胡子龍,何長征,邢曉偉,胡時(shí)棟,李宇軒,宋林杰,王玉鋒,杜曉輝
(解放軍總醫(yī)院,1.普通外科;2.住院管理科,北京 100853)
Treg細(xì)胞是以表達(dá)FoxP3為標(biāo)志的一類CD4+T細(xì)胞亞群[1-2],于20世紀(jì)90年代首次被Sakaguehi等[3]發(fā)現(xiàn)并報(bào)道為CD4+CD25+T細(xì)胞,由于其具有免疫調(diào)節(jié)作用,因此被稱為調(diào)節(jié)性T細(xì)胞。Treg細(xì)胞自發(fā)現(xiàn)以來,一直是免疫學(xué)領(lǐng)域研究的熱點(diǎn),其在自身免疫疾病、腫瘤免疫、感染免疫等疾病中都發(fā)揮重要作用[4]。一方面,Treg細(xì)胞的免疫抑制功能在維持機(jī)體免疫穩(wěn)態(tài)、預(yù)防自身免疫性疾病方面具有重要作用,另一方面它能抑制機(jī)體的抗腫瘤免疫,降低免疫治療的效果。相關(guān)研究表明Treg細(xì)胞在包括胃癌、結(jié)直腸癌、乳腺癌、肝癌等多種類型腫瘤患者的外周血和腫瘤局部聚集,且發(fā)現(xiàn)Treg細(xì)胞數(shù)量與腫瘤患者的預(yù)后呈負(fù)相關(guān)[5],這說明Treg細(xì)胞在腫瘤免疫中扮演重要角色,目前對(duì)于Treg細(xì)胞在腫瘤免疫治療中的作用機(jī)制以及對(duì)Treg細(xì)胞數(shù)量和功能的干預(yù)成為了目前的研究熱點(diǎn),現(xiàn)對(duì)其研究進(jìn)展進(jìn)行綜述。
Sakaguehi等學(xué)者在1995年首次發(fā)現(xiàn)小鼠外周血中約5%~10%的CD4+T細(xì)胞高表達(dá)IL-2(Interleukin-2)受體CD25,并發(fā)現(xiàn)其具有免疫抑制和免疫調(diào)節(jié)功能,提出了調(diào)節(jié)性T細(xì)胞的概念。之后的研究發(fā)現(xiàn)CD25+除高表達(dá)于CD4+T細(xì)胞外,也表達(dá)與CD8+T細(xì)胞,CD25+在Treg細(xì)胞的表達(dá)并不是特異性的。因此,將其作為Treg細(xì)胞的標(biāo)志并不完全準(zhǔn)確。在隨后的研究中人們又發(fā)現(xiàn)了特異性表達(dá)于小鼠Treg細(xì)胞中的叉頭翼狀螺旋轉(zhuǎn)錄因子(ForkheadBoxP3,Foxp3),該轉(zhuǎn)錄因子在Treg細(xì)胞的免疫抑制作用中扮演關(guān)鍵角色,與Treg的發(fā)育和發(fā)揮免疫調(diào)節(jié)功能關(guān)系密切,F(xiàn)oxp3轉(zhuǎn)錄因子與Treg表面多種膜蛋白的表達(dá)如細(xì)胞毒性T淋巴相關(guān)抗原4 (CTLA4) 、糖皮質(zhì)激素誘導(dǎo)的腫瘤壞死因子受體家族相關(guān)基因(GITR) 、CD22、CD103、CD44 等膜蛋白的表達(dá)關(guān)系密切,此外Foxp3還對(duì)Treg細(xì)胞免疫抑制因子的分泌具有重要的調(diào)控作用,因此目前將其作為區(qū)分Treg細(xì)胞和普通T細(xì)胞的相對(duì)更加敏感的特異性標(biāo)志。
體內(nèi)Treg細(xì)胞按照來源不同可以分為占總Treg細(xì)胞絕大部分的胸腺來源的Treg細(xì)胞(tTreg)和外周誘導(dǎo)的Treg細(xì)胞(pTreg)。早期也有文獻(xiàn)把胸腺來源的Treg細(xì)胞(tTreg)稱為天然Treg細(xì)胞(nTreg),而把外周誘導(dǎo)的Treg細(xì)胞(pTreg)叫做iTreg。為了更加規(guī)范Treg細(xì)胞的命名,幾名Treg研究權(quán)威學(xué)者(包括Alexander Rudensky,Shimon Sakaguchi,Ethan M Shevach等)聯(lián)名寫信至Nature Immunology并給出了不同來源Treg細(xì)胞的命名原則[6],建議將胸腺來源的Treg細(xì)胞統(tǒng)一規(guī)范命名為tTreg以取代nTreg,將外周誘導(dǎo)的Treg細(xì)胞命名為pTreg以取代iTreg。其中tTreg 從胸腺中直接發(fā)育而來,tTreg具有維持機(jī)體免疫應(yīng)答穩(wěn)態(tài)和調(diào)節(jié)外周免疫耐受的重要作用。而pTreg則需要在腫瘤局部或外周淋巴結(jié)等免疫微環(huán)境下,在某些細(xì)胞因子如IL-2和TGF-β等的誘導(dǎo)下由初始CD4+T細(xì)胞轉(zhuǎn)變成pTreg[7],其對(duì)機(jī)體的腫瘤免疫具有負(fù)向調(diào)節(jié)作用。有研究根據(jù)分子CD62L和CD44把Treg細(xì)胞分為resting Treg(rTreg,CD62LhighCD44low Treg)和activated Treg (aTreg,CD62LlowCD44high Treg)[8]。Saito等研究發(fā)現(xiàn)可以通過CD45RA和Foxp3兩個(gè)分子把Treg細(xì)胞分為naive Treg,effector Treg和non-Treg三個(gè)亞群,并發(fā)現(xiàn)三個(gè)亞群的比例可以直接影響結(jié)直腸癌患者的預(yù)后[9]。Rothstein等通過分泌的免疫抑制因子IL-10(Interleukin-10)和TGF-β將Treg細(xì)胞分為1型調(diào)節(jié)性T細(xì)胞和3型輔助性T細(xì)胞[10]。在研究中,將Treg進(jìn)行分類有助于對(duì)其功能的具體研究以及探究其發(fā)揮功能的分子機(jī)制。
Treg細(xì)胞能通過多種機(jī)制如細(xì)胞-細(xì)胞接觸、分泌抑制性細(xì)胞因子、干擾細(xì)胞代謝等方式直接或間接影響CD4+CD8+效應(yīng)T細(xì)胞、CD4+Th細(xì)胞、自然殺傷性細(xì)胞和樹突狀細(xì)胞等免疫細(xì)胞的功能[11-14],從而影響機(jī)體的免疫應(yīng)答、產(chǎn)生免疫抑制作用。同時(shí),Romagnani等學(xué)者證實(shí)Treg細(xì)胞對(duì)NK細(xì)胞也有抑制作用[15-16],這表明Treg細(xì)胞在機(jī)體內(nèi)具有廣泛的免疫調(diào)節(jié)作用。目前對(duì)于Treg細(xì)胞抑制體內(nèi)免疫功能的具體機(jī)制尚未完全明確,目前認(rèn)為主要通過細(xì)胞間接觸依賴性機(jī)制、分泌抑制性的細(xì)胞因子等途徑和方式抑制體內(nèi)的免疫應(yīng)答[17]。
目前已有大量的研究證實(shí)了Treg細(xì)胞可以分泌能夠抑制效應(yīng)性T細(xì)胞功能的細(xì)胞因子IL-10和TGF-β,IL-10被證實(shí)能夠下調(diào)CD28配體,下調(diào)單核細(xì)胞CD80等細(xì)胞表面分子的表達(dá),TGF-β細(xì)胞因子被證實(shí)可抑制白介素1和白介素2,從而抑制機(jī)體的免疫功能。此外Treg細(xì)胞可以通過細(xì)胞表面CTLA-4抗原與APC(antigen presenting cells)細(xì)胞之間的交聯(lián)作用來抑制免疫細(xì)胞的活性[18]。同時(shí),也有研究認(rèn)為Treg細(xì)胞也可以通過下調(diào)APC細(xì)胞表面一些分子如MHCI的表達(dá);通過細(xì)胞溶解釋放穿孔素誘導(dǎo)NK細(xì)胞和細(xì)胞毒性T細(xì)胞死亡;或者通過Fas/FasL途徑等間接方式發(fā)揮免疫抑制作用[19-20]。有關(guān)Treg細(xì)胞發(fā)揮免疫抑制功能機(jī)制還有待于進(jìn)一步研究。
在腫瘤的細(xì)胞免疫中,Treg細(xì)胞起到了廣泛的免疫抑制作用。Treg細(xì)胞被認(rèn)為能夠抑制CD4+T細(xì)胞的增殖從而破壞T淋巴細(xì)胞各亞群之間的比例和功能,此外Treg細(xì)胞也可以通過抑制CD8+T細(xì)胞的功能發(fā)揮免疫抑制作用影響免疫應(yīng)答過程。目前已經(jīng)證實(shí)了在包括乳腺癌、結(jié)直腸癌、胃癌、肝癌、肺癌等腫瘤的局部、外周血和淋巴結(jié)中都有Treg細(xì)胞大量聚集并且Treg細(xì)胞數(shù)量的增高與腫瘤的預(yù)后相關(guān)[21-24]。有研究在對(duì)肝臟腫瘤的研究中發(fā)現(xiàn)Treg會(huì)在腫瘤局部聚集、數(shù)量增多,并且發(fā)現(xiàn)Treg細(xì)胞的數(shù)量與CD4+T細(xì)胞數(shù)量呈負(fù)相關(guān)[25]。關(guān)于Treg細(xì)胞在腫瘤局部募集增多的機(jī)制主要有以下幾種可能:APC細(xì)胞提呈腫瘤抗原可以誘導(dǎo)Treg細(xì)胞的擴(kuò)增;腫瘤局部可以分泌免疫抑制性細(xì)胞因子;腫瘤細(xì)胞能分泌趨化因子[26]。此外,ICOS-ICOSL信號(hào)通路誘導(dǎo)Treg細(xì)胞增殖也被認(rèn)為是Treg在腫瘤局部增多的一個(gè)原因[27]。上述原因均能直接或間接的抑制腫瘤浸潤淋巴細(xì)胞,削弱或降低腫瘤浸潤淋巴細(xì)胞特異性殺傷腫瘤細(xì)胞的能力,從而促進(jìn)腫瘤的發(fā)生發(fā)展。
由于Treg細(xì)胞能通過直接或間接的方式抑制機(jī)體內(nèi)的腫瘤免疫,如何清除或者逆轉(zhuǎn)Treg細(xì)胞的免疫抑制作用成為了免疫治療中的一個(gè)關(guān)鍵問題,近年來也是腫瘤免疫治療的熱點(diǎn)之一。目前CD4+CD25+Treg細(xì)胞在臨床應(yīng)用的主要方法為通過降低其活性和數(shù)量從而達(dá)到增強(qiáng)腫瘤免疫的效果。已知的臨床研究中,使用的方法主要包括單克隆抗體、化療藥物、FoxP3疫苗或MAGE-A3疫苗等,其它方法包括腫瘤內(nèi)輸注FasL蛋白、應(yīng)用TGF-β抑制劑等方式[28-31]。其中靶向T細(xì)胞表面分子的單克隆抗體研究成為近年來調(diào)節(jié)性T細(xì)胞功能研究的熱點(diǎn)。目前在臨床研究方面,靶向GITR(glucocorticoid-induced tumor necrosis factorreceptor)、TIGIT(T cell Ig and ITIM domain)、CTLA4(cytotoxic T lymphocyte-associated antigen-4)等的單克隆抗體已在黑色素瘤等腫瘤的治療中應(yīng)用,并取得了肯定的效果,它能夠顯著增強(qiáng)免疫,殺傷腫瘤細(xì)胞。有臨床研究表明,Ipimumab單抗封閉CTLA-4信號(hào)通路能提高自身免疫系統(tǒng)對(duì)腫瘤的識(shí)別,增強(qiáng)抗瘤效果,顯著延長晚期惡性黑色素瘤患者的生存期。但同時(shí),應(yīng)用單克隆抗體打破機(jī)體內(nèi)的免疫平衡容易引發(fā)全身嚴(yán)重炎癥反應(yīng)和自身免疫疾病等情況[32]。Nakagawa等[33]在對(duì)黑色素瘤的研究中,發(fā)現(xiàn)腫瘤微環(huán)境中的Treg細(xì)胞通常具有高水平的Helios蛋白表達(dá),且Helios缺陷的Treg細(xì)胞會(huì)轉(zhuǎn)變?yōu)椴环€(wěn)定表型,無法提供免疫抑制效果,甚至轉(zhuǎn)變成為效應(yīng)T細(xì)胞。并且發(fā)現(xiàn)其能夠在維持機(jī)體免疫狀態(tài)平衡的情況下消除Treg細(xì)胞的抑制作用,避免發(fā)生自身免疫疾病等并發(fā)癥。這一發(fā)現(xiàn)為針對(duì)Treg細(xì)胞的免疫治療提供了新的思路。
Treg細(xì)胞自發(fā)現(xiàn)以來便成為免疫治療研究中的熱點(diǎn),它的發(fā)現(xiàn)推進(jìn)了腫瘤免疫治療的進(jìn)程,但有關(guān)Treg細(xì)胞在腫瘤發(fā)生發(fā)展中的作用機(jī)制研究尚未完全明確,如何清除和逆轉(zhuǎn)Treg細(xì)胞的免疫抑制作用一直是腫瘤免疫治療中的熱點(diǎn)和難點(diǎn),目前的研究已經(jīng)發(fā)現(xiàn)了一些能降低Treg細(xì)胞數(shù)量和抑制其功能的途徑如單克隆抗體、化療藥物、FoxP3疫苗等,但尋找一種既能消除其免疫抑制作用又能避免清除Treg細(xì)胞引起自身免疫疾病的方法將是發(fā)揮其在免疫治療中巨大價(jià)值的關(guān)鍵。
[1] Fontenot JD,Gavin MA,Rudensky AY.Foxp3 programs the development and function of CD4+CD25+regulatory T cells [J].Nature immunology,2003,4(4):330-336.
[2] Hori S,Nomura T,Sakaguchi S.Control of regulatory T cell development by the transcription factor Foxp3 [J].Science,2003,299(5609):1057-1061.
[3] Sakaguchi S,Sakaguchi N,Asano M,etal.Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25).Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J].J Immunol,1995,155(3):1151-1164.
[4] Feuerer M,Hill JA,Mathis D,etal.Foxp3+ regulatory T cells:differentiation,specification,subphenotypes [J].Nature immunology,2009,10(7):689-695.
[5] 張妍,遲曉燕,崔保霞.CD4+CD25+調(diào)節(jié)性T細(xì)胞與腫瘤免疫研究進(jìn)展 [J].生命科學(xué),2010,04):362-366.
[6] Abbas AK,Benoist C,Bluestone JA,etal.Regulatory T cells:recommendations to simplify the nomenclature [J].Nature immunology,2013,14(4):307-308.
[7] Campbell DJ.Control of Regulatory T Cell Migration,Function,and Homeostasis [J].J Immunol,2015,195(6):2507-2513.
[8] Luo CT,Liao W,Dadi S,etal.Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity [J].Nature,2016,529(7587):532-536.
[9] Saito T,Nishikawa H,Wada H,etal.Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers [J].Nat Med,2016,22(6):679-684.
[10] Rothstein DM,Camirand G.New insights into the mechanisms of Treg function [J].Curr Opin Organ Tran,2015,20(4):376-384.
[11] Savage PA,Malchow S,Leventhal DS.Basic principles of tumor-associated regulatory T cell biology [J].Trends in immunology,2013,34(1):33-40.
[12] Whiteside TL.What are regulatory T cells (Treg) regulating in cancer and why[J].Semin Cancer Biol,2012,22(4):327-334.
[13] Josefowicz SZ,Lu LF,Rudensky AY.Regulatory T cells:mechanisms of differentiation and function [J].Annual review of immunology,2012,30(5):31-64.
[14] Dunn GP,Bruce AT,Ikeda H,etal.Cancer immunoediting:from immunosurveillance to tumor escape [J].Nature immunology,2002,3(11):991-998.
[15] Ralainirina N,Poli A,Michel T,etal.Control of NK cell functions by CD4+CD25+regulatory T cells [J].Journal of leukocyte biology,2007,81(1):144-153.
[16] Romagnani C,Della CM,Kohler S,etal.Activation of human NK cells by plasmacytoid dendritic cells and its modulation by CD4+T helper cells and CD4+CD25+hi T regulatory cells [J].European journal of immunology,2005,35(8):2452-2458.
[17] Seo N,Yamashiro H,Tadaki T.Anti-infective and anti-tumor agents based on the depletion of immune suppressive effects [J].Current medicinal chemistry,2008,15(10):991-996.
[18] Tai X,Laethem F,Pobezinsky L,etal.Basis of CTLA-4 function in regulatory and conventional CD4(+) T cells [J].Blood,2012,119(22):5155-5163.
[19] Cao X,Cai S F,Fehniger TA,etal.Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance [J].Immunity,2007,27(4):635.
[20] Venet F,Pachot A,Debard AL,etal.Human CD4+CD25+regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand-dependent mechanism [J].J Immunol,2006,177(9):6540.
[21] Feng X,Li B,Ye H,etal.Increased frequency of CD4+CD25(high)FoxP3+ regulatory T cells in patients with hepatocellular carcinoma [J].Archivum Immunologiae Et Therapiae Experimentalis,2011,59(4):309.
[22] Ormandy L A,Hillemann T,Wedemeyer H,etal.Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma [J].Cancer research,2005,65(6):2457-2464.
[23] Liyanage UK,Moore TT,Joo HG,etal.Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma [J].J Immunol,2002,169(5):2756-2761.
[24] Woo EY,Chu CS,Goletz TJ,etal.Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer [J].Cancer research,2001,61(12):4766-4772.
[25] 陳中,晏建軍,黃亮,等.肝癌微環(huán)境中CD4~+CD25~+調(diào)節(jié)性T細(xì)胞與T細(xì)胞免疫的關(guān)系 [J].中國腫瘤生物治療雜志,2007,06):582-584.
[26] Zhou S,Xu S,Tao H,etal.CCR7 Expression and Intratumoral FOXP3+ Regulatory T Cells are Correlated with Overall Survival and Lymph Node Metastasis in Gastric Cancer [J].PloS one,2013,8(9):e74430.
[27] Conrad C,Gregorio J,Wang YH,etal.Plasmacytoid Dendritic Cells Promote Immunosuppression in Ovarian Cancer via ICOS Costimulation of Foxp3+ T-Regulatory Cells [J].Cancer research,2012,72(20):5240-5249.
[28] Kurtulus S,Sakuishi K,Ngiow SF,etal.TIGIT predominantly regulates the immune response via regulatory T cells [J].J Clin Invest,2015,125(11):4053-4062.
[29] Sugiyama D,Nishikawa H,Maeda AY,etal.Anti-CCR4 mAb selectively depletes effector-type FoxP3(+)CD4(+) regulatory T cells, evoking antitumor immune responses in humans [J].P Natl Acad Sci USA,2013,110(44):17945-17950.
[30] Hodi FS,O’day SJ,Mcdermott DF,etal.Improved Survival with Ipilimumab in Patients with Metastatic Melanoma [J].New Engl J Med,2010,363(8):711-723.
[31] Cohen AD,Schaer DA,Liu C,etal.Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation [J].PloS one,2010,5(5):e10436.
[32] Nair S,Bovzkowski D,Fassnacht M,etal.Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity [J].Cancer research,2007,67(1):371-380.
[33] Nakagawa H,Sido JM,Reyes EE,etal.Instability of Helios-deficient Tregs is associated with conversion to a T-effector phenotype and enhanced antitumor immunity [J].P Natl Acad Sci USA,2016,113(22):6248-6253.