王 佳,單群群,祁 健
Rexed把貓脊髓的灰質(zhì)劃分為一系列平行的板層結(jié)構(gòu),人們用這一結(jié)構(gòu)對(duì)其他種屬?gòu)V泛進(jìn)行研究[1]。Ⅰ層對(duì)應(yīng)于邊緣層,Ⅱ?qū)訉?duì)應(yīng)于膠狀質(zhì),而剩下的脊髓后角包括4個(gè)板層,即Ⅲ~Ⅵ層[2]。最近人們致力于對(duì)Ⅰ~Ⅲ層的解剖環(huán)路進(jìn)行了研究,特別是P物質(zhì)作用于NK1R陽(yáng)性神經(jīng)元的環(huán)路[3]。因此,筆者對(duì)最近關(guān)于NK1R陽(yáng)性的投射神經(jīng)元以及其突觸關(guān)系的研究做一概述。
脊髓后角在疼痛傳遞中是突觸整合的第一站,初級(jí)傳入的纖維主要終止于后角,在這里傷害性傳入纖維和脊髓的投射神經(jīng)元發(fā)生突觸聯(lián)系[4]。根據(jù)纖維的大小和感覺(jué)的模型,它們有序地分布在后角。大多數(shù)的初級(jí)傳入具有有髓鞘的Aδ纖維和無(wú)髓鞘的C纖維,是傷害性感受器,主要終止于Ⅰ層和Ⅱ?qū)樱?,5]。 一些 Aδ 纖維成樹(shù)枝狀分布在Ⅱ~Ⅲ層的邊緣[5]。大多數(shù)的Aβ表皮傳入是低閾值的機(jī)械性感受器。一些神經(jīng)化學(xué)物質(zhì)可以作為初級(jí)傳入的標(biāo)記[6],在小鼠大多數(shù)的肽能傳入纖維包含降鈣素基因相關(guān)蛋白(CGRP)[7],許多肽能的軀體傳入纖維包含P物質(zhì)并且它們都是傷害性感受器[8]。含有P物質(zhì)的傳入纖維,包括A和C纖維主要終止于Ⅰ層和Ⅱ?qū)拥耐鈧?cè)部,一些C纖維含有生長(zhǎng)抑素終止于Ⅱ?qū)拥耐鈧?cè)部[9]。大約一半的C纖維不含有肽類物質(zhì),主要分布在Ⅱ?qū)拥膬?nèi)側(cè)部,但是大多數(shù)能夠與異凝集素 B4 結(jié)合[10]。
所有的含有P物質(zhì)的初級(jí)傳入是傷害性感受器,而含有生長(zhǎng)抑素和非肽能的C纖維的作用還不是很清楚。大多數(shù)的肽能纖維終末形成簡(jiǎn)單的突觸結(jié)構(gòu),而非肽能的C纖維主要是構(gòu)成突觸小球[11]。
在脊髓后角Ⅰ層和Ⅲ~Ⅵ層存在著投射神經(jīng)元,它們投射到大腦的不同區(qū)域,包括丘腦,導(dǎo)水管周圍灰質(zhì),孤束核,延髓網(wǎng)狀結(jié)構(gòu)等區(qū)域,這些神經(jīng)元大多數(shù)都是對(duì)側(cè)投射[9]。
P物質(zhì)作用于NK1R,NK1R分布于脊髓后角特定的神經(jīng)元[12]。NK1R在80%的Ⅰ層神經(jīng)元表達(dá),這些神經(jīng)元主要投射到丘腦,導(dǎo)水管灰質(zhì)等上位腦區(qū)域[9]。NK1R陽(yáng)性神經(jīng)元對(duì)傷害性刺激具有反應(yīng)。在貓的脊髓,傷害性刺激可引起P物質(zhì)作用于所有脊髓后角神經(jīng)元發(fā)生興奮,在大鼠大多數(shù)的Ⅰ層NK1R陽(yáng)性神經(jīng)元受到急性傷害性刺激時(shí)表現(xiàn)出受體內(nèi)化和c-fos的表達(dá)。在脊髓后角淺層NK1R陽(yáng)性神經(jīng)元在痛覺(jué)增敏發(fā)生中起著重要的作用[13]。另外,Ⅰ層NK1R陽(yáng)性神經(jīng)元參與腦干環(huán)路慢性痛的建立[14]。
在Ⅲ和Ⅳ層含有分散的大神經(jīng)元,這些神經(jīng)元表達(dá)NK1R陽(yáng)性,它們的樹(shù)突呈樹(shù)枝狀分布在表層[15]。研究表明,它們是投射神經(jīng)元,發(fā)出纖維到延髓腹外側(cè)區(qū)、海馬、導(dǎo)水管周圍灰質(zhì)[9]。這些神經(jīng)元在疼痛機(jī)制中起著重要的作用,因?yàn)樗鼈儗儆诩顾枨鹉X束。
研究表明,大多數(shù)投射神經(jīng)元的激活不但依靠初級(jí)傳入,而且受到一系列興奮性和抑制性中間神經(jīng)元的控制以及下行的疼痛系統(tǒng)的調(diào)控[16]。在脊髓后角,NK1R陽(yáng)性投射神經(jīng)元將傷害性疼痛信號(hào)傳向上位腦。最近還發(fā)現(xiàn)在Ⅰ層和Ⅲ層的NK1R陽(yáng)性神經(jīng)元不僅把疼痛信息傳遞到高位腦,而且在脊髓水平調(diào)整抑制性和興奮性神經(jīng)元網(wǎng)絡(luò)[17]。
NK1R是七次跨膜的G蛋白偶聯(lián)受體,當(dāng)NK1R受到刺激時(shí),激活磷脂酶C,磷脂酶C催化磷脂酰肌醇二磷酸鹽(酯)生成肌醇三磷酸和二?;视停鼈円来闻d奮 Ca2+和蛋白激酶 C[18]。從而引起表達(dá)NK1R陽(yáng)性神經(jīng)元的神經(jīng)遞質(zhì)的釋放。
在Ⅲ層和 Ⅳ層的NK1R陽(yáng)性神經(jīng)元接受大量含有P物質(zhì)的初級(jí)傳入纖維,并且這些聯(lián)系是單突觸的聯(lián)系[19]。這些神經(jīng)元胞體存在于Ⅲ層和 Ⅳ層,而樹(shù)突廣泛的分布在后角淺層,所以含有P物質(zhì)的初級(jí)傳入終末不但與Ⅰ層和Ⅱ?qū)油鈧?cè)部的樹(shù)突形成大量的接觸,而且和Ⅱ?qū)觾?nèi)側(cè)部以及Ⅲ層的樹(shù)突形成大量的突觸[20,21]。但是研究發(fā)現(xiàn),在Ⅲ層和Ⅳ層它們與有髓鞘的神經(jīng)纖維很少有突觸聯(lián)系,并且在Ⅱ?qū)雍猩L(zhǎng)抑素和非肽能的C纖維也很少與這些神經(jīng)元發(fā)生突觸聯(lián)系[22,23]。 在機(jī)械、熱、化學(xué)等有害刺激下,Ⅲ層和 Ⅳ層的NK1R陽(yáng)性神經(jīng)元表現(xiàn)出受體內(nèi)陷和細(xì)胞外信號(hào)調(diào)節(jié)激酶磷酸化[24]。
在Ⅰ層NK1R陽(yáng)性的樹(shù)突和含有P物質(zhì)的軸突發(fā)生突觸聯(lián)系,同時(shí)發(fā)現(xiàn)Ⅰ層NK1R陽(yáng)性的神經(jīng)元和同時(shí)含有P物質(zhì)和降鈣素基因相關(guān)蛋白的軸突發(fā)生突觸聯(lián)系。
在脊髓后角存在大量抑制性的中間神經(jīng)元,這些神經(jīng)元以GABA,Gly,神經(jīng)肽Y為遞質(zhì),大多數(shù)的抑制性神經(jīng)元在突觸前末梢同時(shí)含有GABA和Gly,它們可能發(fā)出纖維作用于NK1R陽(yáng)性神經(jīng)元,參與痛覺(jué)信息的傳遞和調(diào)控[7,25-27]。
除了局部興奮性和抑制性的傳入外,NK1R陽(yáng)性投射神經(jīng)元還接受來(lái)自腦干的下行5-HT或NE能投射。NK1R陽(yáng)性神經(jīng)元同時(shí)受到下行調(diào)控系統(tǒng)的調(diào)節(jié),來(lái)自延髓的5羥色胺軸突作用于Ⅲ層和Ⅳ層的NK1R陽(yáng)性的神經(jīng)元[28],最近也發(fā)現(xiàn)它們還有選擇性作用于Ⅰ層的NK1R陽(yáng)性投射神經(jīng)元。它們參與刺激和阿片類物質(zhì)產(chǎn)生的痛覺(jué)缺失。5羥色胺發(fā)揮作用的部分機(jī)制是直接作用于脊髓的投射神經(jīng)元[29,30]。投射到延髓腹外側(cè)區(qū)NK1R陽(yáng)性神經(jīng)元受到腎上腺能纖維的控制,這些纖維含有α2型腎上腺能受體。已有研究證明,口面部傷害性信息傳遞也受到這些下行纖維的調(diào)控。在CNS內(nèi),5-HT能纖維主要來(lái)自于中縫大核,NE能纖維主要來(lái)自于腦干的藍(lán)斑。下行抑制系統(tǒng)參與疼痛和鎮(zhèn)痛環(huán)路的構(gòu)成,下行抑制系統(tǒng)改變投射神經(jīng)元的活動(dòng)通過(guò)以下幾個(gè)方面:(1)突觸直接作用于投射神經(jīng)元;(2)影響初級(jí)傳入的傳入信息;(3)控制中間神經(jīng)元的活動(dòng)。以往的研究觀察到5-HT(94%)和NE(92%)的纖維作用于NK1R陽(yáng)性投射神經(jīng)元的軸突和胞體[31]。
彌散性有毒(物質(zhì))抑制性控制系統(tǒng)是長(zhǎng)效的下行控制系統(tǒng),控制著脊髓和三叉神經(jīng)的傷害性疼痛神經(jīng)元,在腰髓NK1R陽(yáng)性神經(jīng)元對(duì)于彌散性有毒(物質(zhì))抑制性控制系統(tǒng)誘發(fā)的痛覺(jué)缺失起著重要的作用[6]。
NK1受體陽(yáng)性神經(jīng)元在痛覺(jué)信息的疼痛傳遞和調(diào)控中起著重要的作用,既受到初級(jí)傳入纖維的調(diào)控,又同時(shí)受到局部抑制性神經(jīng)元和下行抑制調(diào)控系統(tǒng)的控制。
[1] REXED B.The cytoarchitectonic organization of the spinal cord in the cat[J].J Comp Neurol,1952,96(3):414-495.
[2] TODD AJ.Neuronal circuitry for pain processing in the dorsal horn[J].Nat Rev Neurosci,2010,11(12):823-836.
[3] ZHANG C,LI Y,WANG X,et al.Involvement of neurokinin 1 receptor within the cerebrospinal fluid contacting nucleus in visceral pain[J].Mol Med Rep,2017,15(6):4300-4304.
[4] WU SX,WANG W,LI H,et al.The synaptic connectivity that underlies the noxious transmission and modulation within the superficial dorsal horn of the spinal cord[J].Prog Neurobiol,2010,91(1):38-54.
[5] LIGHT AR,PERL ER.Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers[J].J Comp Neurol,1979,186(2):133-150.
[6] MILLAN MJ.Descending control of pain[J].Prog Neurobiol,2002,66(6):355-474.
[7] TAYLOR BK.Inflammation enhances Y1 receptor signaling,neuropeptide Y-mediated inhibition of hyperalgesia,and substance P release from primary afferent neurons[J].Neuroscience,2014,256(2):178-194.
[8] LAWSON SN,CREPPS BA,PERL ER.Relationship of substance P to afferent characteristics of dorsal root ganglion neurones in guinea-pig[J].J Physiol,1997,505(Pt 1):177-191.
[9] TODD AJ,MCGILL MM,SHEHAB SA,Neurokinin 1 receptor expression by neurons in laminaeⅠ,Ⅲ andⅣ of the rat spinal dorsal horn that project to the brainstem[J].Eur J Neurosci,2000,12(2):689-700.
[10] SILVERMAN JD,KRUGER L.Selective neuronal glycoconjugate expression in sensory and autonomic ganglia:relation of lectin reactivity to peptide and enzyme markers[J].J Neurocytol,1990,19(5):789-801.
[11] SAKAMOTO H,SPIKE RC,TODD AJ.Neurons in laminae ⅢandⅣof the rat spinal cord with the neurokinin-1 receptor receive few contacts from unmyelinated primary afferents which do not contain substance P[J].Neuroscience,1999,94(3):903-908.
[12] TODD AJ,SPIKE RC,POLGAR E.A quantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal dorsal horn[J].Neuroscience,1998,85(2):459-473.
[13] TODD AJ.Anatomy of primary afferents and projection neurones in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor[J].Exp Physiol,2002,87(2):245-249.
[14] CASTRO AR,MORGADO C,LIMA D,et al.Differential expression of NK1 and GABAB receptors in spinal neurones projecting to antinociceptive or pronociceptive medullary centres[J].Brain Res Bull,2006,69(3):266-275.
[15] LITTLEWOOD NK,TODD AJ,SPIKE RC,et al.The types of neuron in spinal dorsal horn which possess neurokinin-1 receptors[J].Neuroscience,1995,66(3):597-608.
[16] ZEILHOFER HU.The glycinergic control of spinal pain processing[J].Cell Mol Life Sci,2005,62(18):2027-2035.
[17] LAPIROT O,CHEBBI R,MONCONDUIT L,et al.NK1 receptorexpressing spinoparabrachial neurons trigger diffuse noxious inhibitory controls through lateral parabrachial activation in the male rat[J].Pain,2009,142(3):245-254.
[18] KRAUSE JE,TAKEDA Y,HERSHEY AD.Structure,functions,and mechanisms of substance P receptor action[J].J Invest Dermatol,1992,98(6S):2S-7S.
[19] TRAINI C,EVANGELISTA S,GIROD V,et al.Changes of excitatory and inhibitory neurotransmitters in the colon of rats underwent to the wrap partial restraint stress[J].Neurogastroenterol Motil,2016,28(8):1172-1185.
[20] POLGAR E,AL-KHATER KM,SHEHAB S,et al.Large projection neurons in lamina I of the rat spinal cord that lack the neurokinin 1 receptor are densely innervated by VGLUT2-containing axons and possess GluR4-containing AMPA receptors[J].J Neurosci,2008,28(49):13150-13160.
[21] PUSKAR Z,POLGAR E,TODD AJ.A population of large lamina I projection neurons with selective inhibitory input in rat spinal cord[J].Neuroscience,2001,102(1):167-176.
[22] POLGAR E,SARDELLA TC,WATANABE M,et al.Quantitative study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal horn[J].J Comp Neurol,2011,519(6):1007-1023.
[23] TODD AJ,POLGáR E,WATT C,et al.Neurokinin 1 receptorexpressing projection neurons in laminaeⅢandⅣof the rat spinal cord have synaptic AMPA receptors that contain GluR2,GluR3 and GluR4 subunits[J].Eur J Neurosci,2009,29(4):718-726.
[24] POLGAR E,CAMPBELL AD,MACINTYRE LM,et al.Phosphorylation of ERK in neurokinin 1 receptor-expressing neurons in laminaeⅢandⅣof the rat spinal dorsal horn following noxious stimulation[J].Mol Pain,2007,3(1):4.
[25] SIVILOTTI L,WOOLF CJ.The contribution of GABAA and glycinereceptorsto centralsensitization:disinhibition and touch-evoked allodynia in the spinal cord[J].J Neurophysiol,1994,72(1):169-179.
[26] YAKSH TL.Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition:effects of modulatory receptor systems and excitatory amino acid antagonists[J].Pain,1989,37(1):111-123.
[27] FENG YP,LI YQ,WANG W,et al.Morphological evidence for GABA/glycine-cocontaining terminals in synaptic contact with neurokinin-1 receptor-expressing neurons in the sacral dorsal commissural nucleus of the rat[J].Neurosci Lett,2005,388(3):144-148.
[28] LACOSTE B,RIAD M,DESCARRIES L.Immunocytochemical evidence for the existence of substance P receptor(NK1) in serotonin neurons of rat and mouse dorsal raphe nucleus[J].Eur J Neurosci,2006,23(11):2947-2958.
[29] MUSTAFA G,HOU J,TSUDA S,et al.Trigeminal neuroplasticity underlies allodynia in a preclinical model of mild closed head traumatic brain injury(cTBI)[J].Neuropharmacology,2016,107(1):27-39.
[30] LACOSTE B,RIAD M,RATTé MO,et al.Trafficking of neurokinin-1 receptors in serotonin neurons is controlled by substance P within the rat dorsal raphe nucleus[J].Eur J Neurosci,2009,29(12):2303-2314.
[31] QI J,ZHANG H,GUO J,et al.Synaptic connections of the neurokinin 1 receptor-like immunoreactive neurons in the rat medullary dorsal horn[J].PLoS One,2011,6(8):e23275.