
Kim S,Hwang G,Lee S,Zhu J Y,Paik I,Nguyen T T,Oh E.2017.High ambient temperature represses anthocyanin biosynthesis through degradation of HY5.Frontiers in Plant Science,8:doi:10.3389/fpls.2017.01787.
Kircher S,Schopfer P.2012.Photosynthetic sucrose acts as cotyledonderived long-distance signal to control root growth during early seedling development inArabidopsis.Proceedings of the National Academy of Sciences,109:11217-11221.
Lee H J,Ha J H,Kim S G,Choi H K,Kim Z H,Han Y J,Hyeon T.2016.Stem-piped light activates phytochrome B to trigger light responses inArabidopsis thalianaroots.Sci Signal,9:ra106.
Li J,Li G,Gao S,Martinez C,He G,Zhou Z,Wang H.2010.Arabidopsistranscription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling.The Plant Cell,22:3634-3649.
Li Q F,He J X.2016.BZR1 interacts with HY5 to mediate brassinosteroid-and light-regulated cotyledon opening inArabidopsisin darkness. Molecular Plant,9:113-125.
Li Z,Zhang L,Yu Y,Quan R,Zhang Z,Zhang H,Huang R.2011.The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis inArabidopsis.The Plant Journal,68:88-99.
Lillo C.2008.Signalling cascades integrating light-enhanced nitrate metabolism.Biochemical Journal,415:11-19.
Lin-Wang K U I,Micheletti D,Palmer J,Volz R,Lozano L,Espley R,Iglesias I.2011.High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex.Plant,Cell & Environment,34:1176-1190.
Mori K,Goto-Yamamoto N,Kitayama M,Hashizume K.2007.Loss of anthocyanins in red-wine grape under high temperature.Journal of Experimental Botany,58:1935-1945.
Movahed N,Pastore C,Cellini A,Allegro G,Valentini G,Zenoni S,F(xiàn)ilippetti I.2016.The grapevineVviPrx31peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature.Journal of Plant Research,129:513-526.
Nakashima K,Yamaguchi-Shinozaki K.2013.ABA signaling in stress-response and seed development.Plant Cell Reports,32:959-970.
Osterlund M T,Hardtke C S,Wei N,Deng X W.2000.Targeted destabilization of HY5 during light-regulated development ofArabidopsis.Nature,405:462-466.
Oyama T,Shimura Y,Okada K.1997.TheArabidopsisHY5gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl.Genes & Development,11:2983-2995.
Pastore C,Dal Santo S,Zenoni S,Movahed N,Allegro G,Valentini G,Tornielli G B.2017.Whole plant temperature manipulation affects flavonoid metabolism and the transcriptome of grapevine berries.Frontiers in Plant Science,8:929-936.
Shi Q M,Yang X,Song L,Xue H W.2011.ArabidopsisMSBP1is activated by HY5 and HYH and is involved in photomorphogenesis and brassinosteroid sensitivity regulation.Molecular Plant,4:1092-1104.
Shin J,Park E,Choi G.2007.PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters inArabidopsis.The Plant Journal,49:981-994.
Sibout R,Sukumar P,Hettiarachchi C,Holm M,Muday G K,Hardtke C S.2006.Opposite root growth phenotypes ofhy5versushy5 hyhmutants correlate with increased constitutive auxin signaling.PLoS Genetics,2:1898-1911.
Song L,Shi Q M,Yang X H,Xu Z H,Xue H W.2009.Membrane steroid-binding protein 1(MSBP1)negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1.Cell Research,19:864-876.
Srivastava A K,Senapati D,Srivastava A,Chakraborty M,Gangappa S N,Chattopadhyay S.2015.Short Hypocotyl in White Light1 interacts with Elongated Hypocotyl5(HY5)and Constitutive Photomorphogenic1(COP1)and promotes COP1-mediated degradation of HY5 duringArabidopsisseedling development.Plant Physiology,169:2922-2934.
Stracke R,F(xiàn)avory J J,Gruber H,Bartelniewoehner L,Bartels S,Binkert M,Ulm R.2010.TheArabidopsisbZIP transcription factor HY5 regulates expression of thePFG1/MYB12gene in response to light and ultraviolet-B radiation.Plant,Cell &Environment,33:88-103.
Sun Y,F(xiàn)an X Y,Cao D M,Tang W,He K,Zhu J Y,Patil S.2010.Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation inArabidopsis.Developmental Cell,19:765-777.
Toledo-Ortiz G,Johansson H,Lee K P,Bou-Torrent J,Stewart K,Steel G,Halliday K J.2014.The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription.PLoS Genetics,10:e1004416.
van Gelderen K,Kang C,Paalman R,Keuskamp D H,Hayes S,Pierik R.2018.Far-red light detection in the shoot regulates lateral root development through the HY5 transcription factor.The Plant Cell,tpc-00771.
Weller M,F(xiàn)elsberg J,Hartmann C,Berger H,Steinbach J P,Schramm J,Heese O.2009.Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma:a prospective translational study of the German Glioma Network.Journal of Clinical Oncology,27:5743-5750.
Yang X H,Xu Z H,Xue H W.2005.Arabidopsismembrane steroid binding protein 1 is involved in inhibition of cell elongation.The Plant Cell,17:116-131.
Yoon M K,Shin J,Choi G,Choi B S.2006.Intrinsically unstructured N-terminal domain of bZIP transcription factor HY5. Proteins:Structure,F(xiàn)unction,and Bioinformatics,65:856-866.
Yu Y,Wang J,Zhang Z,Quan R,Zhang H,Deng X W,Huang R.2013.Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light.PLoS Genetics,9:e1004025.
Yu Y,Huang R.2017.Integration of ethylene and light signaling affects hypocotyl growth inArabidopsis.Frontiers in Plant Science,8:doi:10.3389/fpls.2017.00057.
Zhang Y,Zheng S,Liu Z,Wang L,Bi Y.2011.Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation inArabidopsisseedlings.Journal of Plant Physiology,168:367-374.
Zhang Y,Li C,Zhang J,Wang J,Yang J,Lyu Y,Wang G.2017.Dissection ofHY5/HYHexpression inArabidopsisreveals a rootautonomous HY5-mediated photomorphogenic pathway.PLoS One,12:e0180449.